الأربعاء، فبراير 16 2011 01: 25

الهواء الداخلي: التأين

قيم هذا المقال
(الاصوات 0)

التأين هو إحدى التقنيات المستخدمة لإزالة الجسيمات من الهواء. تعمل الأيونات كنواة تكثيف للجسيمات الصغيرة التي ، عندما تلتصق ببعضها البعض ، تنمو وترسب.

يكون تركيز الأيونات في الأماكن المغلقة ، كقاعدة عامة ، أقل من تركيز الأيونات في الأماكن المفتوحة ، إذا لم تكن هناك مصادر إضافية للأيونات. ومن هنا جاء الاعتقاد بأن زيادة تركيز الأيونات السالبة في الهواء الداخلي يحسن جودة الهواء.

تؤكد بعض الدراسات المستندة إلى البيانات الوبائية والبحوث التجريبية المخطط لها أن زيادة تركيز الأيونات السالبة في بيئات العمل تؤدي إلى تحسين كفاءة العمال وتعزز الحالة المزاجية للموظفين ، في حين أن الأيونات الموجبة لها تأثير سلبي. ومع ذلك ، تظهر الدراسات الموازية أن البيانات الموجودة حول آثار التأين السلبي على إنتاجية العمال غير متسقة ومتناقضة. لذلك ، يبدو أنه لا يزال من غير الممكن التأكيد بشكل قاطع على أن توليد الأيونات السالبة مفيد حقًا.

التأين الطبيعي

يمكن لجزيئات الغاز الفردية في الغلاف الجوي أن تتأين سلبًا عن طريق اكتساب إلكترون أو فقدانه بشكل إيجابي. لكي يحدث هذا ، يجب أن يكتسب جزيء معين أولاً طاقة كافية - تسمى عادةً طاقة التأين من هذا الجزيء المعين. تحدث العديد من مصادر الطاقة ، سواء من أصل كوني أو أرضي ، في الطبيعة القادرة على إنتاج هذه الظاهرة: إشعاع الخلفية في الغلاف الجوي ؛ الموجات الشمسية الكهرومغناطيسية (خاصة الأشعة فوق البنفسجية) ، الأشعة الكونية ، ذرات السوائل مثل الرذاذ الناتج عن الشلالات ، حركة كتل كبيرة من الهواء فوق سطح الأرض ، الظواهر الكهربائية مثل البرق والعواصف ، عملية الاحتراق والمواد المشعة .

يبدو أن التكوينات الكهربائية للأيونات التي تتشكل بهذه الطريقة ، رغم أنها غير معروفة تمامًا حتى الآن ، تشمل أيونات الكربنة و H+، ح3O+، و+، N+، أوه-، ح2O- و يا2-. يمكن أن تتجمع هذه الجزيئات المتأينة من خلال الامتصاص على الجسيمات العالقة (الضباب والسيليكا وغيرها من الملوثات). تصنف الأيونات حسب حجمها وقدرتها على الحركة. يُعرَّف الأخير على أنه سرعة في مجال كهربائي يُعبر عنه بوحدة مثل السنتيمتر في الثانية بالجهد لكل سنتيمتر (سم / ث / فولت / سم) ، أو بشكل أكثر إحكاما ،

تميل أيونات الغلاف الجوي إلى الاختفاء عن طريق إعادة التركيب. يعتمد نصف عمرهم على حجمهم ويتناسب عكسياً مع قدرتهم على الحركة. تكون الأيونات السالبة أصغر إحصائيًا ويبلغ عمر النصف لها عدة دقائق ، بينما الأيونات الموجبة أكبر وعمرها النصفي حوالي نصف ساعة. ال الشحنة المكانية هو حاصل تركيز الأيونات الموجبة وتركيز الأيونات السالبة. قيمة هذه العلاقة أكبر من واحد وتعتمد على عوامل مثل المناخ والموقع وموسم السنة. في أماكن المعيشة ، يمكن أن يكون لهذا المعامل قيم أقل من واحد. ترد الخصائص في الجدول 1.

الجدول 1. خصائص الأيونات لحركات معينة وقطرها

التنقل (سم2/ضد)

القطر (مم)

الخصائص

3.0-0.1

0.001-0.003

صغيرة ، عالية الحركة ، قصيرة العمر

0.1-0.005

0.003-0.03

وسيط ، أبطأ من الأيونات الصغيرة

0.005-0.002

> 0.03

الأيونات البطيئة ، تتراكم على الجسيمات
(أيونات لانجفين)

 

التأين الاصطناعي

يعدل النشاط البشري التأين الطبيعي للهواء. يمكن أن يحدث التأين الاصطناعي بسبب العمليات الصناعية والنووية والحرائق. تفضل الجسيمات العالقة في الهواء تكوين أيونات لانجفين (أيونات متجمعة في الجسيمات). تزيد المشعات الكهربائية من تركيز الأيونات الموجبة بشكل كبير. تعمل مكيفات الهواء أيضًا على زيادة الشحن المكاني للهواء الداخلي.

توجد في أماكن العمل آلات تنتج الأيونات الموجبة والسالبة في آن واحد ، كما هو الحال في الآلات التي تعتبر مصادر محلية مهمة للطاقة الميكانيكية (المكابس ، آلات الغزل والنسيج) ، والطاقة الكهربائية (المحركات ، والطابعات الإلكترونية ، وآلات النسخ ، وخطوط الجهد العالي والمنشآت. ) ، الطاقة الكهرومغناطيسية (شاشات الأشعة المهبطية ، أجهزة التلفزيون ، شاشات الكمبيوتر) أو الطاقة المشعة (العلاج بالكوبالت -42). تخلق هذه الأنواع من المعدات بيئات ذات تركيزات أعلى من الأيونات الموجبة نظرًا لعمر النصف الأعلى مقارنة بالأيونات السالبة.

التراكيز البيئية للأيونات

تختلف تركيزات الأيونات باختلاف الظروف البيئية والأرصاد الجوية. في المناطق ذات التلوث القليل ، مثل الغابات والجبال ، أو على ارتفاعات كبيرة ، ينمو تركيز الأيونات الصغيرة ؛ في المناطق القريبة من المصادر المشعة أو الشلالات أو منحدرات الأنهار يمكن أن تصل التركيزات إلى آلاف الأيونات الصغيرة لكل سنتيمتر مكعب. من ناحية أخرى ، بالقرب من البحر وعندما تكون مستويات الرطوبة عالية ، هناك فائض من الأيونات الكبيرة. بشكل عام ، متوسط ​​تركيز الأيونات السالبة والموجبة في الهواء النظيف هو 500 و 600 أيون لكل سنتيمتر مكعب على التوالي.

يمكن لبعض الرياح أن تحمل تركيزات كبيرة من الأيونات الموجبة - Föhn في سويسرا ، وسانتا آنا في الولايات المتحدة ، و Sirocco في شمال إفريقيا ، و Chinook في جبال روكي و Sharav في الشرق الأوسط.

في أماكن العمل التي لا توجد فيها عوامل مؤينة كبيرة ، غالبًا ما يكون هناك تراكم للأيونات الكبيرة. هذا صحيح بشكل خاص ، على سبيل المثال ، في الأماكن المغلقة بإحكام وفي المناجم. ينخفض ​​تركيز الأيونات السالبة بشكل كبير في الأماكن المغلقة وفي المناطق الملوثة أو المناطق المغبرة. هناك العديد من الأسباب وراء انخفاض تركيز الأيونات السالبة أيضًا في الأماكن المغلقة التي تحتوي على أنظمة تكييف الهواء. أحد الأسباب هو أن الأيونات السالبة تظل محاصرة في مجاري الهواء وفلاتر الهواء أو تنجذب إلى الأسطح المشحونة إيجابياً. شاشات أشعة الكاثود وشاشات الكمبيوتر ، على سبيل المثال ، ذات شحنة موجبة ، مما يخلق في جوارها المباشر نقصًا في المناخ المحلي في الأيونات السالبة. يبدو أيضًا أن أنظمة تنقية الهواء المصممة "للغرف النظيفة" التي تتطلب إبقاء مستويات التلوث بالجسيمات عند أدنى مستوى ممكن جدًا تقضي على الأيونات السالبة.

من ناحية أخرى ، تؤدي زيادة الرطوبة إلى تكثيف الأيونات ، بينما يؤدي نقصها إلى تكوين بيئات جافة بكميات كبيرة من الشحنات الكهروستاتيكية. تتراكم هذه الشحنات الكهروستاتيكية في البلاستيك والألياف الصناعية ، سواء في الغرفة أو على الأشخاص.

مولدات أيون

تقوم المولدات بتأين الهواء عن طريق توصيل كمية كبيرة من الطاقة. قد تأتي هذه الطاقة من مصدر لإشعاع ألفا (مثل التريتيوم) أو من مصدر للكهرباء عن طريق تطبيق جهد عالٍ على قطب كهربائي مدبب بشكل حاد. المصادر المشعة محظورة في معظم البلدان بسبب المشاكل الثانوية للنشاط الإشعاعي.

تصنع المولدات الكهربائية من قطب كهربائي مدبب محاط بتاج ؛ يتم تزويد القطب بجهد سلبي يبلغ آلاف الفولتات ، ويتم تأريض التاج. يتم طرد الأيونات السالبة بينما تنجذب الأيونات الموجبة إلى المولد. تزداد كمية الأيونات السالبة المتولدة بما يتناسب مع الجهد المطبق وعدد الأقطاب الكهربائية التي يحتوي عليها. تعد المولدات التي تحتوي على عدد أكبر من الأقطاب الكهربائية وتستخدم جهدًا أقل أمانًا ، لأنه عندما يتجاوز الجهد 8,000 إلى 10,000 فولت ، فإن المولد لن ينتج أيونات فحسب ، بل ينتج أيضًا الأوزون وبعض أكاسيد النيتروز. يتم تحقيق انتشار الأيونات عن طريق التنافر الكهروستاتيكي.

سيعتمد هجرة الأيونات على محاذاة المجال المغناطيسي المتولد بين نقطة الانبعاث والأشياء المحيطة بها. تركيز الأيونات المحيطة بالمولدات ليس متجانسًا ويقل بشكل كبير مع زيادة المسافة عنها. ستعمل المراوح المثبتة في هذا الجهاز على زيادة منطقة التشتت الأيوني. من المهم أن تتذكر أن العناصر النشطة للمولدات تحتاج إلى التنظيف بشكل دوري لضمان حسن سير العمل.

قد تعتمد المولدات أيضًا على رذاذ الماء أو التأثيرات الكهروحرارية أو الأشعة فوق البنفسجية. هناك أنواع وأحجام مختلفة من المولدات. يمكن تثبيتها على الأسقف والجدران أو يمكن وضعها في أي مكان إذا كانت من النوع الصغير القابل للحمل.

قياس الأيونات

يتم تصنيع أجهزة قياس الأيونات عن طريق وضع لوحين موصلين على مسافة 0.75 سم وتطبيق جهد متغير. يتم قياس الأيونات المجمعة بواسطة مقياس الضغط البيكو ويتم تسجيل شدة التيار. تسمح الفولتية المتغيرة بقياس تركيزات الأيونات ذات الحركات المختلفة. تركيز الأيونات (N) من شدة التيار الكهربائي المتولد باستخدام الصيغة التالية:

أين I هو التيار بالأمبير ، V هي سرعة تدفق الهواء ، q هي شحنة أيون أحادي التكافؤ (1.6 × 10-19) في كولومبس و A هي المنطقة الفعالة لألواح التجميع. من المفترض أن جميع الأيونات لها شحنة واحدة وأنه يتم الاحتفاظ بها جميعًا في المجمع. يجب أن يؤخذ في الاعتبار أن هذه الطريقة لها حدودها بسبب تيار الخلفية وتأثير عوامل أخرى مثل الرطوبة ومجالات الكهرباء الساكنة.

آثار الأيونات على الجسم

الأيونات السالبة الصغيرة هي تلك التي من المفترض أن يكون لها أكبر تأثير بيولوجي بسبب قدرتها على الحركة بشكل أكبر. يمكن للتركيزات العالية من الأيونات السالبة أن تقتل أو تمنع نمو مسببات الأمراض المجهرية ، ولكن لم يتم وصف أي آثار ضارة على البشر.

تشير بعض الدراسات إلى أن التعرض لتركيزات عالية من الأيونات السالبة ينتج عنه تغيرات كيميائية حيوية وفسيولوجية لدى بعض الأشخاص يكون لها تأثير مهدئ ، وتقلل من التوتر والصداع ، وتحسن اليقظة وتقلل من وقت رد الفعل. يمكن أن تكون هذه التأثيرات ناتجة عن كبت الهرمون العصبي السيروتونين (5-HT) والهستامين في البيئات المحملة بالأيونات السالبة ؛ يمكن أن تؤثر هذه العوامل على شريحة شديدة الحساسية من السكان. ومع ذلك ، توصلت دراسات أخرى إلى استنتاجات مختلفة حول تأثيرات الأيونات السالبة على الجسم. لذلك ، لا تزال فوائد التأين السلبي مفتوحة للنقاش وهناك حاجة إلى مزيد من الدراسة قبل البت في الأمر.

 

الرجوع

عرض 8585 مرات آخر تعديل ليوم الثلاثاء، 26 يوليو 2022 21: 30
المزيد في هذه الفئة: «أنظمة التدفئة والتكييف

"إخلاء المسؤولية: لا تتحمل منظمة العمل الدولية المسؤولية عن المحتوى المعروض على بوابة الويب هذه والذي يتم تقديمه بأي لغة أخرى غير الإنجليزية ، وهي اللغة المستخدمة للإنتاج الأولي ومراجعة الأقران للمحتوى الأصلي. لم يتم تحديث بعض الإحصائيات منذ ذلك الحين. إنتاج الطبعة الرابعة من الموسوعة (4). "

المحتويات

مراجع التحكم البيئي الداخلي

المؤتمر الأمريكي لخبراء الصحة الصناعية الحكوميين (ACGIH). 1992. التهوية الصناعية - دليل الممارسة الموصى بها. 21 الطبعة. سينسيناتي ، أوهايو: ACGIH.

الجمعية الأمريكية لمهندسي التدفئة والتبريد وتكييف الهواء (ASHRAE). 1992. طريقة اختبار أجهزة تنقية الهواء المستخدمة في التهوية العامة لإزالة المواد الجسيمية. أتلانتا: ASHRAE.

باتورين ، ف. 1972. أساسيات التهوية الصناعية. نيويورك: بيرغامون.

بيدفورد ، تي ، واتحاد كرة القدم تشرينكو. 1974. المبادئ الأساسية للتهوية والتدفئة. لندن: إتش كيه لويس.

المركز الأوروبي للتطبيع (CEN). 1979. طريقة اختبار مرشحات الهواء المستخدمة في التهوية العامة. يوروفينت 4/5. أنتويرب: اللجنة الأوروبية للمعايير.

مؤسسة تشارترد لخدمات البناء. 1978. المعايير البيئية للتصميم. : مؤسسة تشارترد لخدمات البناء.

مجلس المجتمعات الأوروبية (CEC). 1992. إرشادات لمتطلبات التهوية في المباني. لوكسمبورغ: EC.

كونستانس ، دينار. 1983. التحكم في الملوثات المحمولة جواً داخل النبات. تصميم النظام والحسابات. نيويورك: مارسيل ديكر.

فانجر ، ص. 1988. إدخال وحدات أولف وديسيبول لقياس تلوث الهواء الذي يتصوره الإنسان في الداخل والخارج. بناء الطاقة 12: 7-19.

-. 1989. معادلة الراحة الجديدة لجودة الهواء الداخلي. مجلة ASHRAE 10: 33-38.

منظمة العمل الدولية. 1983. موسوعة الصحة والسلامة المهنية ، تحرير L Parmeggiani. الطبعة الثالثة. جنيف: منظمة العمل الدولية.

المعهد الوطني للسلامة والصحة المهنية (NIOSH). 1991. جودة هواء المبنى: دليل لمالكي المباني ومديري المرافق. سينسيناتي ، أوهايو: NIOSH.

Sandberg، M. 1981. ما هي كفاءة التهوية؟ بناء البيئة 16: 123-135.

منظمة الصحة العالمية (WHO). 1987. إرشادات جودة الهواء لأوروبا. السلسلة الأوروبية ، رقم 23. كوبنهاغن: منشورات منظمة الصحة العالمية الإقليمية.