زورادا ، جوزيف

زورادا ، جوزيف

العنوان كلية الأعمال والإدارة العامة ، جامعة لويزفيل ، لويزفيل ، كنتاكي 40292

الدولة: الولايات المتحدة

الهاتف 1 (502) 852-4681

Fax 1 (502) 852-7557

البريد الإلكتروني: jmzura01@ulkyvm.louisville.edu

المناصب السابقة: مستشار

التعليم: دكتوراه ، 1995 ، جامعة لويزفيل ، الولايات المتحدة الأمريكية

مجالات الاهتمام: سلامة الروبوت تفاعل الإنسان والحاسوب؛ تطبيق الشبكات العصبية. هندسة الكمبيوتر وأنظمة التشغيل ؛ العوامل البشرية في التصنيع

 

يهدف النظام الآلي الهجين (HAS) إلى دمج قدرات آلات الذكاء الاصطناعي (القائمة على تكنولوجيا الكمبيوتر) مع قدرات الأشخاص الذين يتفاعلون مع هذه الآلات في سياق أنشطة عملهم. تتعلق الاهتمامات الرئيسية لاستخدام HAS بكيفية تصميم النظم الفرعية للإنسان والآلة من أجل الاستفادة المثلى من المعرفة والمهارات لكلا الجزأين من النظام الهجين ، وكيف يجب أن يتفاعل المشغلون البشريون ومكونات الماكينة مع بعضهم البعض للتأكد من أن وظائفهم تكمل بعضها البعض. تطورت العديد من الأنظمة الأوتوماتيكية الهجينة كمنتجات لتطبيقات المنهجيات الحديثة القائمة على المعلومات والتحكم لأتمتة ودمج الوظائف المختلفة للأنظمة التكنولوجية المعقدة في كثير من الأحيان. تم تحديد HAS في الأصل من خلال إدخال الأنظمة القائمة على الكمبيوتر المستخدمة في تصميم وتشغيل أنظمة التحكم في الوقت الفعلي لمفاعلات الطاقة النووية ، ومحطات المعالجة الكيميائية وتكنولوجيا تصنيع الأجزاء المنفصلة. يمكن أيضًا العثور على HAS في العديد من الصناعات الخدمية ، مثل مراقبة الحركة الجوية وإجراءات الملاحة الجوية في مجال الطيران المدني ، وفي تصميم واستخدام أنظمة الملاحة الذكية للمركبات والطرق السريعة في النقل البري.

مع التقدم المستمر في الأتمتة القائمة على الكمبيوتر ، تتحول طبيعة المهام البشرية في الأنظمة التكنولوجية الحديثة من تلك التي تتطلب مهارات إدراكية حركية إلى تلك التي تتطلب أنشطة معرفية ، وهي ضرورية لحل المشكلات ، ولاتخاذ القرار في مراقبة النظام ، ولأجل مهام الرقابة الإشرافية. على سبيل المثال ، يعمل المشغلون البشريون في أنظمة التصنيع المتكاملة بالكمبيوتر في المقام الأول كمراقبين للنظام وحل المشكلات وصانعي القرار. الأنشطة المعرفية للمشرف البشري في أي بيئة HAS هي (1) تخطيط ما يجب القيام به لفترة زمنية معينة ، (2) وضع إجراءات (أو خطوات) لتحقيق مجموعة الأهداف المخطط لها ، (3) مراقبة التقدم من العمليات (التكنولوجية) ، (4) "تعليم" النظام من خلال جهاز كمبيوتر تفاعلي بشري ، (5) التدخل إذا كان النظام يتصرف بشكل غير طبيعي أو إذا تغيرت أولويات التحكم و (6) التعلم من خلال التغذية الراجعة من النظام حول تأثير الإجراءات الرقابية (شيريدان 1987).

تصميم نظام هجين

تتضمن التفاعلات بين الإنسان والآلة في HAS استخدام حلقات الاتصال الديناميكي بين المشغلين البشر والآلات الذكية - وهي عملية تتضمن استشعار المعلومات ومعالجتها وبدء وتنفيذ مهام التحكم واتخاذ القرار - ضمن هيكل معين لتخصيص الوظائف بين البشر والآلات. كحد أدنى ، يجب أن تعكس التفاعلات بين الأشخاص والأتمتة درجة التعقيد العالية للأنظمة الآلية الهجينة ، فضلاً عن الخصائص ذات الصلة للمشغلين البشريين ومتطلبات المهام. لذلك ، يمكن تعريف النظام الآلي الهجين رسميًا على أنه خماسي في الصيغة التالية:

لديه = (T ، U ، C ، E ، أنا)

أين T = متطلبات المهمة (الجسدية والمعرفية) ؛ U = خصائص المستخدم (الجسدية والمعرفية) ؛ C = خصائص الأتمتة (الأجهزة والبرامج ، بما في ذلك واجهات الكمبيوتر) ؛ E = بيئة النظام ؛ I = مجموعة من التفاعلات بين العناصر المذكورة أعلاه.

مجموعة التفاعلات I يجسد جميع التفاعلات الممكنة بين T, U و C in E بغض النظر عن طبيعتها أو قوة ارتباطها. على سبيل المثال ، قد يتضمن أحد التفاعلات المحتملة علاقة البيانات المخزنة في ذاكرة الكمبيوتر بالمعرفة المقابلة ، إن وجدت ، للمشغل البشري. التفاعلات I يمكن أن تكون عنصرية (على سبيل المثال ، تقتصر على ارتباط واحد لواحد) ، أو معقدة ، مثل قد تتضمن تفاعلات بين المشغل البشري ، والبرمجيات المعينة المستخدمة لتحقيق المهمة المطلوبة ، والواجهة المادية المتاحة مع الكمبيوتر.

يركز مصممو العديد من الأنظمة الآلية الهجينة بشكل أساسي على التكامل بمساعدة الكمبيوتر للآلات المتطورة وغيرها من المعدات كأجزاء من التكنولوجيا القائمة على الكمبيوتر ، ونادرًا ما يولون اهتمامًا كبيرًا للحاجة القصوى للتكامل البشري الفعال داخل هذه الأنظمة. لذلك ، في الوقت الحالي ، لا تتوافق العديد من الأنظمة (التكنولوجية) المدمجة بالحاسوب بشكل كامل مع القدرات الكامنة في المشغلين البشريين كما تعبر عنها المهارات والمعرفة اللازمة للتحكم الفعال في هذه الأنظمة ومراقبتها. ينشأ عدم التوافق هذا على جميع مستويات عمل الإنسان والآلة والإنسان والآلة ، ويمكن تحديده في إطار الفرد والمؤسسة أو المنشأة بأكملها. على سبيل المثال ، تحدث مشاكل دمج الأشخاص والتكنولوجيا في مؤسسات التصنيع المتقدمة في وقت مبكر في مرحلة تصميم HAS. يمكن تصور هذه المشكلات باستخدام نموذج تكامل النظام التالي لتعقيد التفاعلات ، Iبين مصممي النظام Dالمشغلين البشريين ، H، أو مستخدمي وتقنية النظام المحتملين ، T:

أنا (ح ، تي) = F [I (H، D)، I (D، T)]

أين I لتقف على التفاعلات ذات الصلة التي تحدث في هيكل HAS معين ، بينما F يشير إلى العلاقات الوظيفية بين المصممين والمشغلين البشريين والتكنولوجيا.

يسلط نموذج تكامل النظام أعلاه الضوء على حقيقة أن التفاعلات بين المستخدمين والتكنولوجيا يتم تحديدها من خلال نتيجة تكامل التفاعلين السابقين - أي (1) تلك بين مصممي HAS والمستخدمين المحتملين و (2) تلك بين المصممين وتكنولوجيا HAS (على مستوى الآلات وتكاملها). وتجدر الإشارة إلى أنه على الرغم من وجود تفاعلات قوية عادةً بين المصممين والتكنولوجيا ، يمكن العثور على أمثلة قليلة جدًا من العلاقات المتبادلة القوية بين المصممين والمشغلين البشريين.

يمكن القول أنه حتى في أكثر الأنظمة الآلية ، يظل الدور البشري حاسمًا لنجاح أداء النظام على المستوى التشغيلي. حدد Bainbridge (1983) مجموعة من المشكلات المتعلقة بتشغيل HAS والتي ترجع إلى طبيعة الأتمتة نفسها ، على النحو التالي:

    1. المشغلين "خارج دائرة التحكم". يتواجد المشغلون البشريون في النظام لممارسة التحكم عند الحاجة ، ولكن من خلال كونهم "خارج دائرة التحكم" يفشلون في الحفاظ على المهارات اليدوية ومعرفة النظام طويلة المدى التي غالبًا ما تكون مطلوبة في حالة الطوارئ.
    2. عفا عليها الزمن "صورة ذهنية". قد لا يتمكن المشغلون البشريون من الاستجابة بسرعة للتغييرات في سلوك النظام إذا لم يكونوا يتابعون أحداث تشغيله عن كثب. علاوة على ذلك ، قد تكون معرفة المشغلين أو الصورة الذهنية لعمل النظام غير كافية لبدء أو ممارسة الاستجابات المطلوبة.
    3. اختفاء مهارات الأجيال. قد لا يتمكن المشغلون الجدد من اكتساب المعرفة الكافية حول النظام المحوسب الذي تم تحقيقه من خلال الخبرة ، وبالتالي لن يتمكنوا من ممارسة التحكم الفعال عند الحاجة.
    4. سلطة الأتمتة. إذا تم تنفيذ النظام المحوسب لأنه يمكن أن يؤدي المهام المطلوبة بشكل أفضل من المشغل البشري ، فإن السؤال الذي يطرح نفسه ، "على أي أساس يجب أن يقرر المشغل أن القرارات الصحيحة أو غير الصحيحة يتم اتخاذها بواسطة الأنظمة الآلية؟"
    5. ظهور أنواع جديدة من "الأخطاء البشرية" بسبب الأتمتة. تؤدي الأنظمة المؤتمتة إلى أنواع جديدة من الأخطاء وبالتالي حوادث لا يمكن تحليلها في إطار تقنيات التحليل التقليدية.

             

            توزيع المهام

            تتمثل إحدى القضايا المهمة لتصميم HAS في تحديد عدد الوظائف أو المسؤوليات التي يجب تخصيصها للمشغلين البشريين وأيها وعددها لأجهزة الكمبيوتر. بشكل عام ، هناك ثلاث فئات أساسية من مشاكل تخصيص المهام التي يجب أخذها في الاعتبار: (1) المشرف البشري - تخصيص مهام الكمبيوتر ، (2) تخصيص المهام بين الإنسان والبشر و (3) تخصيص المهام الإشرافية بين الكمبيوتر والكمبيوتر. من الناحية المثالية ، ينبغي اتخاذ قرارات التخصيص من خلال بعض إجراءات التخصيص المنظمة قبل البدء في تصميم النظام الأساسي. لسوء الحظ ، نادرًا ما تكون مثل هذه العملية المنهجية ممكنة ، لأن الوظائف التي سيتم تخصيصها قد تحتاج إما إلى مزيد من الفحص أو يجب أن يتم تنفيذها بشكل تفاعلي بين مكونات النظام البشري والآلة - أي من خلال تطبيق نموذج التحكم الإشرافي. يجب أن يركز تخصيص المهام في الأنظمة الآلية المختلطة على مدى المسؤوليات الإشرافية للإنسان والكمبيوتر ، ويجب أن يأخذ في الاعتبار طبيعة التفاعلات بين المشغل البشري وأنظمة دعم القرار المحوسبة. يجب أيضًا مراعاة وسائل نقل المعلومات بين الآلات وواجهات المدخلات والمخرجات البشرية وتوافق البرامج مع قدرات حل المشكلات المعرفية البشرية.

            في الأساليب التقليدية لتصميم وإدارة الأنظمة الآلية الهجينة ، كان يُنظر إلى العمال على أنهم أنظمة مدخلات ومخرجات حتمية ، وكان هناك ميل لتجاهل الطبيعة الغائية للسلوك البشري - أي السلوك الموجه نحو الهدف الذي يعتمد على اكتساب المعلومات ذات الصلة واختيار الأهداف (Goodstein et al. 1988). لكي تكون ناجحًا ، يجب أن يعتمد تصميم وإدارة الأنظمة الآلية الهجينة المتقدمة على وصف الوظائف العقلية البشرية اللازمة لمهمة محددة. يقترح نهج "الهندسة المعرفية" (الموصوف بمزيد من التفصيل أدناه) أن أنظمة الإنسان والآلة (الهجينة) تحتاج إلى تصور وتصميم وتحليل وتقييم من حيث العمليات العقلية البشرية (أي أن النموذج العقلي للمشغل للأنظمة التكيفية يؤخذ في الاعتبار الحساب). فيما يلي متطلبات النهج المتمحور حول الإنسان لتصميم وتشغيل HAS كما صاغها Corbett (1988):

              1. التوافق. يجب ألا يتطلب تشغيل النظام مهارات لا علاقة لها بالمهارات الحالية ، ولكن يجب أن تسمح للمهارات الحالية بالتطور. يجب على المشغل البشري إدخال واستقبال المعلومات التي تتوافق مع الممارسة التقليدية حتى تتوافق الواجهة مع المعرفة والمهارة السابقة للمستخدم.
              2. الشفافية. لا يمكن للمرء التحكم في نظام دون فهمه. لذلك ، يجب أن يكون المشغل البشري قادرًا على "رؤية" العمليات الداخلية لبرنامج التحكم في النظام إذا كان سيتم تسهيل التعلم. يسهل النظام الشفاف على المستخدمين بناء نموذج داخلي لوظائف صنع القرار والتحكم التي يمكن للنظام أن يؤديها.
              3. الحد الأدنى من الصدمة. يجب ألا يقوم النظام بأي شيء يراه المشغلون غير متوقع في ضوء المعلومات المتاحة لهم ، مع توضيح الحالة الحالية للنظام.
              4. السيطرة على الاضطرابات. يجب أن تكون المهام غير المؤكدة (على النحو المحدد في تحليل هيكل الاختيار) تحت سيطرة المشغل البشري مع دعم اتخاذ القرار بالكمبيوتر.
              5. القابلية للخطأ. لا ينبغي تصميم المهارات والمعرفة الضمنية للمشغلين البشريين خارج النظام. لا ينبغي أبدًا وضع المشغلين في وضع يجعلهم يشاهدون بلا حول ولا قوة البرنامج يوجه عملية غير صحيحة.
              6. قابلية عكس الخطأ. يجب أن توفر البرامج تغذية كافية مسبقًا للمعلومات لإبلاغ المشغل البشري بالنتائج المحتملة لعملية أو استراتيجية معينة.
              7. مرونة التشغيل. يجب أن يوفر النظام للمشغلين البشريين حرية مقايضة المتطلبات وحدود الموارد عن طريق تغيير استراتيجيات التشغيل دون فقدان دعم برنامج التحكم.

               

              هندسة العوامل البشرية المعرفية

              تركز هندسة العوامل البشرية المعرفية على كيفية اتخاذ المشغلين البشريين للقرارات في مكان العمل وحل المشكلات وصياغة الخطط وتعلم مهارات جديدة (هولناجل وودز 1983). يمكن تصنيف أدوار المشغلين البشريين الذين يعملون في أي نظام HAS باستخدام مخطط Rasmussen (1983) إلى ثلاث فئات رئيسية:

                1. السلوك القائم على المهارة هو الأداء الحسي الحركي الذي يتم تنفيذه أثناء الأعمال أو الأنشطة التي تحدث دون تحكم واعي مثل أنماط سلوك سلسة وآلية ومتكاملة للغاية. تعتبر الأنشطة البشرية التي تندرج تحت هذه الفئة بمثابة سلسلة من الأعمال الماهرة المكونة لموقف معين. وبالتالي ، فإن السلوك القائم على المهارة هو تعبير عن أنماط السلوك المخزنة إلى حد ما أو التعليمات المبرمجة مسبقًا في مجال الزمكان.
                2. السلوك القائم على القواعد هي فئة أداء موجهة نحو الهدف تم تنظيمها عن طريق التحكم المغذي من خلال قاعدة أو إجراء مخزن - أي ، أداء مرتب يسمح بتكوين سلسلة من الإجراءات الفرعية في حالة عمل مألوفة. عادةً ما يتم تحديد القاعدة من التجارب السابقة وتعكس الخصائص الوظيفية التي تقيد سلوك البيئة. يعتمد الأداء المستند إلى القواعد على المعرفة الواضحة فيما يتعلق باستخدام القواعد ذات الصلة. تتكون مجموعة بيانات القرار من مراجع للتعرف وتحديد الحالات أو الأحداث أو المواقف.
                3. السلوك القائم على المعرفة هي فئة من الأداء الذي يتحكم فيه الهدف ، حيث يتم صياغة الهدف صراحةً بناءً على معرفة البيئة وأهداف الشخص. يتم تمثيل البنية الداخلية للنظام من خلال "نموذج عقلي". يسمح هذا النوع من السلوك بتطوير واختبار خطط مختلفة في ظل ظروف تحكم غير مألوفة وبالتالي غير مؤكدة ، ويكون مطلوبًا عندما تكون المهارات أو القواعد إما غير متوفرة أو غير كافية بحيث يجب استدعاء حل المشكلات والتخطيط بدلاً من ذلك.

                     

                    في تصميم وإدارة نظام HAS ، ينبغي للمرء أن يأخذ في الاعتبار الخصائص المعرفية للعمال من أجل ضمان توافق تشغيل النظام مع النموذج الداخلي للعامل الذي يصف وظائفه. وبالتالي ، يجب تحويل مستوى وصف النظام من الجوانب القائمة على المهارات إلى الجوانب المستندة إلى القواعد والقائمة على المعرفة للأداء البشري ، ويجب استخدام الأساليب المناسبة لتحليل المهام المعرفية لتحديد نموذج المشغل للنظام. من القضايا ذات الصلة في تطوير HAS تصميم وسائل نقل المعلومات بين المشغل البشري ومكونات النظام الآلي ، على المستويين المادي والمعرفي. يجب أن يكون نقل المعلومات هذا متوافقًا مع أنماط المعلومات المستخدمة على مستويات مختلفة من تشغيل النظام - أي المرئية أو اللفظية أو اللمسية أو الهجينة. يضمن هذا التوافق المعلوماتي أن الأشكال المختلفة لنقل المعلومات ستتطلب حدًا أدنى من عدم التوافق بين الوسيط وطبيعة المعلومات. على سبيل المثال ، يعد العرض المرئي هو الأفضل لنقل المعلومات المكانية ، بينما يمكن استخدام المدخلات السمعية لنقل المعلومات النصية.

                    غالبًا ما يطور المشغل البشري نموذجًا داخليًا يصف تشغيل ووظيفة النظام وفقًا لخبرته وتدريبه وتعليماته فيما يتعلق بنوع معين من واجهة الإنسان والآلة. في ضوء هذا الواقع ، يجب أن يحاول مصممو نظام HAS أن يبنوا في الآلات (أو أنظمة اصطناعية أخرى) نموذجًا للخصائص الفيزيائية والمعرفية للمشغل البشري - أي صورة النظام للمشغل (Hollnagel and Woods 1983) . يجب أن يأخذ مصممو HAS في الاعتبار أيضًا مستوى التجريد في وصف النظام بالإضافة إلى الفئات المختلفة ذات الصلة بسلوك المشغل البشري. مستويات التجريد هذه لنمذجة الأداء البشري في بيئة العمل هي كما يلي (Rasmussen 1983): (1) الشكل المادي (التركيب التشريحي) ، (2) الوظائف الجسدية (الوظائف الفسيولوجية) ، (3) الوظائف المعممة (الآليات النفسية والمعرفية) والعمليات العاطفية) ، (4) الوظائف المجردة (معالجة المعلومات) و (5) الغرض الوظيفي (هياكل القيم ، الأساطير ، الأديان ، التفاعلات البشرية). يجب أن يتم النظر في هذه المستويات الخمسة في وقت واحد من قبل المصممين من أجل ضمان أداء HAS الفعال.

                    تصميم برمجيات النظام

                    نظرًا لأن برنامج الكمبيوتر هو مكون أساسي لأي بيئة HAS ، يجب أيضًا مراعاة تطوير البرامج ، بما في ذلك التصميم والاختبار والتشغيل والتعديل ، ومشكلات موثوقية البرامج في المراحل الأولى من تطوير HAS. بهذه الطريقة ، يجب أن يكون المرء قادرًا على خفض تكلفة اكتشاف أخطاء البرامج والقضاء عليها. ومع ذلك ، من الصعب تقدير موثوقية المكونات البشرية لنظام HAS ، بسبب القيود في قدرتنا على نمذجة أداء المهام البشرية ، وعبء العمل المرتبط والأخطاء المحتملة. قد يؤدي عبء العمل العقلي المفرط أو غير الكافي إلى الحمل الزائد للمعلومات والملل ، على التوالي ، وقد يؤدي إلى تدهور الأداء البشري ، مما يؤدي إلى حدوث أخطاء وزيادة احتمالية وقوع الحوادث. يجب على مصممي نظام HAS استخدام واجهات تكيفية تستخدم تقنيات الذكاء الاصطناعي لحل هذه المشكلات. بالإضافة إلى التوافق بين الإنسان والآلة ، يجب مراعاة مسألة القدرة على التكيف بين الإنسان والآلة مع بعضها البعض من أجل تقليل مستويات الإجهاد التي تحدث عندما يتم تجاوز القدرات البشرية.

                    نظرًا للمستوى العالي من التعقيد للعديد من الأنظمة الآلية الهجينة ، فإن تحديد أي مخاطر محتملة تتعلق بالأجهزة والبرامج والإجراءات التشغيلية والتفاعلات بين الإنسان والآلة لهذه الأنظمة يصبح أمرًا بالغ الأهمية لنجاح الجهود التي تهدف إلى تقليل الإصابات وتلف المعدات . من الواضح أن مخاطر السلامة والصحة المرتبطة بالأنظمة الآلية الهجينة المعقدة ، مثل تكنولوجيا التصنيع المتكاملة بالحاسوب (CIM) ، هي أحد أكثر الجوانب أهمية في تصميم النظام وتشغيله.

                    قضايا سلامة النظام

                    البيئات الآلية الهجينة ، مع إمكاناتها الكبيرة للسلوك غير المنتظم لبرنامج التحكم في ظل ظروف اضطراب النظام ، تخلق جيلًا جديدًا من مخاطر الحوادث. نظرًا لأن الأنظمة الآلية الهجينة أصبحت أكثر تنوعًا وتعقيدًا ، فإن اضطرابات النظام ، بما في ذلك مشاكل بدء التشغيل والإغلاق والانحرافات في التحكم في النظام ، يمكن أن تزيد بشكل كبير من احتمالية حدوث خطر جسيم على المشغلين من البشر. ومن المفارقات ، في العديد من المواقف غير الطبيعية ، يعتمد المشغلون عادة على الأداء السليم لأنظمة الأمان الفرعية المؤتمتة ، وهي ممارسة قد تزيد من مخاطر الإصابة الشديدة. على سبيل المثال ، أظهرت دراسة الحوادث المتعلقة بأعطال أنظمة التحكم الفنية أن حوالي ثلث تسلسل الحوادث تضمنت تدخلًا بشريًا في حلقة التحكم في النظام المضطرب.

                    نظرًا لأن تدابير السلامة التقليدية لا يمكن تكييفها بسهولة مع احتياجات بيئات HAS ، فإن استراتيجيات التحكم في الإصابات والوقاية من الحوادث بحاجة إلى إعادة النظر في ضوء الخصائص الكامنة في هذه الأنظمة. على سبيل المثال ، في مجال تكنولوجيا التصنيع المتقدمة ، تتميز العديد من العمليات بوجود كميات كبيرة من تدفقات الطاقة التي لا يمكن للمشغلين البشريين توقعها بسهولة. علاوة على ذلك ، تظهر مشكلات السلامة عادةً عند السطوح البينية بين الأنظمة الفرعية ، أو عندما تتقدم اضطرابات النظام من نظام فرعي إلى آخر. وفقًا للمنظمة الدولية للتوحيد القياسي (ISO 1991) ، تختلف المخاطر المرتبطة بالمخاطر بسبب الأتمتة الصناعية باختلاف أنواع الآلات الصناعية المدمجة في نظام التصنيع المحدد وطرق تثبيت النظام وبرمجته وتشغيله وصيانته. وإصلاحه. على سبيل المثال ، أظهرت مقارنة الحوادث المتعلقة بالروبوتات في السويد بأنواع الحوادث الأخرى أن الروبوتات قد تكون أكثر الآلات الصناعية خطورة المستخدمة في الصناعة التحويلية المتقدمة. كان معدل الحوادث المقدر للروبوتات الصناعية حادثًا خطيرًا واحدًا لكل 45 عامًا من الروبوتات ، وهو معدل أعلى من معدل المطابع الصناعية ، والذي تم الإبلاغ عنه بأنه حادث واحد لكل 50 سنة آلية. وتجدر الإشارة هنا إلى أن المطابع الصناعية في الولايات المتحدة كانت مسؤولة عن حوالي 23٪ من جميع الوفيات المرتبطة بآلات تشغيل المعادن في الفترة 1980-1985 ، حيث احتلت مكابس الطاقة المرتبة الأولى فيما يتعلق بمنتج شدة التردد للإصابات غير المميتة.

                    في مجال تكنولوجيا التصنيع المتقدمة ، هناك العديد من الأجزاء المتحركة التي تشكل خطورة على العمال لأنها تغير موقعها بطريقة معقدة خارج المجال البصري للمشغلين البشريين. خلقت التطورات التكنولوجية السريعة في التصنيع المتكامل بالحاسوب حاجة ماسة لدراسة آثار تكنولوجيا التصنيع المتقدمة على العمال. من أجل تحديد المخاطر التي تسببها المكونات المختلفة لبيئة HAS ، يجب تحليل الحوادث السابقة بعناية. لسوء الحظ ، يصعب عزل الحوادث التي تنطوي على استخدام الروبوت عن تقارير الحوادث المتعلقة بالآلات التي يديرها الإنسان ، وبالتالي ، قد تكون هناك نسبة عالية من الحوادث غير المسجلة. تنص قواعد الصحة والسلامة المهنية في اليابان على أن "الروبوتات الصناعية ليس لديها في الوقت الحالي وسائل موثوقة للسلامة ولا يمكن حماية العمال منها ما لم يتم تنظيم استخدامها". على سبيل المثال ، أظهرت نتائج الدراسة الاستقصائية التي أجرتها وزارة العمل اليابانية (Sugimoto 1987) للحوادث المتعلقة بالروبوتات الصناعية عبر 190 مصنعًا تم مسحها (مع 4,341 روبوتًا عاملاً) أن هناك 300 اضطراب متعلق بالروبوت ، منها 37 حالة. من الأعمال غير الآمنة أسفرت عن بعض الحوادث القريبة ، 9 كانت حوادث مسببة للإصابة ، و 2 كانت حوادث مميتة. تشير نتائج الدراسات الأخرى إلى أن التشغيل الآلي المستند إلى الكمبيوتر لا يؤدي بالضرورة إلى زيادة المستوى العام للسلامة ، حيث لا يمكن جعل أجهزة النظام آمنة من الفشل من خلال وظائف الأمان في برنامج الكمبيوتر وحده ، كما أن أجهزة التحكم في النظام ليست دائمًا موثوقة للغاية. علاوة على ذلك ، في HAS المعقدة ، لا يمكن للمرء أن يعتمد حصريًا على أجهزة استشعار السلامة للكشف عن الظروف الخطرة واتخاذ استراتيجيات مناسبة لتجنب المخاطر.

                    آثار الأتمتة على صحة الإنسان

                    كما نوقش أعلاه ، فإن أنشطة العمال في العديد من بيئات HAS هي في الأساس تلك الخاصة بالرقابة الإشرافية والمراقبة ودعم النظام والصيانة. يمكن أيضًا تصنيف هذه الأنشطة إلى أربع مجموعات أساسية على النحو التالي: (1) مهام البرمجة ، أي ترميز المعلومات التي توجه وتوجه تشغيل الآلات ، (2) مراقبة إنتاج HAS ومكونات التحكم ، (3) صيانة مكونات HAS لمنع أو التخفيف من أعطال الآلات ، و (4) أداء مجموعة متنوعة من مهام الدعم ، وما إلى ذلك ، خلصت العديد من المراجعات الحديثة لتأثير HAS على رفاهية العمال إلى أنه على الرغم من أن استخدام HAS في منطقة التصنيع قد يقضي على المهام الثقيلة والخطيرة ، العمل في بيئة HAS قد يكون غير مرضي ومرهق للعمال. تضمنت مصادر الإجهاد المراقبة المستمرة المطلوبة في العديد من تطبيقات HAS ، والنطاق المحدود للأنشطة المخصصة ، والمستوى المنخفض من تفاعل العمال الذي يسمح به تصميم النظام ، ومخاطر السلامة المرتبطة بطبيعة المعدات التي لا يمكن التنبؤ بها والتي لا يمكن السيطرة عليها. على الرغم من أن بعض العمال الذين يشاركون في أنشطة البرمجة والصيانة يشعرون بعناصر التحدي ، والتي قد يكون لها آثار إيجابية على رفاههم ، غالبًا ما يتم تعويض هذه التأثيرات من خلال الطبيعة المعقدة والمتطلبة لهذه الأنشطة ، بالإضافة إلى الضغط التي تبذلها الإدارة لإكمال هذه الأنشطة بسرعة.

                    على الرغم من أنه في بعض بيئات HAS ، تتم إزالة المشغلين البشريين من مصادر الطاقة التقليدية (تدفق العمل وحركة الماكينة) أثناء ظروف التشغيل العادية ، لا يزال يتعين تنفيذ العديد من المهام في الأنظمة الآلية في اتصال مباشر مع مصادر الطاقة الأخرى. نظرًا لأن عدد مكونات HAS المختلفة يتزايد باستمرار ، يجب التركيز بشكل خاص على راحة العمال وسلامتهم وعلى تطوير أحكام فعالة للتحكم في الإصابة ، لا سيما في ضوء حقيقة أن العمال لم يعودوا قادرين على مواكبة تعقيد وتعقيد هذه الأنظمة.

                    من أجل تلبية الاحتياجات الحالية للسيطرة على الإصابات وسلامة العمال في أنظمة التصنيع المتكاملة للكمبيوتر ، اقترحت لجنة الأيزو لأنظمة الأتمتة الصناعية معيار أمان جديدًا بعنوان "سلامة أنظمة التصنيع المتكاملة" (1991). يهدف هذا المعيار الدولي الجديد ، الذي تم تطويره للتعرف على المخاطر الخاصة الموجودة في أنظمة التصنيع المتكاملة التي تتضمن الآلات الصناعية والمعدات المرتبطة بها ، إلى تقليل احتمالات إصابات الأفراد أثناء العمل على نظام تصنيع متكامل أو بجواره. تظهر المصادر الرئيسية للمخاطر المحتملة للمشغلين البشريين في CIM المحددة بواسطة هذا المعيار في الشكل 1.

                    الشكل 1. المصدر الرئيسي للمخاطر في التصنيع المتكامل بالحاسوب (CIM) (بعد ISO 1991)

                    ACC250T1

                    أخطاء بشرية ونظامية

                    بشكل عام ، يمكن أن تنشأ المخاطر في نظام HAS من النظام نفسه ، أو من ارتباطه بالمعدات الأخرى الموجودة في البيئة المادية ، أو من تفاعلات الأفراد مع النظام. الحادث هو واحد فقط من النتائج العديدة للتفاعلات بين الإنسان والآلة التي قد تنشأ في ظل ظروف خطرة ؛ الحوادث القريبة وحوادث التلف أكثر شيوعًا (Zimolong and Duda 1992). يمكن أن يؤدي حدوث الخطأ إلى إحدى هذه النتائج: (1) يبقى الخطأ دون أن يلاحظه أحد ، (2) يمكن للنظام تعويض الخطأ ، (3) يؤدي الخطأ إلى تعطل الجهاز و / أو توقف النظام أو (4) ) يؤدي الخطأ إلى وقوع حادث.

                    نظرًا لأنه ليس كل خطأ بشري ينتج عنه حادث خطير سوف يتسبب في وقوع حادث فعلي ، فمن المناسب التمييز بشكل أكبر بين فئات النتائج على النحو التالي: (1) حادثة غير آمنة (أي ، أي حدث غير مقصود بغض النظر عما إذا كان يؤدي إلى إصابة أو ضرر أو خسارة) ، (2) حادث (أي حدث غير آمن ينتج عنه إصابة أو ضرر أو خسارة) ، (3) حادث ضرر (أي حدث غير آمن ينتج عنه نوع من الضرر المادي فقط) ، (4) أ حادث قريب أو "كاد أن يخطئ" (أي حدث غير آمن تم فيه تجنب الإصابة أو الضرر أو الخسارة بالصدفة بهامش ضيق) و (5) وجود حادث محتمل (أي أحداث غير آمنة يمكن أن تؤدي إلى إصابة أو ضرر ، أو الخسارة ، ولكن ، بسبب الظروف ، لم تسفر حتى عن وقوع حادث قريب).

                    يمكن للمرء أن يميز ثلاثة أنواع أساسية من الخطأ البشري في HAS:

                      1. الهفوات والانزلاقات القائمة على المهارات
                      2. الأخطاء المستندة إلى القواعد
                      3. أخطاء المعرفة.

                           

                          يعتمد هذا التصنيف ، الذي ابتكره Reason (1990) ، على تعديل تصنيف Rasmussen لقاعدة المهارات والمعرفة للأداء البشري كما هو موضح أعلاه. على المستوى القائم على المهارات ، يخضع الأداء البشري لأنماط مخزنة من التعليمات المبرمجة مسبقًا والممثلة في الهياكل التناظرية في مجال الزمكان. المستوى القائم على القواعد قابل للتطبيق على معالجة المشكلات المألوفة التي تحكم الحلول فيها القواعد المخزنة (تسمى "المنتجات" ، حيث يتم الوصول إليها أو إنتاجها عند الحاجة). تتطلب هذه القواعد إجراء تشخيصات (أو أحكام) معينة ، أو اتخاذ إجراءات علاجية معينة ، نظرًا لظهور ظروف معينة تتطلب استجابة مناسبة. في هذا المستوى ، ترتبط الأخطاء البشرية عادةً بسوء تصنيف المواقف ، مما يؤدي إما إلى تطبيق قاعدة خاطئة أو إلى استدعاء غير صحيح للأحكام أو الإجراءات اللاحقة. تحدث الأخطاء القائمة على المعرفة في المواقف الجديدة التي يجب أن يتم التخطيط للإجراءات من أجلها "عبر الإنترنت" (في لحظة معينة) ، باستخدام عمليات تحليلية واعية ومعرفة مخزنة. تنشأ الأخطاء في هذا المستوى من محدودية الموارد والمعرفة غير الكاملة أو غير الصحيحة.

                          يمكن استخدام أنظمة نمذجة الخطأ العامة (GEMS) التي اقترحها Reason (1990) ، والتي تحاول تحديد أصول أنواع الخطأ البشري الأساسية ، لاشتقاق التصنيف العام للسلوك البشري في HAS. يسعى GEMS إلى دمج مجالين متميزين من البحث عن الأخطاء: (1) الانزلاقات والسفرات ، حيث تنحرف الإجراءات عن النية الحالية بسبب فشل التنفيذ و / أو فشل التخزين و (2) الأخطاء ، التي قد تعمل فيها الإجراءات وفقًا للخطة ، لكن الخطة غير كافية لتحقيق النتيجة المرجوة.

                          تقييم المخاطر والوقاية منها في CIM

                          وفقًا لمعيار ISO (1991) ، يجب إجراء تقييم المخاطر في CIM لتقليل جميع المخاطر والعمل كأساس لتحديد أهداف وتدابير السلامة في تطوير البرامج أو الخطط لإنشاء بيئة عمل آمنة ولضمان سلامة وصحة الموظفين كذلك. على سبيل المثال ، يمكن وصف مخاطر العمل في بيئات HAS القائمة على التصنيع على النحو التالي: (1) قد يحتاج المشغل البشري إلى دخول منطقة الخطر أثناء التعافي من الاضطراب ، ومهام الخدمة والصيانة ، (2) يصعب تحديد منطقة الخطر ، للإدراك والتحكم ، (3) قد يكون العمل رتيبًا و (4) غالبًا ما تكون الحوادث التي تحدث داخل أنظمة التصنيع المتكاملة بالكمبيوتر خطيرة. يجب تقييم كل خطر تم تحديده من حيث مخاطره ، ويجب تحديد وتنفيذ تدابير السلامة المناسبة لتقليل هذا الخطر. يجب أيضًا التحقق من المخاطر فيما يتعلق بجميع الجوانب التالية لأي عملية معينة: الوحدة المفردة نفسها ؛ التفاعل بين الوحدات المفردة ؛ أقسام تشغيل النظام ؛ وتشغيل النظام الكامل لجميع أوضاع وظروف التشغيل المقصودة ، بما في ذلك الظروف التي يتم بموجبها تعليق وسائل الحماية العادية لعمليات مثل البرمجة أو التحقق أو استكشاف الأخطاء وإصلاحها أو الصيانة أو الإصلاح.

                          تتضمن مرحلة تصميم إستراتيجية السلامة ISO (1991) لـ CIM ما يلي:

                            • مواصفات حدود معلمات النظام
                            • تطبيق استراتيجية السلامة
                            • تحديد المخاطر
                            • تقييم المخاطر المصاحبة
                            • إزالة المخاطر أو تقليل المخاطر بقدر المستطاع.

                                     

                                    يجب أن تتضمن مواصفات سلامة النظام ما يلي:

                                      • وصف وظائف النظام
                                      • تخطيط و / أو نموذج النظام
                                      • نتائج المسح الذي تم إجراؤه للتحقيق في تفاعل عمليات العمل المختلفة والأنشطة اليدوية
                                      • تحليل تسلسل العملية ، بما في ذلك التفاعل اليدوي
                                      • وصف للواجهات مع خطوط النقل أو النقل
                                      • مخططات تدفق العملية
                                      • خطط التأسيس
                                      • خطط لتوريد الأجهزة والتخلص منها
                                      • تحديد المساحة المطلوبة لتوريد المواد والتخلص منها
                                      • سجلات الحوادث المتاحة.

                                                         

                                                        وفقًا لـ ISO (1991) ، يجب مراعاة جميع المتطلبات اللازمة لضمان تشغيل نظام CIM الآمن عند تصميم إجراءات تخطيط السلامة المنهجية. وهذا يشمل جميع التدابير الوقائية للحد بشكل فعال من المخاطر ويتطلب:

                                                          • تكامل واجهة الإنسان والآلة
                                                          • التحديد المبكر لموقف أولئك الذين يعملون على النظام (في الزمان والمكان)
                                                          • النظر المبكر في طرق تقليل العمل المعزول
                                                          • مراعاة الجوانب البيئية.

                                                               

                                                              يجب أن يعالج إجراء تخطيط السلامة ، من بين أمور أخرى ، قضايا السلامة التالية الخاصة بـ CIM:

                                                                • اختيار أوضاع تشغيل النظام. يجب أن تحتوي معدات التحكم على أحكام لأنماط التشغيل التالية على الأقل: (1) الوضع العادي أو وضع الإنتاج (أي ، مع توصيل وتشغيل جميع الضمانات العادية) ، (2) التشغيل مع تعليق بعض الضمانات العادية و (3) التشغيل في أي نظام أو بدء يدوي عن بعد للحالات الخطرة يتم منعه (على سبيل المثال ، في حالة التشغيل المحلي أو عزل الطاقة أو الانسداد الميكانيكي للظروف الخطرة).
                                                                • التدريب والتركيب والتكليف والاختبار الوظيفي. عندما يُطلب من الأفراد التواجد في منطقة الخطر ، يجب توفير تدابير السلامة التالية في نظام التحكم: (1) الاحتفاظ بالتشغيل ، (2) جهاز التمكين ، (3) السرعة المنخفضة ، (4) انخفاض الطاقة و (5) ) توقف طارئ متحرك.
                                                                • الأمان في برمجة النظام وصيانته وإصلاحه. أثناء البرمجة ، يجب السماح للمبرمج فقط بالتواجد في المساحة المحمية. يجب أن يكون للنظام إجراءات فحص وصيانة لضمان استمرار التشغيل المقصود للنظام. يجب أن يأخذ برنامج الفحص والصيانة في الاعتبار توصيات مورد النظام وتوصيات موردي العناصر المختلفة للأنظمة. نادراً ما يحتاج إلى ذكر أن الأفراد الذين يقومون بالصيانة أو الإصلاح على النظام يجب أن يتم تدريبهم على الإجراءات اللازمة لأداء المهام المطلوبة.
                                                                • القضاء على خطأ. عندما يكون التخلص من الخطأ ضروريًا من داخل المساحة المحمية ، فيجب إجراؤه بعد الفصل الآمن (أو ، إذا أمكن ، بعد تشغيل آلية الإغلاق). ينبغي اتخاذ تدابير إضافية ضد البدء الخاطئ في المواقف الخطرة. حيث يمكن أن تحدث المخاطر أثناء إزالة الأعطال في أقسام النظام أو في آلات الأنظمة أو الآلات المجاورة ، يجب أيضًا إخراجها من التشغيل وحمايتها من بدء التشغيل غير المتوقع. عن طريق التعليمات وعلامات التحذير ، يجب الانتباه إلى التخلص من الأخطاء في مكونات النظام التي لا يمكن ملاحظتها تمامًا.

                                                                       

                                                                      التحكم باضطراب النظام

                                                                      في العديد من تركيبات HAS المستخدمة في مجال التصنيع المتكامل بالكمبيوتر ، عادة ما تكون هناك حاجة إلى مشغلين بشريين لغرض التحكم أو البرمجة أو الصيانة أو الإعداد المسبق أو الصيانة أو استكشاف الأخطاء وإصلاحها. تؤدي الاضطرابات في النظام إلى مواقف تجعل من الضروري دخول العمال إلى المناطق الخطرة. في هذا الصدد ، يمكن افتراض أن الاضطرابات تظل السبب الأكثر أهمية للتدخل البشري في CIM ، لأن الأنظمة في كثير من الأحيان سيتم برمجتها من خارج المناطق المحظورة. من أهم القضايا المتعلقة بسلامة CIM منع الاضطرابات ، حيث تحدث معظم المخاطر في مرحلة استكشاف الأخطاء وإصلاحها في النظام. إن تجنب الاضطرابات هو الهدف المشترك فيما يتعلق بكل من السلامة وفعالية التكلفة.

                                                                      الاضطراب في نظام CIM هو حالة أو وظيفة من نظام ينحرف عن الحالة المخطط لها أو المرغوبة. بالإضافة إلى الإنتاجية ، فإن الاضطرابات أثناء تشغيل CIM لها تأثير مباشر على سلامة الأشخاص المشاركين في تشغيل النظام. أظهرت دراسة فنلندية (Kuivanen 1990) أن حوالي نصف الاضطرابات في التصنيع الآلي تقلل من سلامة العمال. كانت الأسباب الرئيسية للاضطرابات هي الأخطاء في تصميم النظام (34٪) ، فشل مكونات النظام (31٪) ، الخطأ البشري (20٪) والعوامل الخارجية (15٪). كانت معظم حالات فشل الماكينة ناتجة عن نظام التحكم ، وفي نظام التحكم ، حدثت معظم الأعطال في أجهزة الاستشعار. تتمثل إحدى الطرق الفعالة لزيادة مستوى أمان تركيبات CIM في تقليل عدد الاضطرابات. على الرغم من أن الأفعال البشرية في الأنظمة المضطربة تمنع وقوع الحوادث في بيئة HAS ، إلا أنها تساهم أيضًا في حدوثها. على سبيل المثال ، أظهرت دراسة الحوادث المتعلقة بأعطال أنظمة التحكم الفنية أن حوالي ثلث تسلسل الحوادث تضمنت تدخلًا بشريًا في حلقة التحكم في النظام المضطرب.

                                                                      قضايا البحث الرئيسية في منع اضطراب CIM تتعلق بـ (1) الأسباب الرئيسية للاضطرابات ، (2) المكونات والوظائف غير الموثوق بها ، (3) تأثير الاضطرابات على السلامة ، (4) تأثير الاضطرابات على وظيفة النظام ، ( 5) الأضرار المادية و (6) الإصلاحات. يجب التخطيط لسلامة HAS في وقت مبكر في مرحلة تصميم النظام ، مع مراعاة التكنولوجيا والأفراد والمنظمة ، وأن تكون جزءًا لا يتجزأ من عملية التخطيط الفني الشاملة لـ HAS.

                                                                      تصميم HAS: تحديات المستقبل

                                                                      لضمان الاستفادة الكاملة من الأنظمة الآلية الهجينة كما تمت مناقشته أعلاه ، هناك حاجة إلى رؤية أوسع لتطوير النظام ، والتي تستند إلى تكامل الأشخاص ، والتنظيم والتكنولوجيا. يجب تطبيق ثلاثة أنواع رئيسية من تكامل النظام هنا:

                                                                        1. تكامل الناس، من خلال ضمان التواصل الفعال بينهما
                                                                        2. التكامل بين الإنسان والحاسوب، من خلال تصميم واجهات مناسبة والتفاعل بين الناس وأجهزة الكمبيوتر
                                                                        3. التكامل التكنولوجي، من خلال ضمان التفاعل والتفاعل الفعال بين الآلات.

                                                                             

                                                                            يجب أن يتضمن الحد الأدنى من متطلبات التصميم للأنظمة الآلية المختلطة ما يلي: (1) المرونة ، (2) التكيف الديناميكي ، (3) تحسين الاستجابة ، و (4) الحاجة إلى تحفيز الناس والاستفادة بشكل أفضل من مهاراتهم وأحكامهم وخبراتهم . يتطلب ما ورد أعلاه أيضًا تطوير الهياكل التنظيمية لـ HAS وممارسات العمل والتقنيات للسماح للأشخاص على جميع مستويات النظام بتكييف استراتيجيات عملهم مع مجموعة متنوعة من مواقف التحكم في الأنظمة. لذلك ، يجب تصميم المنظمات وممارسات العمل وتقنيات HAS وتطويرها كنظم مفتوحة (Kidd 1994).

                                                                            النظام الآلي الهجين المفتوح (OHAS) هو نظام يتلقى المدخلات من بيئته ويرسل المخرجات إليها. يمكن تطبيق فكرة النظام المفتوح ليس فقط على معماريات النظام والهياكل التنظيمية ، ولكن أيضًا على ممارسات العمل والواجهات بين الإنسان والحاسوب والعلاقة بين الأشخاص والتقنيات: يمكن للمرء أن يذكر ، على سبيل المثال ، أنظمة الجدولة وأنظمة التحكم و أنظمة دعم القرار. النظام المفتوح هو أيضًا نظام تكيفي عندما يسمح للأشخاص بدرجة كبيرة من الحرية لتحديد طريقة تشغيل النظام. على سبيل المثال ، في مجال التصنيع المتقدم ، يمكن تحقيق متطلبات النظام الآلي الهجين المفتوح من خلال مفهوم التصنيع البشري والحاسوب المتكامل (HCIM). من وجهة النظر هذه ، يجب أن يعالج تصميم التكنولوجيا الهيكل العام لنظام HCIM ، بما في ذلك ما يلي: (1) اعتبارات شبكة المجموعات ، (2) هيكل كل مجموعة ، (3) التفاعل بين المجموعات ، (4) طبيعة البرامج الداعمة و (5) احتياجات الاتصال والتكامل التقني بين وحدات البرامج الداعمة.

                                                                            لا يقيد النظام الآلي الهجين التكيفي ، على عكس النظام المغلق ، ما يمكن أن يفعله المشغلون البشريون. يتمثل دور مصمم نظام HAS في إنشاء نظام يلبي التفضيلات الشخصية للمستخدم ويسمح لمستخدميه بالعمل بالطريقة التي يجدونها أكثر ملاءمة. الشرط الأساسي للسماح بإدخال المستخدم هو تطوير منهجية التصميم التكيفي - أي ، OHAS الذي يسمح بتمكين التكنولوجيا المدعومة بالكمبيوتر لتنفيذها في عملية التصميم. تعد الحاجة إلى تطوير منهجية للتصميم التكيفي أحد المتطلبات الفورية لتحقيق مفهوم OHAS في الممارسة العملية. يجب أيضًا تطوير مستوى جديد من تكنولوجيا التحكم الإشرافي البشري التكيفي. يجب أن تسمح هذه التكنولوجيا للمشغل البشري "برؤية" نظام التحكم غير المرئي بطريقة أخرى لوظيفة HAS - على سبيل المثال ، عن طريق تطبيق نظام فيديو تفاعلي عالي السرعة في كل نقطة من التحكم في النظام وتشغيله. أخيرًا ، هناك حاجة ماسة أيضًا إلى منهجية لتطوير دعم ذكي وعالي التكيف وقائم على الكمبيوتر للأدوار البشرية والأداء البشري في الأنظمة الآلية الهجينة.

                                                                             

                                                                            الرجوع

                                                                            "إخلاء المسؤولية: لا تتحمل منظمة العمل الدولية المسؤولية عن المحتوى المعروض على بوابة الويب هذه والذي يتم تقديمه بأي لغة أخرى غير الإنجليزية ، وهي اللغة المستخدمة للإنتاج الأولي ومراجعة الأقران للمحتوى الأصلي. لم يتم تحديث بعض الإحصائيات منذ ذلك الحين. إنتاج الطبعة الرابعة من الموسوعة (4). "

                                                                            المحتويات