طباعة هذه الصفحة
الثلاثاء، شنومكس مارس شنومكس شنومكس: شنومكس

الأشعة تحت الحمراء

قيم هذا المقال
(الاصوات 10)

الأشعة تحت الحمراء هي جزء من طيف الإشعاع غير المؤين الموجود بين الموجات الدقيقة والضوء المرئي. إنه جزء طبيعي من بيئة الإنسان وبالتالي يتعرض الناس له بكميات قليلة في جميع مجالات الحياة اليومية - على سبيل المثال ، في المنزل أو أثناء الأنشطة الترفيهية في الشمس. ومع ذلك ، قد ينتج التعرض المكثف للغاية عن بعض العمليات الفنية في مكان العمل.

تتضمن العديد من العمليات الصناعية المعالجة الحرارية لأنواع مختلفة من المواد. عادةً ما تنبعث من مصادر الحرارة المستخدمة أو المواد المسخنة نفسها مستويات عالية من الأشعة تحت الحمراء التي من المحتمل أن يتعرض لها عدد كبير من العمال.

المفاهيم والكميات

تتراوح أطوال موجات الأشعة تحت الحمراء (IR) من 780 نانومتر إلى 1 مم. بعد تصنيف اللجنة الدولية للإضاءة (CIE) ، ينقسم هذا النطاق إلى IRA (من 780 نانومتر إلى 1.4 ميكرومتر) ، IRB (من 1.4 ميكرومتر إلى 3 ميكرومتر) و IRC (من 3 ميكرومتر إلى 1 مم). يتبع هذا التقسيم الفرعي تقريبًا خصائص الامتصاص المعتمدة على الطول الموجي للأشعة تحت الحمراء في الأنسجة والتأثيرات البيولوجية المختلفة الناتجة.

يتم وصف كمية الأشعة تحت الحمراء وتوزيعها الزماني والمكاني بواسطة كميات ووحدات قياس إشعاعي مختلفة. بسبب الخصائص البصرية والفسيولوجية ، وخاصة للعين ، عادة ما يتم التمييز بين المصادر "النقطية" الصغيرة والمصادر "الممتدة". معيار هذا التمييز هو القيمة بالتقدير الدائري للزاوية (α) المقاسة في العين التي يقابلها المصدر. يمكن حساب هذه الزاوية على أنها حاصل قسمة ، أي بعد مصدر الضوء DL مقسومًا على مسافة المشاهدة r. المصادر الممتدة هي تلك التي تقابل زاوية عرض في العين أكبر من αدقيقة، والتي عادة ما تكون 11 ملي راديان. لجميع المصادر الممتدة توجد مسافة عرض حيث α تساوي αدقيقة؛ في مسافات عرض أكبر ، يمكن معاملة المصدر كمصدر نقطي. في الحماية من الإشعاع الضوئي ، فإن أهم الكميات المتعلقة بالمصادر الممتدة هي إشعاع (L، معبرا عنها في Wm-2sr-1) و تألق متكامل مع الزمن (Lp في جم-2sr-1) ، التي تصف "سطوع" المصدر. لتقييم المخاطر الصحية ، فإن الكميات الأكثر صلة فيما يتعلق بالمصادر النقطية أو التعرضات عند هذه المسافات من المصدر حيث α <αدقيقة، هي إشعاع (E، معبرا عنها في Wm-2) ، وهو ما يعادل مفهوم معدل جرعة التعرض ، و التعرض المشع (H، في جم-2) ، أي ما يعادل مفهوم جرعة التعرض.

في بعض نطاقات الطيف ، تعتمد التأثيرات البيولوجية الناتجة عن التعرض بشدة على طول الموجة. لذلك ، يجب استخدام كميات طيفية إضافية (على سبيل المثال ، الإشعاع الطيفي ، Ll، معبرا عنها في Wm-2 sr-1 nm-1) لموازنة قيم الانبعاث الفيزيائية للمصدر مقابل طيف الإجراء المطبق المتعلق بالتأثير البيولوجي.

 

المصادر والتعرض المهني

ينتج التعرض للأشعة تحت الحمراء من مصادر طبيعية واصطناعية مختلفة. قد يقتصر البث الطيفي من هذه المصادر على طول موجي واحد (ليزر) أو يمكن توزيعه على نطاق واسع من الطول الموجي.

الآليات المختلفة لتوليد الإشعاع البصري بشكل عام هي:

  • الإثارة الحرارية (إشعاع الجسم الأسود)
  • تصريف الغاز
  • تضخيم الضوء عن طريق الانبعاث المحفز للإشعاع (الليزر) ، حيث تكون آلية تفريغ الغاز أقل أهمية في نطاق الأشعة تحت الحمراء.

 

تنتج الانبعاثات من أهم المصادر المستخدمة في العديد من العمليات الصناعية من الإثارة الحرارية ، ويمكن تقريبها باستخدام القوانين الفيزيائية لإشعاع الجسم الأسود إذا كانت درجة الحرارة المطلقة للمصدر معروفة. الانبعاث الكلي (M ، في Wm-2) لمبرد الجسم الأسود (الشكل 1) موصوف في قانون ستيفان بولتزمان:

م (T) = 5.67 × 10-8T4

ويعتمد على القوة الرابعة لدرجة الحرارة (T، في K) للجسم المشع. يصف قانون إشعاع بلانك التوزيع الطيفي للإشعاع:

وطول موجة الانبعاث الأقصى (λماكس) وفقًا لقانون فيينا من خلال:

λماكس = (2.898 × 10-8) / T

الشكل 1. الإشعاع الطيفي λماكسمشعاع جسم أسود عند درجة الحرارة المطلقة الموضحة بالدرجات الكلفينية على كل منحنى

ELF040F1

العديد من أجهزة الليزر المستخدمة في العمليات الصناعية والطبية تنبعث منها مستويات عالية جدًا من الأشعة تحت الحمراء. بشكل عام ، مقارنة بمصادر الإشعاع الأخرى ، يحتوي إشعاع الليزر على بعض الميزات غير العادية التي قد تؤثر على الخطر بعد التعرض ، مثل مدة النبض القصيرة جدًا أو الإشعاع العالي للغاية. لذلك ، تمت مناقشة إشعاع الليزر بالتفصيل في مكان آخر من هذا الفصل.

تتطلب العديد من العمليات الصناعية استخدام مصادر تنبعث منها مستويات عالية من الأشعة المرئية والأشعة تحت الحمراء ، وبالتالي فإن عددًا كبيرًا من العمال مثل الخبازين ونفاخات الزجاج وعمال الأفران وعمال المسابك والحدادين والمصاهر ورجال الإطفاء معرضون لخطر التعرض. بالإضافة إلى المصابيح ، يجب مراعاة مصادر مثل اللهب ، ومشاعل الغاز ، ومشاعل الأسيتيلين ، وبرك المعدن المنصهر ، والقضبان المعدنية المتوهجة. توجد هذه في المسابك ومصانع الصلب وفي العديد من المصانع الثقيلة الأخرى. يلخص الجدول 1 بعض الأمثلة على مصادر IR وتطبيقاتها.

الجدول 1. المصادر المختلفة للأشعة تحت الحمراء والسكان المعرضين ومستويات التعرض التقريبية

مصدر

التطبيق أو السكان المكشوفين

تعرض

ضوء الشمس

عمال الهواء الطلق ، المزارعون ، عمال البناء ، البحارة ، عامة الناس

500 واط-2

مصابيح خيوط التنغستن

عامة السكان والعمال
الإضاءة العامة وتجفيف الحبر والطلاء

105-106 Wm-2sr-1

مصابيح خيوط الهالوجين التنغستن

(انظر مصابيح خيوط التنغستن)
أنظمة النسخ (التثبيت) ، العمليات العامة (التجفيف ، الخبز ، الانكماش ، التليين)

50-200 واط-2 (عند 50 سم)

الثنائيات الباعثة للضوء (مثل الصمام الثنائي GaAs)

لعب الأطفال ، والإلكترونيات الاستهلاكية ، وتكنولوجيا نقل البيانات ، إلخ.

105 Wm-2sr-1

مصابيح قوس زينون

أجهزة عرض وأجهزة محاكاة شمسية وأضواء بحث
مشغلي كاميرات مصنع الطباعة وعمال المختبرات البصرية والفنانين

107 Wm-2sr-1

ذوبان الحديد

أفران الصلب ، عمال مصانع الصلب

105 Wm-2sr-1

صفائف مصباح الأشعة تحت الحمراء

التدفئة الصناعية والتجفيف

103 إلى 8.103 Wm-2

مصابيح الأشعة تحت الحمراء في المستشفيات

حاضنات

100-300 واط-2

 

الآثار البيولوجية

لا يخترق الإشعاع البصري بشكل عام الأنسجة البيولوجية بعمق كبير. لذلك ، فإن الأهداف الأساسية للتعرض للأشعة تحت الحمراء هي الجلد والعين. في معظم ظروف التعرض ، تكون آلية التفاعل الرئيسية للأشعة تحت الحمراء هي الحرارية. فقط النبضات القصيرة جدًا التي قد ينتجها الليزر ، والتي لم يتم أخذها في الاعتبار هنا ، يمكن أن تؤدي أيضًا إلى تأثيرات حرارية ميكانيكية. من غير المتوقع أن تظهر التأثيرات الناتجة عن التأين أو من تكسر الروابط الكيميائية مع الأشعة تحت الحمراء لأن طاقة الجسيمات ، التي تقل عن 1.6 فولت تقريبًا ، منخفضة جدًا بحيث لا تسبب مثل هذه التأثيرات. للسبب نفسه ، تصبح التفاعلات الكيميائية الضوئية مهمة فقط في الأطوال الموجية الأقصر في المنطقة المرئية وفي المنطقة فوق البنفسجية. تنشأ التأثيرات الصحية المختلفة المعتمدة على الطول الموجي للأشعة تحت الحمراء بشكل أساسي من الخصائص البصرية المعتمدة على الطول الموجي للأنسجة - على سبيل المثال ، الامتصاص الطيفي للوسائط العينية (الشكل 2).

الشكل 2. الامتصاص الطيفي لوسائط العين

ELF040F2

التأثيرات على العين

بشكل عام ، تتكيف العين جيدًا لحماية نفسها من الإشعاع الضوئي من البيئة الطبيعية. بالإضافة إلى ذلك ، فإن العين محمية من الناحية الفسيولوجية من الإصابة من مصادر الضوء الساطع ، مثل الشمس أو المصابيح عالية الكثافة ، من خلال استجابة النفور التي تحد من مدة التعرض لجزء من الثانية (حوالي 0.25 ثانية).

يؤثر IRA في المقام الأول على شبكية العين ، بسبب شفافية الوسائط العينية. عند عرض مصدر نقطي أو شعاع ليزر مباشرة ، فإن خصائص التركيز في منطقة IRA تجعل شبكية العين أكثر عرضة للتلف من أي جزء آخر من الجسم. بالنسبة لفترات التعرض القصيرة ، فإن تسخين القزحية من امتصاص الأشعة تحت الحمراء المرئية أو القريبة منها يلعب دورًا في تطور التعتيم في العدسة.

مع زيادة الطول الموجي ، فوق 1 ميكرومتر تقريبًا ، يزيد الامتصاص بواسطة الوسائط العينية. لذلك ، فإن امتصاص إشعاع IRA بواسطة العدسة والقزحية المصطبغة يلعب دورًا في تكوين التعتيم العدسي. يُعزى تلف العدسة إلى أطوال موجية أقل من 3 ميكرومتر (IRA و IRB). بالنسبة للأشعة تحت الحمراء ذات الأطوال الموجية الأطول من 1.4 ميكرومتر ، فإن الخلط المائي والعدسة ماصتان بشكل خاص.

في منطقة IRB و IRC من الطيف ، تصبح الوسائط العينية غير شفافة نتيجة الامتصاص القوي من قبل المياه المكونة لها. يتم الامتصاص في هذه المنطقة بشكل أساسي في القرنية وفي الخلط المائي. بعد 1.9 ميكرومتر ، القرنية هي الامتصاص الوحيد بفعالية. قد يؤدي امتصاص القرنية للأشعة تحت الحمراء ذات الطول الموجي الطويل إلى زيادة درجات الحرارة في العين بسبب التوصيل الحراري. بسبب معدل الدوران السريع لخلايا القرنية السطحية ، يمكن توقع أن يكون أي ضرر يقتصر على طبقة القرنية الخارجية مؤقتًا. في نطاق IRC ، يمكن أن يتسبب التعرض في حروق في القرنية مماثلة لتلك الموجودة على الجلد. من غير المحتمل أن تحدث حروق القرنية بسبب رد فعل النفور الناجم عن الإحساس المؤلم الناجم عن التعرض القوي.

التأثيرات على الجلد

لن تخترق الأشعة تحت الحمراء الجلد بعمق شديد. لذلك ، قد يؤدي تعرض الجلد للأشعة تحت الحمراء القوية جدًا إلى تأثيرات حرارية موضعية ذات شدة مختلفة ، وحتى حروق خطيرة. تعتمد التأثيرات على الجلد على الخصائص البصرية للجلد ، مثل عمق الاختراق المعتمد على الطول الموجي (الشكل 3 ). خاصة في الأطوال الموجية الأطول ، قد يتسبب التعرض المكثف في ارتفاع درجة الحرارة المحلية وحروق. تعتمد القيم الحدية لهذه التأثيرات على الوقت ، بسبب الخصائص الفيزيائية لعمليات النقل الحراري في الجلد. تشعيع 10 كيلو واط-2، على سبيل المثال ، قد يسبب إحساسًا مؤلمًا في غضون 5 ثوانٍ ، في حين أن التعرض بمقدار 2 كيلوواط / متر-2 لن يتسبب في نفس التفاعل خلال فترات أقصر من 50 ثانية تقريبًا.

الشكل 3. عمق الاختراق في الجلد لأطوال موجية مختلفة

ELF040F3

إذا امتد التعرض لفترات طويلة جدًا ، حتى عند قيم أقل بكثير من عتبة الألم ، فقد يكون عبء الحرارة على جسم الإنسان كبيرًا. خاصة إذا كان التعرض يغطي الجسم كله ، على سبيل المثال ، أمام مصهور صلب. قد تكون النتيجة اختلالًا في نظام التنظيم الحراري المتوازن بشكل جيد من الناحية الفسيولوجية. ستعتمد عتبة تحمل مثل هذا التعرض على الظروف الفردية والبيئية المختلفة ، مثل السعة الفردية لنظام التنظيم الحراري ، أو التمثيل الغذائي الفعلي للجسم أثناء التعرض أو درجة الحرارة البيئية والرطوبة وحركة الهواء (سرعة الرياح). بدون أي عمل بدني ، أقصى تعرض 300 وات-2 يمكن تحملها لمدة تزيد عن ثماني ساعات في ظل ظروف بيئية معينة ، ولكن هذه القيمة تنخفض إلى حوالي 140 ميكرومتر-2 أثناء العمل البدني الشاق.

معايير التعرض

الآثار البيولوجية للتعرض للأشعة تحت الحمراء التي تعتمد على الطول الموجي ومدة التعرض ، لا يمكن تحملها إلا إذا تم تجاوز شدة عتبة معينة أو قيم الجرعة. للحماية من ظروف التعرض التي لا تطاق ، المنظمات الدولية مثل منظمة الصحة العالمية (WHO) ، مكتب العمل الدولي (ILO) ، اللجنة الدولية للإشعاع غير المؤين التابعة للرابطة الدولية للحماية من الإشعاع (INIRC / IRPA) ، و بعد ذلك ، اقترحت اللجنة الدولية للحماية من الإشعاع غير المؤين (ICNIRP) والمؤتمر الأمريكي لخبراء الصحة الصناعية الحكوميين (ACGIH) حدود التعرض للأشعة تحت الحمراء من المصادر البصرية المتماسكة وغير المتماسكة. تستند معظم الاقتراحات الوطنية والدولية بشأن المبادئ التوجيهية للحد من تعرض الإنسان للإشعاع تحت الأحمر إلى أو حتى متطابقة مع القيم الحدية المقترحة (TLVs) التي نشرتها ACGIH (1993/1994). هذه الحدود معترف بها على نطاق واسع وتستخدم بشكل متكرر في المواقف المهنية. وهي تستند إلى المعرفة العلمية الحالية وتهدف إلى منع الإصابة الحرارية لشبكية العين والقرنية وتجنب الآثار المتأخرة المحتملة على عدسة العين.

مراجعة 1994 لحدود تعرض ACGIH هي كما يلي:

1. لحماية شبكية العين من الإصابة الحرارية في حالة التعرض للضوء المرئي (على سبيل المثال ، في حالة مصادر الضوء القوية) ، فإن الإشعاع الطيفي Lλ في W / (m² sr nm) موزونة مقابل وظيفة الخطر الحراري لشبكية العين Rλ (انظر الجدول 2) على مدى طول الموجة Δλ ويتم تلخيصها على مدى الطول الموجي 400 إلى 1400 نانومتر ، يجب ألا يتجاوز:

أين t هي مدة المشاهدة محدودة بفواصل زمنية من 10-3 إلى 10 ثوانٍ (أي لظروف المشاهدة العرضية ، وليس العرض الثابت) ، و α هي الشدة الزاوية للمصدر بالراديان المحسوبة بواسطة α = أقصى امتداد للمصدر / المسافة إلى المصدر Rλ  (الجدول 2 ).

2. لحماية شبكية العين من مخاطر التعرض لمصابيح الحرارة بالأشعة تحت الحمراء أو أي مصدر قريب من الأشعة تحت الحمراء حيث لا يوجد منبه بصري قوي ، فإن إشعاع الأشعة تحت الحمراء على مدى الطول الموجي 770 إلى 1400 نانومتر كما تراه العين (على أساس حدقة 7 مم القطر) للمدة الممتدة لظروف المشاهدة يجب أن يقتصر على:

يعتمد هذا الحد على قطر حدقة يبلغ 7 مم ، لأنه في هذه الحالة ، قد لا توجد استجابة النفور (إغلاق العين ، على سبيل المثال) بسبب عدم وجود ضوء مرئي.

3. لتجنب الآثار المتأخرة المحتملة على عدسة العين ، مثل تأخر إعتام عدسة العين ، ولحماية القرنية من التعرض المفرط ، يجب أن تقتصر الأشعة تحت الحمراء عند أطوال موجية أكبر من 770 نانومتر على 100 واط / متر مربع لفترات تزيد عن 1,000 ثانية و ل:

أو لفترات أقصر.

4. بالنسبة للمرضى الذين يعانون من عدم القدرة على الحركة ، يتم إعطاء وظائف ترجيح منفصلة و TLVs الناتجة لنطاق الطول الموجي للأشعة فوق البنفسجية والضوء المرئي (305-700 نانومتر).

الجدول 2. وظيفة الخطر الحراري لشبكية العين

الطول الموجي (نانومتر)

Rλ

الطول الموجي (نانومتر)

Rλ

400

1.0

460

8.0

405

2.0

465

7.0

410

4.0

470

6.2

415

8.0

475

5.5

420

9.0

480

4.5

425

9.5

485

4.0

430

9.8

490

2.2

435

10.0

495

1.6

440

10.0

500-700

1.0

445

9.7

700-1,050

10((700 - ) / 500)

450

9.4

1,050-1,400

0.2

455

9.0

   

المصدر: ACGIH 1996.

مقاسات

تتوفر تقنيات وأدوات قياس إشعاعي موثوقة تتيح تحليل المخاطر التي يتعرض لها الجلد والعين من التعرض لمصادر الإشعاع الضوئي. لتوصيف مصدر الضوء التقليدي ، من المفيد عمومًا قياس الإشعاع. لتحديد ظروف التعرض الخطرة من المصادر البصرية ، فإن الإشعاع والتعرض الإشعاعي لهما أهمية أكبر. يعتبر تقييم مصادر النطاق العريض أكثر تعقيدًا من تقييم المصادر التي تصدر بأطوال موجية مفردة أو نطاقات ضيقة جدًا ، حيث يجب مراعاة الخصائص الطيفية وحجم المصدر. يتكون طيف بعض المصابيح من انبعاث مستمر على نطاق واسع من الطول الموجي وانبعاث على أطوال موجية فردية معينة (خطوط). قد يتم إدخال أخطاء كبيرة في تمثيل تلك الأطياف إذا لم تتم إضافة جزء الطاقة في كل سطر بشكل صحيح إلى السلسلة المتصلة.

لتقييم المخاطر الصحية ، يجب قياس قيم التعرض عبر فتحة محددة يتم تحديد معايير التعرض لها. عادةً ما تُعتبر الفتحة التي يبلغ قطرها 1 مم أصغر حجم للفتحة العملية. تمثل الأطوال الموجية التي تزيد عن 0.1 مم صعوبات بسبب تأثيرات الانعراج الكبيرة الناتجة عن فتحة تبلغ 1 مم. بالنسبة لنطاق الطول الموجي هذا ، تم قبول فتحة تبلغ 1 سم 11 (قطر 7 مم) ، لأن النقاط الساخنة في هذا النطاق أكبر من الأطوال الموجية الأقصر. لتقييم مخاطر شبكية العين ، تم تحديد حجم الفتحة بمتوسط ​​حجم حدقة العين ، وبالتالي تم اختيار فتحة تبلغ XNUMX مم.

بشكل عام ، القياسات في المنطقة البصرية معقدة للغاية. قد تؤدي القياسات التي يقوم بها أفراد غير مدربين إلى استنتاجات غير صحيحة. يمكن العثور على ملخص مفصل لإجراءات القياس في Sliney و Wolbarsht (1980).

تدابير وقائية

الحماية القياسية الأكثر فعالية من التعرض للإشعاع البصري هي الحاوية الكاملة للمصدر وجميع مسارات الإشعاع التي قد تخرج من المصدر. من خلال هذه التدابير ، يجب أن يكون من السهل تحقيق الامتثال لحدود التعرض في معظم الحالات. إذا لم يكن الأمر كذلك ، فإن الحماية الشخصية قابلة للتطبيق. على سبيل المثال ، يجب استخدام حماية العين المتاحة على شكل نظارات أو أقنعة أو ملابس واقية مناسبة. إذا كانت ظروف العمل لن تسمح بتطبيق مثل هذه التدابير ، فقد يكون من الضروري وجود رقابة إدارية والوصول المقيد إلى مصادر مكثفة للغاية. في بعض الحالات ، قد يكون تقليل قوة المصدر أو وقت العمل (توقف العمل مؤقتًا للتعافي من الإجهاد الحراري) ، أو كليهما ، إجراءً محتملاً لحماية العامل.

وفي الختام

بشكل عام ، فإن الأشعة تحت الحمراء من المصادر الأكثر شيوعًا مثل المصابيح ، أو من معظم التطبيقات الصناعية ، لن تسبب أي خطر على العمال. ومع ذلك ، في بعض أماكن العمل ، يمكن أن يسبب IR خطرًا على صحة العامل. بالإضافة إلى ذلك ، هناك زيادة سريعة في تطبيق واستخدام المصابيح ذات الأغراض الخاصة وفي عمليات درجات الحرارة المرتفعة في الصناعة والعلوم والطب. إذا كان التعرض من تلك التطبيقات مرتفعًا بدرجة كافية ، فلا يمكن استبعاد التأثيرات الضارة (بشكل رئيسي في العين ولكن أيضًا على الجلد). من المتوقع أن تزداد أهمية معايير التعرض للإشعاع الضوئي المعترف بها دوليًا. لحماية العامل من التعرض المفرط ، يجب أن تكون التدابير الوقائية مثل الواقيات (دروع العين) أو الملابس الواقية إلزامية.

الآثار البيولوجية الضارة الرئيسية المنسوبة إلى الأشعة تحت الحمراء هي إعتام عدسة العين ، المعروف باسم منفاخ الزجاج أو إعتام عدسة العين لرجل الفرن. يؤدي التعرض طويل المدى حتى عند المستويات المنخفضة نسبيًا إلى إجهاد حراري لجسم الإنسان. في ظروف التعرض هذه ، يجب مراعاة عوامل إضافية مثل درجة حرارة الجسم وفقدان الحرارة بالتبخير بالإضافة إلى العوامل البيئية.

من أجل إعلام وتوجيه العمال تم تطوير بعض الأدلة العملية في الدول الصناعية. يمكن العثور على ملخص شامل في Sliney و Wolbarsht (1980).

 

الرجوع

عرض 22346 مرات آخر تعديل يوم الخميس ، 13 أكتوبر 2011 21:31