" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Monday, 14 March 2011 17:29

Rules, Legislation, Regulations and Codes of Forest Practices

Written by
Rate this item
(1 Vote)

In a high-risk occupation like forestry, relevant and job-specific safety regulations are a critical element of any strategy to reduce the high frequencies of accidents and health problems. To develop such regulation and to obtain compliance is unfortunately much more difficult in forestry than in many other occupations. Occupational safety legislation and existing general regulations are often not specific for forestry. Moreover, they are often difficult to apply in the highly variable outdoor context of forestry, because they were typically conceived with factory-type workplaces in mind.

This article outlines the route from general legislation to forestry-specific regulations and makes some suggestions for contributions that the various actors in the forestry sector may make to the improvement of compliance with regulations. It concludes with a brief presentation of the concept of codes of forest practices, which holds considerable promise as a form of regulation or self-regulation.

The Law Outlines the Principles

Safety legislation usually merely lays out some basic principles, such as:

  • The employer is primarily responsible for the safety of employees and must take the necessary protective measures.
  • Employees must be involved in this.
  • Employees, in turn, are obliged to support the employer’s efforts.
  • Laws are enforced through the labour inspectorate, the health service or an analogous body.

 

What the General Regulations Specify

Regulations on prevention of accidents and occupational diseases often specify a number of points, such as:

  • the duties of employers and employees
  • the consultation of doctors and other occupational safety specialists
  • the safety regulations for buildings and other construction, for technical equipment and devices, and on the working environment and the work organization.

 

The regulations also contain instructions on:

  • organization of workplace safety
  • implementing the provisions on workplace safety
  • occupational medical care
  • financing workplace safety.

 

As the legislation has evolved over time, there are often laws for other areas and sectors that also contain regulations applicable to workplace safety in forestry. In Switzerland, for example, these include the labour code, the law on explosives, the law on poisons and traffic legislation. It would be advantageous to users if all these provisions and related regulations were collected into a single law.

Safety Regulations for Forestry: As Concrete as Possible and Nevertheless Flexible

In most cases, these laws and regulations are too abstract for daily, on-the-job use. They do not correspond to the hazards and risks involved in using machines, vehicles and work materials in the various industries and plants. This is particularly true for a sector with such varied and atypical working conditions as forestry. For this reason, specific safety regulations are worked out by sectoral commissions for the individual industries, their specific jobs, or equipment and devices. In general, this proceeds consciously or unconsciously as follows:

First, the dangers that can arise in an activity or a system are analysed. For example, cuts into the leg are a frequent injury among chain-saw operators.

Second, protection goals that are based on the dangers identified and which describe “what should not happen” are enunciated. For example: “Appropriate measures should be taken to prevent the chain-saw operator from injuring his or her leg”.

Only in the third step are solutions or measures sought that, in accordance with the state of technology, reduce or eliminate the dangers. In the above-mentioned example, cut-protected trousers are one of the appropriate measures. The state of technology for this item can be defined by requiring that trousers correspond to European Norms (EN) 381-5, Protective clothing for users of hand-operated chain-saws, Part 5: Regulations for leg protection.

This procedure offers the following advantages:

  • Protective goals are based on concrete hazards. The safety requirements are therefore practice-oriented.
  • Safety regulations in the form of protective goals allow for greater flexibility in the choice and development of solutions than the prescription of concrete measures. Specific measures can also be adapted continuously to advances in the state of technology.
  • When new hazards appear, safety regulations can be supplemented in a targeted manner.

 

Establishing bi- or tripartite sectoral commissions that involve the interested employer and employee organizations has proven an effective way of improving the acceptance and application of safety regulations in practice.

Content of Safety Rules

When certain jobs or types of equipment have been analysed for their hazards and protective goals derived, measures in the areas of technology, organization and personnel (TOP) can be formulated.

Technical questions

The state of technology for part of the forestry equipment and devices, such as power saws, brush cutters, leg protection for power saw operators and so on, is set in international norms, as discussed elsewhere in this chapter. Over the long term, the EN and the norms of the International Organization for Standardization (ISO) should be unified. Adoption of these norms by the individual countries will contribute to the uniform protection of the employee in the industry. Proof from the seller or manufacturer that a piece of equipment complies with these standards guarantees to the buyer that the equipment corresponds to the state of technology. In the numerous cases where no international standards exist, national minimum requirements need to be defined by groups of experts.

In addition to the state of technology, the following issues, among other things, are important:

  • availability of the necessary equipment and materials on the job
  • reliable condition of the equipment and materials
  • maintenance and repair.

 

Forestry operations often leave much to be desired in these respects.

Organizational questions

Conditions must be established in the enterprise and at the workplace so that the individual jobs can be carried out safely. In order for this to happen, the following issues must be addressed:

  • tasks, authority and responsibilities of all participants clearly defined
  • a wage system that promotes safety
  • working hours and breaks adapted to the difficulty of the work
  • work procedures
  • work planning and organization
  • first aid and alarms
  • where workers have to live in camps, minimum requirements defined for dormitories, sanitation, nutrition, transport and recreation.

 

Personnel questions

Personnel questions can be divided into:

Training and continuing education. In some countries this includes employees of forestry companies, for example, those who work with power saws are obliged to attend appropriate training and continuing education courses.

Guidance, welfare and support of the employee. Examples include showing new employees how the job is done and supervising the employees. Practice shows that the state of workplace safety in an enterprise depends in large measure on whether and how the management maintains discipline and carries out its supervisory responsibilities.

Doing the job

Most safety regulations contain rules of behaviour that the employee is supposed to abide by in doing the job. In forestry work these rules relate primarily to critical operations such as:

  • felling and working with trees
  • extraction, storing and transporting wood
  • working with wind-felled trees
  • climbing trees and working in treetops.

 

In addition to international standards and national regulations that have proved effective in several countries, the International Labour Organization (ILO) Code of Practice Safety and Health in Forestry Work provides examples and guidance for the design and formulation of national or company-level regulations (ILO 1969, 1997, 1998).

Safety regulations have to be reviewed and constantly adapted to changing circumstances or supplemented to cover new technology or work methods. A suitable accident reporting and investigation system can be of great help toward this end. Unfortunately, few countries are making use of this possibility. The ILO (1991) provides some successful examples. Even rather simple systems can provide good pointers. (For further information see Strehlke 1989.) The causes of accidents in forestry are often complex. Without a correct and full understanding, preventive measures and safety regulations often miss the point. A good example is the frequent but often erroneous identification of “unsafe behaviour” as the apparent cause. In accident investigation, the emphasis should as much as possible be on understanding the causes of accidents, rather than on establishing the responsibility of individuals. The “tree of causes” method is too onerous to be used routinely, but has given good results in complicated cases and as a means of raising safety awareness and of improving communication in enterprises. (For a report on the Swiss experience see Pellet 1995.)

Promoting Compliance

Safety regulations remain a dead letter unless all stakeholders in the forestry sector play their part in implementation. Jokulioma and Tapola (1993) give a description of such cooperation in Finland, which has produced excellent results. For information, education and training on safety, including for groups that are difficult to reach like contractors and forest farmers, the contractor and forest owner associations play a critical role.

Safety regulations need to be made available to users in accessible form. A good practice is the publishing in a pocket-size format of illustrated concise extracts relevant to particular jobs such as chain-saw operation or cable cranes. In many countries migrant workers account for a significant percentage of the forestry workforce. Regulations and guides need to be available in their respective languages. Forestry equipment manufacturers should also be required to include in the owner’s manual comprehensive information and directions on all aspects of the maintenance and safe use of the equipment.

The cooperation of workers and employers is of course particularly important. This is true at the sectoral level, but even more so at the enterprise level. Examples for successful and very cost effective cooperation are given by the ILO (1991). The generally unsatisfactory safety situation in forestry is often aggravated further where the work is carried out by contractors. In such cases, the contracts offered by the commissioning party, forest owner or industry should always include a clause requiring compliance with safety requirements as well as sanctions in cases of breach of regulations. The regulations themselves should be an annex to the contract.

In some countries, general legislation provides for a joint or subsidiary responsibility and liability of the commissioning party—in this case a forest owner or company—with the contractor. Such a provision can be very helpful in keeping irresponsible contractors out and favouring the development of a qualified service sector.

A more specific measure in the same direction is the accreditation of contractors through government authorities or workers’ compensation administrators. In some countries contractors have to demonstrate that they are sufficiently equipped, economically independent and technically competent to carry out forestry work. Contractor associations could conceivably play a similar role, but voluntary schemes have not been very successful.

Labour inspection in forestry is a very difficult task, because of the dispersed, temporary worksites, often in faraway, inaccessible places. A strategy motivating the actors to adopt safe practices is more promising than isolated policing. In countries where large forestry companies or forest owners predominate, self-inspection of contractors by such companies, monitored by the labour inspectorate or workers’ compensation administration, is one way of increasing coverage. Direct labour inspection should be focused both in terms of issues and geography, to make optimum use of staff and transport. As labour inspectors are often non-foresters, inspection should best be based on thematic checklists (“chain-saws”, “camps” and so on), which inspectors can use after a 1- or 2-day training. A video on labour inspection in forestry is available from the ILO.

One of the biggest challenges is to integrate safety regulations into routine procedures. Where forestry-specific regulations exist as a separate body of rules, they are often perceived by supervisors and operators as an additional constraint on top of technical, logistic and other factors. As a result, safety considerations tend to be ignored. The remainder of this article describes one possibility of overcoming this obstacle.

Codes of Forest Practice

In contrast to general occupational safety and health regulations, codes of practice are sets of rules, prescriptions or recommendations that are forestry-specific and practice-oriented and ideally cover all aspects of an operation. They include safety and health considerations. Codes vary greatly in scope and coverage. Some are very concise while others are elaborate and go into considerable detail. They may cover all types of forest operations or be limited to the ones considered most critical, such as forest harvesting.

Codes of practice can be a very interesting complement to general or forestry-specific safety regulations. Over the last decade, codes have been adopted or are being developed in a growing number of countries. Examples include Australia, Fiji, New Zealand, South Africa and numerous states in the United States. At the time of writing, work was in progress or planned in various other countries, including Chile, Indonesia, Malaysia and Zimbabwe.

There are also two international codes of practice that are designed as guidelines. The FAO Model Code of Forest Harvesting Practice (1996) covers all aspects of general forest harvesting practices. The ILO Code of Practice Safety and Health in Forestry Work, first published in 1969 and to be published in a completely revised form in 1998 (available in 1997 as a working paper (ILO 1997)), deals exclusively with occupational safety and health.

The driving force behind new codes has been environmental rather than safety concerns. There is, however, a growing recognition that in forestry, operational efficiency, environmental protection and safety are inseparable. They result from the same planning, work methods and practices. Directional felling to reduce impact on the remaining stand or regeneration, and rules for extraction in steep terrain, are good examples. Some codes, like the FAO and the Fiji Codes, make this link explicit and simultaneously address productivity, environmental protection and work safety. Ideally, codes should not have separate chapters on safety, but should have occupational safety and health built into their provisions.

Codes should be based on the safest work methods and technology available, require safety to be considered in planning, establish required safety features for equipment, list required personal protective equipment and contain rules on safe work practices. Where applicable, regulations about camps, nutrition and worker transport should also be included. Safety considerations should also be reflected in rules about supervision and training.

Codes can be voluntary and be adopted as mandatory by groups of companies or the forestry sector of a country as a whole. They can also be legally binding. In all cases they may be enforceable through legal or other complaints procedures.

Many codes are drawn up by the forestry sector itself, which ensures practicability and relevance, and enhances commitment to comply. In the case of Chile, a tripartite committee has been established to develop the code. In Fiji the code was originally designed with strong industry involvement and then made binding by the Ministry of Forests.

The characteristics described above and the experience with existing codes make them a most interesting tool to promote safety in forestry, and offer the possibility of very effective cooperation between safety officers, worker’s compensation administrators, labour inspectors and forestry practitioners.

 

Back

Read 2605 times Last modified on Tuesday, 28 June 2011 10:38

Contents

Preface
Part I. The Body
Part II. Health Care
Part III. Management & Policy
Part IV. Tools and Approaches
Part V. Psychosocial and Organizational Factors
Part VI. General Hazards
Part VII. The Environment
Part VIII. Accidents and Safety Management
Part IX. Chemicals
Part X. Industries Based on Biological Resources
Agriculture and Natural Resources Based Industries
Beverage Industry
Fishing
Food Industry
Forestry
Resources
Hunting
Livestock Rearing
Lumber
Paper and Pulp Industry
Part XI. Industries Based on Natural Resources
Part XII. Chemical Industries
Part XIII. Manufacturing Industries
Part XIV. Textile and Apparel Industries
Part XV. Transport Industries
Part XVI. Construction
Part XVII. Services and Trade
Part XVIII. Guides

Forestry Additional Resources

Click the Button below to view additional resources for this topic.

button

Forestry References

Apud, E, L Bostrand, I Mobbs, and B Strehlke. 1989. Guidelines on Ergonomic Study in Forestry. Geneva: ILO.

Apud, E and S Valdés. 1995. Ergonomics in Forestry—The Chilean Case. Geneva: ILO.

Banister, E, D Robinson, and D Trites. 1990. Ergonomics of Tree Planting. Canada–British Columbia Forest Resources Development Agreement, FRDA Report 127. Victoria, BC: FRDA.

Brown, GW. 1985. Forestry and Water Quality. Corvallis, OR: Oregon State University (OSU) Book Stores Inc.

Chen, KT. 1990. Logging Accidents—An Emerging Problem. Sarawak, Malaysia: Occupational Health Unit, Medical Department.

Dummel, K and H Branz. 1986. “Holzernteverfahren,” Schriften Reihefdes Bundesministers für Ernätrung, Handwirtschaft und Forsten. Reihe A: Landwirtschafts verlag Münster-Hiltrup.

Durnin, JVGA and R Passmore. 1967. Energy, Work, Leisure. London: Heinemann.

Food and Agriculture Organization (FAO) of the United Nations. 1992. Introduction to Ergonomics in Forestry in Developing Countries. Forestry Paper 100. Rome:FAO.

—. 1995. Forestry—Statistics Today for Tomorrow. Rome: FAO.

—. 1996. FAO Model Code of Forest Harvesting Practice. Rome: FAO.

FAO/ECE/ILO. 1989. Impact of Mechanization of Forest Operations on the Soil. Proceedings of a seminar, Louvain-la-neuve, Belgium, 11–15 September. Geneva: FAO/ECE/ILO Joint Committee on Forest Technology, Management and Training.

—. 1991. The Use of Pesticides in Forestry. Proceedings of a seminar, Sparsholt, UK, 10–14 September 1990.

—. 1994. Soil, Tree, Machine Interactions, FORSITRISK. Proceedings of an interactive workshop and seminar, Feldafiraf, Germany, 4–8 July. Geneva: FAO/ECE/ILO Joint Committee on Forest Technology, Management and Training.

—. 1996a. Manual on Acute Forest Damage. UN/ECE/ FAO discussion papers ECE/TIM/DP/7, New York and Geneva: Joint FAO/ECE/ILO Committee on Forest Technology, Management and Training.

—. 1996b. Skills and Training in Forestry—Results of a Survey of ECE Member Countries. Geneva: FAO/ECE/ILO Joint Committee on Forest Technology, Management and Training.

FAO/ILO. 1980. Chainsaws in Tropical Forests. Forest Training Series No. 2. Rome: FAO.

Gellerstedt, S. 1993. Work and Health in Forest Work. Göteborg: Chalmers University of Technology.

Giguère, D, R Bélanger, J-M Gauthier, and C Larue. 1991. Étude préliminaire du travail de reboisement. Rapport IRSST B-026. Montreal: IRSST.

—. 1993. Ergonomics aspects of tree planting using multi-pot technology. Ergonomics 36(8):963-972.

Golsse, JM. 1994. Revised FERIC Ergonomic Checklist for Canadian Forest Machinery. Pointe Claire: Forest Engineering Research institute of Canada.

Haile, F. 1991. Women Fuelwood Carriers in Addis Ababa and the Peri-urban Forest. Research on women in fuelwood transport in Addis Ababa, Ethiopia ETH/88/MO1/IRDC and ETH/89/MO5/NOR. Project report. Geneva: ILO.

Harstela, P. 1990. Work postures and strain of workers in Nordic forest work: A selective review. Int J Ind Erg 5:219–226.

International Labour Organization (ILO). 1969. Safety and Health in Forestry Work. An ILO Code of Practice. Geneva: ILO.

—. 1988. Maximum Weights in Load Lifting and Carrying. Occupational Safety and Health Service, No. 59. Geneva: ILO.

—. 1991. Occupational Safety and Health in Forestry. Report II, Forestry and Wood Industries Committee, Second Session. Geneva: ILO.

—. 1997. Code of Practice on Safety and Health in Forest Work. MEFW/1997/3. Geneva: ILO.

—. 1998. Code of Practice on Safety and Health in Forest Work. Geneva: ILO.

International Standards Organization (ISO). 1986. Equipment for Working the Soil: ROPS—Laboratory Testing and Performance Specifications. ISO 3471-1. Geneva: ISO.

Jokulioma, H and H Tapola. 1993. Forest worker safety and health in Finland. Unasylva 4(175):57–63.

Juntunen, ML. 1993. Training of harvester operations in Finland. Presented in seminar on the use of multifunctional machinery and equipment in logging operations. Olenino Logging Enterprise, Tvor Region, Russian Federation 22–28 August.

—. 1995. Professional harvester operator: Basic knowledge and skills from training—Operating skills from working life? Presented in IUFRO XX World Congress, Tampre, Finland, 6–12 August.

Kanninen, K. 1986. The occurrence of occupational accidents in logging operations and the aims of preventive measures. In the proceedings of a seminar on occupational health and rehabilitation of forest workers, Kuopio, Finland, 3–7 June 1985. FAO/ECE/ILO Joint Committee on Forest Working Techniques and Training of Forest Workers.

Kastenholz, E. 1996. Sicheres Handeln bei der Holzernteuntersuchung von Einflüssen auf das Unfallgeschehen bei der Waldarbeit unter besonderer Berücksichtigung der Lohnform. Doctoral dissertation. Freiburg, Germany: University of Freiburg.

Kantola, M and P Harstela. 1988. Handbook on Appropriate Technology for Forestry Operations in Developing Counties, Part 2. Forestry Training Programme Publication 19. Helsinki: National Board of Vocational Education.

Kimmins, H. 1992. Balancing Act—Environmental Issues in Forestry. Vancouver, BC: University of British Columbia Press.

Lejhancova, M. 1968. Skin damage caused by mineral oils. Procovni Lekarstvi 20(4):164–168.

Lidén, E. 1995. Forest Machine Contractors in Swedish Industrial Forestry: Significance and Conditions during 1986–1993. Department of Operational Efficiency Report No. 195. Swedish University of Agricultural Science.

Ministry of Skills Development. 1989. Cutter-skidder Operator: Competency-based Training Standards. Ontario: Ministry of Skills Development.

Moos, H and B Kvitzau. 1988. Retraining of adult forest workers entering forestry from other occupation. In Proceedings of Seminar on the Employment of Contractors in Forestry, Loubières, France 26-30 September 1988. Loubiéres: FAO/ECE/ILO Joint Committee on Forest Work Techniques and Training of Forest Workers.

National Proficiency Test Council (NPTC) and Scottish Skill Testing Service (SSTS). 1992. Schedule of Chainsaw Standards. Warwickshire, UK: NPTC and SSTS.

—. 1993. Certificates of Competence in Chainsaw Operation. Warwickshire, United Kingdom: National Proficiency Tests Council and Scottish Skills Testing Service.

Patosaari, P. 1987. Chemicals in Forestry: Health Hazards and Protection. Report to the FAO/ECE/ILO Joint Committee on Forest Working Technique and Training of Forest Workers, Helsinki (mimeo).

Pellet. 1995. Rapport d’étude: L’ánalyse de l’áccident par la méthode de l’arbre des causes. Luzern: Schweizerische Unfallversicherungsanstalt (SUVA) (mimeo).

Powers, RF, DH Alban, RE Miller, AE Tiarks, CG Wells, PE Avers, RG Cline, RO Fitzgerald, and JNS Loftus. 1990.
Sustaining site productivity in North American forests: Problems and prospects. In Sustained Productivity of Forest Soils, edited by SP Gessed, DS Lacate, GF Weetman and RF Powers. Vancouver, BC: Faculty of Forestry Publication.

Robinson, DG, DG Trites, and EW Banister. 1993. Physiological effects of work stress and pesticides exposure in tree planting by British Columbian silviculture workers. Ergonomics 36(8):951–961.

Rodero, F. 1987. Nota sobre siniestralidad en incendios forestales. Madrid, Spain: Instituto Nacional para la Conservación de la Naturaleza.

Saarilahti, M and A Asghar. 1994. Study on winter planting of chir pine. Research paper 12, ILO project, Pakistan.
Skoupy, A and R Ulrich. 1994. Dispersal of chain lubrication oil in one-man chain-saws. Forsttechnische Information 11:121–123.

Skyberg, K, A Ronneberg, CC Christensen, CR Naess-Andersen, HE Refsum, and A Borgelsen. 1992. Lung function and radiographic signs of pulmonary fibrosis in oil exposed workers in a cable manufacturing company: A follow up study. Brit J Ind Med 49(5):309–315.

Slappendel, C, I Laird, I Kawachi, S Marshal, and C Cryer. 1993. Factors affecting work-related injury among forestry workers: A review. J Saf Res 24:19–32.

Smith, TJ. 1987. Occupational characteristics of tree-planting work. Sylviculture Magazine II(1):12–17.

Sozialversicherung der Bauern. 1990. Extracts from official Austrian statistics submitted to the ILO (unpublished).

Staudt, F. 1990. Ergonomics 1990. Proceedings P3.03 Ergonomics XIX World Congress IUFRO, Montreal, Canada, August 1990. The Netherlands: Department of Forestry, Section Forest Technique and Woodscience, Wageningen Agricultural University.

Stjernberg, EI. 1988. A Study of Manual Tree Planting Operations in Central and Eastern Canada. FERIC technical report TR-79. Montreal: Forest Engineering Research Institute of Canada.

Stolk, T. 1989. Gebruiker mee laten kiezen uit persoonlijke beschermingsmiddelen. Tuin & Landschap 18.

Strehlke, B. 1989. The study of forest accidents. In Guidelines on Ergonomic Study in Forestry, edited by E Apud. Geneva: ILO.

Trites, DG, DG Robinson, and EW Banister. 1993. Cardiovascular and muscular strain during a tree planting season among British Columbian silviculture workers. Ergonomics 36(8):935–949.

Udo, ES. 1987. Working Conditions and Accidents in Nigerian Logging and Sawmilling Industries. Report for the ILO (unpublished).

Wettman, O. 1992. Securité au travail dans l’exploitation forestière en Suisse. In FAO/ECE/ILO Proceedings of Seminar on the Future of the Forestry Workforce, edited by FAO/ECE/ILO. Corvallis, OR: Oregon State University Press.