الاثنين، أبريل 04 2011 17: 11

تحريك أجزاء الآلات

قيم هذا المقال
(الاصوات 5)

تتناول هذه المقالة المواقف وسلاسل الأحداث التي تؤدي إلى حوادث تُعزى إلى الاتصال بالجزء المتحرك من الآلات. يتعرض الأشخاص الذين يقومون بتشغيل وصيانة الآلات لخطر التورط في حوادث خطيرة. تشير الإحصاءات الأمريكية إلى أن 18,000 عملية بتر وأكثر من 800 حالة وفاة في الولايات المتحدة كل عام يمكن إرجاعها إلى مثل هذه الأسباب. وفقًا للمعهد الوطني الأمريكي للسلامة والصحة المهنية (NIOSH) ، احتلت فئة الإصابات "المحاصرين أو تحت أو بين" في تصنيفها المرتبة الأعلى بين أهم أنواع الإصابات المهنية في عام 1979. مثل هذه الإصابات تشمل بشكل عام الآلات ( إثيرتون ومايرز 1990). تم الإبلاغ عن "التلامس مع جزء الآلة المتحركة" باعتباره الحدث الرئيسي للإصابة في ما يزيد قليلاً عن 10٪ من الحوادث المهنية منذ إدخال هذه الفئة في إحصاءات الإصابات المهنية السويدية في عام 1979.

تحتوي معظم الآلات على أجزاء متحركة يمكن أن تسبب الإصابة. يمكن العثور على هذه الأجزاء المتحركة في نقطة التشغيل حيث يتم تنفيذ العمل على المادة ، مثل مكان حدوث القطع أو التشكيل أو الثقب أو التشوه. يمكن العثور عليها في الجهاز الذي ينقل الطاقة إلى أجزاء الآلة التي تقوم بالعمل ، مثل الحذافات ، والبكرات ، وقضبان التوصيل ، والمقرنات ، والكاميرات ، والمغازل ، والسلاسل ، والسواعد ، والتروس. يمكن العثور عليها في أجزاء متحركة أخرى من الماكينة مثل العجلات على المعدات المتنقلة ومحركات التروس والمضخات والضواغط وما إلى ذلك. يمكن أيضًا العثور على حركات الماكينة الخطرة بين أنواع أخرى من الآلات ، خاصةً في الأجزاء المساعدة من المعدات التي تتعامل مع الأحمال مثل قطع العمل أو المواد أو النفايات أو الأدوات وتنقلها.

قد تساهم جميع أجزاء الماكينة التي تتحرك أثناء أداء العمل في وقوع حوادث تسبب إصابات وأضرارًا. يمكن أن تكون كل من حركات الماكينة الدوارة والخطية ، بالإضافة إلى مصادر قوتها ، خطيرة:

حركة دوارة. حتى الأعمدة الدوارة الملساء يمكن أن تمسك بقطعة من الملابس ، على سبيل المثال ، تجذب ذراع الشخص إلى وضع خطر. يزداد الخطر في عمود الدوران إذا كان به أجزاء بارزة أو أسطح غير مستوية أو حادة ، مثل ضبط البراغي أو البراغي أو الشقوق أو الشقوق أو حواف القطع. تؤدي أجزاء الماكينة الدوارة إلى ظهور "نقاط ارتخاء" بثلاث طرق مختلفة:

  1. توجد نقاط بين جزأين دائريين يدوران في اتجاهين متعاكسين ولها محاور متوازية ، مثل التروس أو العجلات المسننة أو بكرات النقل أو المقاطع.
  2. توجد نقاط تلامس بين الأجزاء الدوارة والأجزاء في حركة خطية ، مثل تلك الموجودة بين حزام نقل الطاقة وبكرته ، أو بين سلسلة وعجلة ضرس ، أو رف وترس.
  3. يمكن أن تؤدي حركات الآلة الدوارة إلى خطر حدوث جروح وإصابات سحق عندما تحدث بالقرب من أجسام ثابتة - يوجد هذا النوع من الحالة بين ناقل الدودة ومبيتها ، أو بين مكابح العجلة وقاعدة الآلة ، أو بين عجلة طحن ورافعة أداة.

 

حركات خطية. يمكن أن تتسبب الحركة الرأسية والأفقية والترددية في حدوث إصابة بعدة طرق: قد يتلقى الشخص دفقة أو ضربة من جزء الآلة ، وقد يعلق بين جزء الآلة وبعض الأشياء الأخرى ، أو قد يُقطع بحافة حادة ، أو يحتمل إصابة العض عن طريق الوقوع بين الجزء المتحرك وجسم آخر (الشكل 1).

الشكل 1. أمثلة على الحركات الميكانيكية التي يمكن أن تصيب الإنسان

ACC050F1

مصادر الطاقة. في كثير من الأحيان ، يتم استخدام مصادر خارجية للطاقة لتشغيل آلة قد تنطوي على كميات كبيرة من الطاقة. وهي تشمل أنظمة الطاقة الكهربائية والبخارية والهيدروليكية والهوائية والميكانيكية ، وكلها ، إذا تم إطلاقها أو عدم السيطرة عليها ، يمكن أن تؤدي إلى إصابات خطيرة أو أضرار. أظهرت دراسة للحوادث التي وقعت على مدى عام واحد (1987 إلى 1988) بين المزارعين في تسع قرى في شمال الهند أن آلات تقطيع الأعلاف ، وجميعها من نفس التصميم ، تكون أكثر خطورة عند تشغيلها بواسطة محرك أو جرار. كان التكرار النسبي للحوادث التي تنطوي على أكثر من إصابة طفيفة (لكل آلة) 5.1 لكل ألف للقواطع اليدوية و 8.6 لكل ألف للقواطع الآلية (Mohan and Patel 1992).

الإصابات المصاحبة لحركات الآلة

نظرًا لأن القوى المرتبطة بحركات الماكينة غالبًا ما تكون كبيرة جدًا ، يمكن افتراض أن الإصابات التي تسببها ستكون خطيرة. تم تأكيد هذا الافتراض من قبل عدة مصادر. يمثل "الاتصال بالآلات المتحركة أو المواد التي يتم تشكيلها" 5٪ فقط من جميع الحوادث المهنية ولكن ما يصل إلى 10٪ من الحوادث المميتة والكبيرة (كسور وبتر وما إلى ذلك) وفقًا للإحصاءات البريطانية (HSE 1989). تشير الدراسات التي أجريت على مكانين للعمل في تصنيع السيارات في السويد إلى نفس الاتجاه. أدت الحوادث الناجمة عن حركة الآلات إلى ضعف عدد أيام الإجازة المرضية ، مقاسة بالقيم المتوسطة ، مقارنة بالحوادث غير المرتبطة بالآلات. كما اختلفت الحوادث المتعلقة بالآلة عن الحوادث الأخرى فيما يتعلق بجزء من الجسم المصاب: أشارت النتائج إلى أن 80٪ من الإصابات التي لحقت بها في حوادث "الآلة" كانت في اليدين والأصابع ، في حين أن النسبة المقابلة للحوادث "الأخرى" كانت 40٪ (باكستروم ودوس 1995).

تبين أن حالة المخاطر في التركيبات الآلية مختلفة (من حيث نوع الحادث وتسلسل الأحداث ودرجة خطورة الإصابة) وأكثر تعقيدًا (سواء من الناحية الفنية أو فيما يتعلق بالحاجة إلى المهارات المتخصصة) عنها في المنشآت التي تستخدم فيها الآلات التقليدية. المصطلح الآلي المقصود هنا الإشارة إلى المعدات التي ، بدون تدخل مباشر من الإنسان ، يمكنها إما بدء حركة الآلة أو تغيير اتجاهها أو وظيفتها. تتطلب هذه المعدات أجهزة استشعار (على سبيل المثال ، مستشعرات الموضع أو المحولات الدقيقة) و / أو بعض أشكال الضوابط المتسلسلة (على سبيل المثال ، برنامج كمبيوتر) لتوجيه أنشطتها ومراقبتها. على مدى العقود الأخيرة ، أ تحكم منطق برمجة تم استخدام (PLC) بشكل متزايد كوحدة تحكم في أنظمة الإنتاج. تعد أجهزة الكمبيوتر الصغيرة الآن أكثر الوسائل شيوعًا المستخدمة للتحكم في معدات الإنتاج في العالم الصناعي ، بينما أصبحت وسائل التحكم الأخرى ، مثل الوحدات الكهروميكانيكية ، أقل شيوعًا. في صناعة التصنيع السويدية ، زاد استخدام الآلات التي يتم التحكم فيها عدديًا بنسبة 11 إلى 12٪ سنويًا خلال الثمانينيات (Hörte and Lindberg 1980). في الإنتاج الصناعي الحديث ، أصبح التعرض للإصابة من خلال "أجزاء متحركة من الآلات" مكافئًا للإصابة من خلال "حركات الآلة التي يتم التحكم فيها بواسطة الكمبيوتر".

توجد التركيبات الآلية في المزيد والمزيد من قطاعات الصناعة ، ولديها عدد متزايد من الوظائف. تتم أتمتة إدارة المخازن ومناولة المواد والمعالجة والتجميع والتعبئة. لقد أصبح الإنتاج المتسلسل مشابهًا لعملية الإنتاج. إذا تمت آلية التغذية والتشغيل الآلي وطرد قطع العمل ، فلن يحتاج المشغل بعد الآن إلى التواجد في منطقة الخطر أثناء الإنتاج المنتظم غير المضطرب. أظهرت الدراسات البحثية للتصنيع الآلي أن الحوادث تحدث في المقام الأول عند التعامل مع الاضطرابات التي تؤثر على الإنتاج. ومع ذلك ، يمكن للأشخاص أيضًا الوقوف في طريق حركات الماكينة في أداء مهام أخرى ، مثل التنظيف والتعديل وإعادة الضبط والتحكم والإصلاح.

عندما يكون الإنتاج مؤتمتًا ولم تعد العملية تحت السيطرة المباشرة للإنسان ، يزداد خطر حدوث حركات غير متوقعة للماكينة. واجه معظم المشغلين الذين يعملون مع مجموعات أو خطوط من الآلات المترابطة مثل هذه الحركات غير المتوقعة للماكينة. عديدة حوادث الأتمتة تحدث نتيجة لمثل هذه الحركات. حادث الأتمتة هو حادث يتحكم فيه الجهاز الأوتوماتيكي (أو كان يجب أن يتحكم) في الطاقة التي تؤدي إلى الإصابة. هذا يعني أن القوة التي تؤذي الشخص تأتي من الآلة نفسها (على سبيل المثال ، طاقة حركة الآلة). في دراسة أجريت على 177 حادثة أتمتة في السويد ، وجد أن الإصابة ناجمة عن "البداية غير المتوقعة" لجزء من الجهاز في 84٪ من الحالات (باكستروم وهارمز رينغدال 1984). يظهر مثال نموذجي للإصابة الناجمة عن حركة الآلة التي يتحكم فيها الكمبيوتر في الشكل 2.

الشكل 2. مثال نموذجي لإصابة ناجمة عن حركة آلة يتم التحكم فيها بواسطة الكمبيوتر

ACC050F2

أظهرت إحدى الدراسات المشار إليها أعلاه (Backström and Döös 1995) أن حركات الماكينة التي يتم التحكم فيها تلقائيًا كانت مرتبطة سببيًا بفترات إجازة مرضية أطول من الإصابات بسبب أنواع أخرى من حركات الماكينة ، حيث تكون القيمة المتوسطة أعلى بأربع مرات في أحد أماكن العمل . كان نمط الإصابات في حوادث الأتمتة مشابهًا لحوادث الآلات الأخرى (التي تشمل اليدين والأصابع بشكل أساسي) ، ولكن كان الاتجاه هو أن يكون النوع السابق من الإصابات أكثر خطورة (البتر والسحق والكسور).

التحكم في الكمبيوتر ، مثل اليدوي ، لديه نقاط ضعف من منظور الموثوقية. ليس هناك ما يضمن أن برنامج الكمبيوتر سيعمل بدون أخطاء. قد تكون الإلكترونيات ، بمستويات إشاراتها المنخفضة ، حساسة للتداخل إذا لم يتم حمايتها بشكل صحيح ، ولا يمكن دائمًا التنبؤ بنتائج الأعطال الناتجة. علاوة على ذلك ، غالبًا ما تُترك تغييرات البرمجة غير موثقة. تتمثل إحدى الطرق المستخدمة للتعويض عن هذا الضعف ، على سبيل المثال ، في تشغيل أنظمة "مزدوجة" حيث توجد سلسلتان مستقلتان من المكونات الوظيفية وطريقة للمراقبة بحيث تعرض كلا السلسلتين نفس القيمة. إذا عرضت الأنظمة قيمًا مختلفة ، فهذا يشير إلى فشل في إحداها. ولكن هناك احتمال أن كلا سلسلتي المكونات قد تعاني من نفس الخطأ وأنه يمكن وضعهما خارج النظام بسبب الاضطراب نفسه ، وبالتالي إعطاء قراءة إيجابية خاطئة (كما يتفق كلا النظامين). ومع ذلك ، في عدد قليل فقط من الحالات التي تم التحقيق فيها ، كان من الممكن تتبع حادث إلى فشل الكمبيوتر (انظر أدناه) ، على الرغم من حقيقة أنه من الشائع أن يتحكم جهاز كمبيوتر واحد في جميع وظائف التثبيت (حتى إيقاف جهاز نتيجة تفعيل جهاز امان). كبديل ، يمكن النظر في توفير نظام مجرب ومختبر بمكونات كهروميكانيكية لوظائف السلامة.

مشاكل تقنية

بشكل عام ، يمكن القول أن حادثًا واحدًا له العديد من الأسباب ، بما في ذلك الأسباب الفنية والفردية والبيئية والتنظيمية. لأغراض وقائية ، من الأفضل النظر إلى الحادث ليس على أنه حدث منفرد ، ولكن على أنه تسلسل أحداث أو عملية (باكستروم 1996). في حالة حوادث الأتمتة ، فقد تبين أن المشكلات الفنية غالبًا ما تكون جزءًا من مثل هذا التسلسل وتحدث إما في إحدى المراحل المبكرة من العملية أو بالقرب من حدث إصابة الحادث. تشير الدراسات التي تم فيها فحص المشكلات الفنية المرتبطة بحوادث الأتمتة إلى أن هذه المشاكل تكمن وراء 75 إلى 85٪ من الحوادث. في نفس الوقت ، في أي حالة محددة ، عادة ما تكون هناك أسباب أخرى ، مثل تلك ذات الطبيعة التنظيمية. في عُشر الحالات فقط ، تم العثور على أن المصدر المباشر للطاقة التي تؤدي إلى حدوث إصابة يمكن أن يُعزى إلى عطل تقني - على سبيل المثال ، تحدث حركة الآلة على الرغم من أن الآلة في وضع التوقف. تم الإبلاغ عن أرقام مماثلة في دراسات أخرى. عادة ، أدت مشكلة فنية إلى مشكلة في المعدات ، بحيث كان على المشغل تبديل المهام (على سبيل المثال ، لإعادة وضع جزء كان في وضع معوج). ثم وقع الحادث أثناء تنفيذ المهمة ، بسبب عطل فني. كان ربع حوادث الأتمتة مسبوقًا باضطراب في تدفق المواد مثل تعطل جزء أو الوقوع في وضع معوج أو معيب بطريقة أخرى (انظر الشكل 3).

الشكل 3. أنواع المشاكل الفنية التي تنطوي عليها حوادث الأتمتة (عدد الحوادث = 127)

ACC050T1

في دراسة عن 127 حادثًا تنطوي على الأتمتة ، تم إجراء مزيد من التحقيق في 28 من هذه الحوادث ، الموصوفة في الشكل 4 ، لتحديد أنواع المشكلات الفنية التي كانت متورطة كعوامل سببية (Backström and Döös ، قيد النشر). كانت المشكلات المحددة في التحقيقات في الحوادث ناتجة في أغلب الأحيان عن مكونات محشورة أو معيبة أو تالفة. في حالتين ، كانت المشكلة ناتجة عن خطأ في برنامج الكمبيوتر ، والأخرى بسبب التداخل الكهرومغناطيسي. في أكثر من نصف الحالات (17 من 28) ، كانت العيوب موجودة لبعض الوقت ولكن لم يتم علاجها. فقط في 5 من 28 حالة تمت الإشارة فيها إلى عطل فني أو انحراف ، كان هناك عيب ليس تجلى في السابق. تم إصلاح بعض العيوب فقط لتظهر مرة أخرى في وقت لاحق. كانت بعض العيوب موجودة منذ وقت التثبيت ، بينما نتجت عيوب أخرى عن التآكل وتأثير البيئة.

تبلغ نسبة حوادث الأتمتة التي تحدث أثناء تصحيح اضطراب في الإنتاج ما بين ثلث وثلثي جميع الحالات ، وفقًا لمعظم الدراسات. بمعنى آخر ، هناك اتفاق عام على أن معالجة اضطرابات الإنتاج مهمة مهنية خطرة. إن الاختلاف في مدى حدوث مثل هذه الحوادث له العديد من التفسيرات ، من بينها تلك المتعلقة بنوع الإنتاج وكيفية تصنيف المهام المهنية. في بعض دراسات الاضطرابات ، تم فقط النظر في المشاكل وتوقفات الآلة في سياق الإنتاج المنتظم ؛ في حالات أخرى ، تم التعامل مع مجموعة واسعة من المشاكل - على سبيل المثال ، أولئك الذين شاركوا في إعداد العمل.

من التدابير المهمة جدًا في الوقاية من حوادث الأتمتة إعداد إجراءات لإزالة أسباب اضطرابات الإنتاج حتى لا تتكرر. في دراسة متخصصة لاضطرابات الإنتاج في وقت وقوع الحادث (Döös and Backström 1994) ، وجد أن المهمة الأكثر شيوعًا التي أدت إلى حدوث الاضطرابات كانت تحرير أو تصحيح موضع قطعة العمل التي أصبحت عالقة أو خاطئة. وضعت. بدأ هذا النوع من المشكلات أحد تسلسلين متشابهين إلى حد ما من الأحداث: (1) تم تحرير الجزء ووصوله إلى موضعه الصحيح ، وتلقى الجهاز إشارة تلقائية للبدء ، وأصيب الشخص بسبب حركة الآلة التي بدأت ، (2) ) لم يكن هناك وقت لتحرير الجزء أو إعادة وضعه قبل إصابة الشخص بحركة آلية جاءت بشكل غير متوقع أو أسرع أو كانت أقوى مما توقعه المشغل. اشتملت معالجة الاضطرابات الأخرى على دفع نبضة مستشعر ، وتحرير جزء محشور من الآلة ، وتنفيذ أنواع بسيطة من تتبع الأخطاء ، والترتيب لإعادة التشغيل (انظر الشكل 4).

الشكل 4: نوع التعامل مع الاضطراب وقت وقوع الحادث (عدد الحوادث = 76)

ACC050T2

سلامة العمال

تعتمد فئات الموظفين التي تميل للإصابة في حوادث الأتمتة على كيفية تنظيم العمل - أي ، على أساس المجموعة المهنية التي تؤدي المهام الخطرة. في الممارسة العملية ، هذه هي مسألة الشخص الذي يتم تكليفه في مكان العمل للتعامل مع المشاكل والاضطرابات على أساس روتيني. في الصناعة السويدية الحديثة ، عادة ما يتم طلب التدخلات النشطة من الأشخاص الذين يشغلون الآلة. لهذا السبب ، في دراسة مكان العمل الخاصة بتصنيع المركبات المذكورة سابقًا في السويد (تم قبول Backström and Döös للنشر) ، وجد أن 82٪ من الأشخاص الذين تعرضوا لإصابات من الآلات الآلية كانوا عمال إنتاج أو مشغلين. كان لدى المشغلين أيضًا معدل حوادث أعلى نسبيًا (15 حادثًا آليًا لكل 1,000 مشغل سنويًا) من عمال الصيانة (6 لكل 1,000). نتائج الدراسات التي تشير إلى أن عمال الصيانة أكثر تأثراً يمكن تفسيرها جزئياً على الأقل من خلال حقيقة أنه لا يُسمح للمشغلين بدخول مناطق التصنيع في بعض الشركات. في المؤسسات ذات النوع المختلف من توزيع المهام ، قد يتم إعطاء فئات أخرى من الموظفين - المحددون ، على سبيل المثال - مهمة حل أي مشاكل إنتاج تنشأ.

الإجراء التصحيحي الأكثر شيوعًا الذي تم اتخاذه في هذا الصدد من أجل رفع مستوى السلامة الشخصية هو حماية الشخص من تحركات الماكينة الخطرة باستخدام نوع من أجهزة السلامة ، مثل حراسة الماكينة. المبدأ الرئيسي هنا هو مبدأ السلامة "السلبية" - أي توفير الحماية التي لا تتطلب اتخاذ إجراء من جانب العامل. ومع ذلك ، من المستحيل الحكم على فعالية الأجهزة الوقائية دون معرفة جيدة بمتطلبات العمل الفعلية في الجهاز المعني ، وهو شكل من أشكال المعرفة لا يمتلكه عادةً سوى مشغلي الآلات أنفسهم.

هناك العديد من العوامل التي يمكن أن تؤدي إلى تعطيل حماية الماكينة على ما يبدو. من أجل أداء عملهم ، قد يحتاج المشغلون إلى فك ارتباط جهاز الأمان أو التحايل عليه. في إحدى الدراسات (Döös and Backström 1993) ، وجد أن هذا الانفصال أو التحايل قد حدث في 12 من 75 من حوادث الأتمتة التي تمت تغطيتها. غالبًا ما يتعلق الأمر بكون المشغل طموحًا ، ولم يعد مستعدًا لقبول مشاكل الإنتاج أو التأخير في عملية الإنتاج المتضمنة في تصحيح الاضطرابات وفقًا للتعليمات. تتمثل إحدى طرق تجنب هذه المشكلة في جعل جهاز الحماية غير محسوس ، بحيث لا يؤثر على وتيرة الإنتاج أو جودة المنتج أو أداء المهمة. لكن هذا ليس ممكن دائما؛ وحيث تكون هناك اضطرابات متكررة في الإنتاج ، يمكن حتى للمضايقات البسيطة أن تدفع الأشخاص إلى عدم استخدام أجهزة السلامة. مرة أخرى ، يجب توفير إجراءات روتينية لإزالة أسباب اضطرابات الإنتاج حتى لا تتكرر. يعد عدم وجود وسيلة للتأكد من أن أجهزة السلامة تعمل حقًا وفقًا للمواصفات عامل خطر كبير آخر. الاتصالات الخاطئة ، وإشارات البدء التي تبقى في النظام ، ثم تؤدي لاحقًا إلى ظهور بدايات غير متوقعة ، وتراكم ضغط الهواء ، وأجهزة الاستشعار التي انفصلت عن بعضها ، قد تتسبب جميعها في فشل معدات الحماية.

نبذة عامة

كما تم توضيحه ، قد تؤدي الحلول التقنية للمشاكل إلى ظهور مشاكل جديدة. على الرغم من أن الإصابات ناتجة عن حركات الآلة ، والتي هي في الأساس تقنية بطبيعتها ، فإن هذا لا يعني تلقائيًا أن إمكانية القضاء عليها تكمن في عوامل تقنية بحتة. ستستمر الأنظمة الفنية في التعطل ، وسيفشل الأشخاص في التعامل مع المواقف التي تؤدي إليها هذه الأعطال. ستستمر المخاطر في الوجود ، ولا يمكن كبحها إلا من خلال مجموعة متنوعة من الوسائل. هناك حاجة إلى التشريع والرقابة ، والتدابير التنظيمية في الشركات الفردية (في شكل تدريب ، وجولات السلامة ، وتحليل المخاطر والإبلاغ عن الاضطرابات والحوادث القريبة) ، والتركيز على التحسينات المستمرة والمستمرة كمكملات للتطوير التقني البحت.

 

الرجوع

عرض 19049 مرات تم إجراء آخر تعديل يوم السبت ، 20 آب (أغسطس) 2011 03:54

"إخلاء المسؤولية: لا تتحمل منظمة العمل الدولية المسؤولية عن المحتوى المعروض على بوابة الويب هذه والذي يتم تقديمه بأي لغة أخرى غير الإنجليزية ، وهي اللغة المستخدمة للإنتاج الأولي ومراجعة الأقران للمحتوى الأصلي. لم يتم تحديث بعض الإحصائيات منذ ذلك الحين. إنتاج الطبعة الرابعة من الموسوعة (4). "

المحتويات

مراجع تطبيقات السلامة

أرتو ، جي ، إيه لان ، وجي إف كورفيل. 1994. استخدام خطوط الإنقاذ الأفقية في التركيب الفولاذي الإنشائي. وقائع الندوة الدولية للحماية من السقوط ، سان دييغو ، كاليفورنيا (27-28 أكتوبر ، 1994). تورنتو: الجمعية الدولية للحماية من السقوط.

Backström، T. 1996. الحماية من مخاطر الحوادث والسلامة في الإنتاج الآلي. أطروحة الدكتوراه. Arbete och Hälsa 1996: 7. سولنا: المعهد الوطني للحياة العملية.

باكستروم ، تي أند إل هارمز رينجدال. 1984. دراسة إحصائية لأنظمة التحكم وحوادث العمل. J احتلال Acc. 6: 201 - 210.

باكستروم ، تي أند إم دوس. 1994. العيوب الفنية وراء حوادث الإنتاج الآلي. In Advances in Agile Manufacturing ، من تحرير PT Kidd و W Karwowski. أمستردام: IOS Press.

-. 1995. مقارنة بين الحوادث المهنية في الصناعات وتكنولوجيا التصنيع المتقدمة. Int J Hum Factors Manufac. 5 (3). 267 - 282.

-. في الصحافة. نشأة التقنية لأعطال الآلة التي تؤدي إلى حوادث مهنية. بيئة العمل Int J Ind.

-. مقبول للنشر. الترددات المطلقة والنسبية لحوادث الأتمتة على أنواع مختلفة من المعدات وللمجموعات المهنية المختلفة. J Saf Res.

Bainbridge، L. 1983. مفارقات الأتمتة. أوتوماتيكا 19: 775 - 779.

بيل ، آر ودي راينرت. 1992. المخاطر ومفاهيم سلامة النظام لأنظمة التحكم المتعلقة بالسلامة. Saf Sci 15: 283-308.

بوشار ، ص 1991. Échafaudages. دليل سيري 4. Montreal: CSST.

مكتب الشؤون الوطنية. 1975. معايير السلامة والصحة المهنية. هياكل الحماية من الانقلاب لمعدات مناولة المواد والجرارات ، الأقسام 1926 ، 1928. واشنطن العاصمة: مكتب الشؤون الوطنية.

كوربيت ، جم. 1988. بيئة العمل في تطوير AMT المتمحور حول الإنسان. بيئة العمل التطبيقية 19: 35-39.

كولفر ، سي ، وسي كونولي. 1994. منع السقوط القاتل في البناء. Saf Health سبتمبر 1994: 72-75.

دويتشه إندوستري نورمن (DIN). 1990. Grundsätze für Rechner in Systemen mit Sicherheitsauffgaben. DIN V VDE 0801. برلين: Beuth Verlag.

-. 1994. Grundsätze für Rechner in Systemen mit Sicherheitsauffgaben Änderung A 1. DIN V VDE 0801 / A1. برلين: Beuth Verlag.

-. 1995 أ. Sicherheit von Maschinen - Druckempfindliche Schutzeinrichtungen [سلامة الماكينة - معدات الحماية الحساسة للضغط]. DIN prEN 1760. برلين: Beuth Verlag.

-. 1995 ب. Rangier-Warneinrichtungen - Anforderungen und Prüfung [المركبات التجارية - اكتشاف العوائق أثناء الرجوع إلى الخلف - المتطلبات والاختبارات]. DIN-Norm 75031. فبراير 1995.

Döös، M and T Backström. 1993. وصف الحوادث في مناولة المواد الآلية. في بيئة العمل الخاصة بمعالجة المواد ومعالجة المعلومات في العمل ، تم تحريره بواسطة WS Marras و W Karwowski و JL Smith و L Pacholski. وارسو: تايلور وفرانسيس.

-. 1994. اضطرابات الإنتاج كخطر الحوادث. In Advances in Agile Manufacturing ، من تحرير PT Kidd و W Karwowski. أمستردام: IOS Press.

الجماعة الاقتصادية الأوروبية (EEC). 1974 ، 1977 ، 1979 ، 1982 ، 1987. توجيهات المجلس بشأن هياكل الحماية من الانقلاب للجرارات الزراعية والغابات ذات العجلات. بروكسل: EEC.

-. 1991. توجيهات المجلس بشأن تقريب قوانين الدول الأعضاء المتعلقة بالآلات. (91/368 / EEC) لوكسمبورغ: EEC.

Etherton ، JR و ML مايرز. 1990. أبحاث سلامة الآلة في NIOSH والتوجهات المستقبلية. Int J Ind Erg 6: 163–174.

Freund و E و F Dierks و J Roßmann. 1993. Unterschungen zum Arbeitsschutz bei Mobilen Rototern und Mehrrobotersystemen [اختبارات السلامة المهنية للروبوتات المتنقلة وأنظمة الروبوت المتعددة]. دورتموند: Schriftenreihe der Bundesanstalt für Arbeitsschutz.

جوبل ، دبليو. 1992. تقييم موثوقية نظام التحكم. نيويورك: جمعية الآلات الأمريكية.

Goodstein و LP و HB Anderson و SE Olsen (محرران). 1988. المهام والأخطاء والنماذج العقلية. لندن: تايلور وفرانسيس.

جريف ، كا. 1988. أسباب السقوط والوقاية منه. في الندوة الدولية للحماية من السقوط. أورلاندو: الجمعية الدولية للحماية من السقوط.

تنفيذي الصحة والسلامة. 1989. إحصاءات الصحة والسلامة 1986-87. توظيف غاز 97 (2).

هاينريش ، HW ، D Peterson و N Roos. 1980. منع الحوادث الصناعية. الطبعة الخامسة. نيويورك: ماكجرو هيل.

هولناجل ، إي ، ودي وودز. 1983. هندسة النظم المعرفية: نبيذ جديد في قوارير جديدة. Int J Man Machine Stud 18: 583–600.

Hölscher ، و H و J Rader. 1984. حاسوب دقيق في der Sicherheitstechnik. راينلاند: Verlag TgV-Reinland.

Hörte و S-Å و P Lindberg. 1989. نشر وتطبيق تقنيات التصنيع المتقدمة في السويد. ورقة العمل رقم 198: 16. معهد الابتكار والتكنولوجيا.

اللجنة الكهرتقنية الدولية (IEC). 1992. 122 مسودة المعيار: برمجيات الحاسبات في تطبيق الأنظمة المتعلقة بالسلامة الصناعية. IEC 65 (ثانية). جنيف: IEC.

-. 1993. 123 مشروع المعيار: السلامة الوظيفية للأنظمة الإلكترونية الكهربائية / الإلكترونية / القابلة للبرمجة ؛ الجوانب العامة. الجزء 1 ، المتطلبات العامة جنيف: IEC.

منظمة العمل الدولية. 1965. السلامة والصحة في العمل الزراعي. جنيف: منظمة العمل الدولية.

-. 1969. السلامة والصحة في العمل الحرجي. جنيف: منظمة العمل الدولية.

-. 1976. البناء الآمن للجرارات وتشغيلها. مدونة ممارسات منظمة العمل الدولية. جنيف: منظمة العمل الدولية.

المنظمة الدولية للتوحيد القياسي (ISO). 1981. الجرارات ذات العجلات الزراعية والغابات. هياكل الحماية. طريقة الاختبار الثابت وشروط القبول. ISO 5700. جنيف: ISO.

-. 1990. إدارة الجودة ومعايير ضمان الجودة: مبادئ توجيهية لتطبيق ISO 9001 في تطوير البرامج وتوريدها وصيانتها. ISO 9000-3. جنيف: ISO.

-. 1991. أنظمة الأتمتة الصناعية - سلامة أنظمة التصنيع المتكاملة - المتطلبات الأساسية (CD 11161). TC 184 / WG 4. جنيف: ISO.

-. 1994. المركبات التجارية - جهاز كشف العوائق أثناء الرجوع - المتطلبات والاختبارات. التقرير الفني TR 12155. جنيف: ISO.

جونسون ، ب. 1989. تصميم وتحليل الأنظمة الرقمية المتسامحة مع الخطأ. نيويورك: أديسون ويسلي.

كيد ، ص 1994. التصنيع الآلي القائم على المهارة. في تنظيم وإدارة أنظمة التصنيع المتقدمة ، من تحرير W Karwowski و G Salvendy. نيويورك: وايلي.

نولتون ، ري. 1986. مقدمة في دراسات المخاطر وقابلية التشغيل: منهج الكلمة الإرشادية. فانكوفر ، كولومبيا البريطانية: علم الكيمياء.

Kuivanen، R. 1990. التأثير على سلامة الاضطرابات في أنظمة التصنيع المرنة. في Ergonomics of Hybrid Automated Systems II ، تم تحريره بواسطة W Karwowski و M Rahimi. أمستردام: إلسفير.

ليسر ، آر بي ، واي ماكلولين و دي إم وولف. 1987. Fernsteurerung und Fehlerkontrolle von Voyager 2. Spektrum der Wissenshaft (1): S. 60-70.

Lan و A و J Arteau و JF Corbeil. 1994. الحماية ضد السقوط من اللوحات الإعلانية فوق الأرض. الندوة الدولية للحماية من السقوط ، سان دييغو ، كاليفورنيا ، 27-28 أكتوبر 1994. وقائع الجمعية الدولية للحماية من السقوط.

لانجر ، إتش جي و دبليو كورفورست. 1985. Einsatz von Sensoren zur Absicherung des Rückraumes von Großfahrzeugen [استخدام أجهزة الاستشعار لتأمين المنطقة خلف المركبات الكبيرة]. FB 605. دورتموند: Schriftenreihe der bundesanstalt für Arbeitsschutz.

ليفنسون ، إن جي. 1986. سلامة البرامج: لماذا وماذا وكيف. استطلاعات كمبيوتر ACM (2): S. 129 - 163.

مكمانوس ، تينيسي. Nd المساحات المحصورة. مخطوطة.

Microsonic GmbH. 1996. اتصالات الشركة. دورتموند ، ألمانيا: Microsonic.

Mester و U و T Herwig و G Dönges و B Brodbeck و HD Bredow و M Behrens و U Ahrens. 1980. Gefahrenschutz durch passive Infrarot-Sensoren (II) [الحماية من الأخطار بواسطة مستشعرات الأشعة تحت الحمراء]. FB 243. دورتموند: Schriftenreihe der bundesanstalt für Arbeitsschutz.

موهان ودي آر باتيل. 1992. تصميم معدات زراعية أكثر أمانًا: تطبيق بيئة العمل وعلم الأوبئة. Int J Ind Erg 10: 301–310.

الرابطة الوطنية للحماية من الحرائق (NFPA). 1993. NFPA 306: التحكم في مخاطر الغاز على السفن. كوينسي ، ماساتشوستس: NFPA.

المعهد الوطني للسلامة والصحة المهنية (NIOSH). 1994. وفيات العمال في الأماكن الضيقة. سينسيناتي ، أوهايو ، الولايات المتحدة: DHHS / PHS / CDCP / NIOSH Pub. رقم 94-103. NIOSH.

نيومان ، PG. 1987. أفضل (أو أسوأ) حالات الخطر المتعلقة بالحاسوب. IEEE T Syst Man Cyb. نيويورك: S.11–13.

-. 1994. المخاطر التوضيحية للجمهور في استخدام أنظمة الكمبيوتر والتقنيات ذات الصلة. ملاحظات Software Engin SIGSOFT 19 ، رقم 1: 16-29.

إدارة السلامة والصحة المهنية (OSHA). 1988. الوفيات المهنية المختارة المتعلقة باللحام والقطع كما تم العثور عليها في تقارير الوفيات / التحقيقات في الكارثة OSHA. واشنطن العاصمة: OSHA.

منظمة التعاون الاقتصادي والتنمية (OECD). 1987. الرموز المعيارية للاختبار الرسمي للجرارات الزراعية. باريس: OECD.

المنظمة المهنية للحماية من الأعمال والحماية من الجماهير (OPPBTP). 1984. المعدات الفردية للحماية من ممرات الهوت. بولوني بيلانكور ، فرنسا: OPPBTP.

Rasmussen، J. 1983. المهارات والقواعد والمعرفة: الأجندة والعلامات والرموز والاختلافات الأخرى في نماذج الأداء البشري. معاملات IEEE على الأنظمة والإنسان وعلم التحكم الآلي. SMC13 (3): 257-266.

السبب ، ج. 1990. خطأ بشري. نيويورك: مطبعة جامعة كامبريدج.

ريس ، CD و GR Mills. 1986. علم الأوبئة الناتجة عن الصدمات للوفيات في الأماكن المحصورة وتطبيقها على التدخل / الوقاية الآن. في الطبيعة المتغيرة للعمل والقوى العاملة. سينسيناتي ، أوهايو: NIOSH.

رينيرت ، د وج رويس. 1991. Sicherheitstechnische Beurteilung und Prüfung mikroprozessorgesteuerter
Sicherheitseinrichtungen. في BIA-Handbuch. Sicherheitstechnisches information-und Arbeitsblatt 310222. بيليفيلد: Erich Schmidt Verlag.

جمعية مهندسي السيارات (SAE). 1974. حماية المشغل للمعدات الصناعية. معيار SAE j1042. وارينديل ، الولايات المتحدة الأمريكية: SAE.

-. 1975. معايير الأداء لحماية الانقلاب. الممارسة الموصى بها SAE. معيار SAE j1040a. وارينديل ، الولايات المتحدة الأمريكية: SAE.

Schreiber، P. 1990. Entwicklungsstand bei Rückraumwarneinrichtungen [حالة التطورات لأجهزة الإنذار في المنطقة الخلفية]. Technische Überwachung، Nr. 4 أبريل ص 161.

شريبر ، ب و ك كوهن. 1995. Informationstechnologie in der Fertigungstechnik [تكنولوجيا المعلومات في تقنية الإنتاج ، سلسلة المعهد الاتحادي للسلامة والصحة المهنية]. FB 717. دورتموند: Schriftenreihe der bundesanstalt für Arbeitsschutz.

شيريدان ت. 1987. رقابة إشرافية. في كتيب العوامل البشرية ، حرره ج. سالفندي. نيويورك: وايلي.

Springfeldt، B. 1993. آثار قواعد وتدابير السلامة المهنية مع مراعاة خاصة للإصابات. مزايا حلول العمل تلقائيًا. ستوكهولم: المعهد الملكي للتكنولوجيا ، قسم علوم العمل.

سوجيموتو ، ن. 1987. موضوعات ومشكلات تكنولوجيا سلامة الروبوت. في السلامة والصحة المهنية في الأتمتة والروبوتات ، تم تحريره بواسطة K Noto. لندن: تايلور وفرانسيس. 175.

سولوفسكي ، إيه سي ، أد. 1991. أساسيات الحماية من السقوط. تورنتو ، كندا: الجمعية الدولية للحماية من السقوط.

Wehner، T. 1992. Sicherheit als Fehlerfreundlichkeit. أوبلادن: Westdeutscher Verlag.

Zimolong و B و L Duda. 1992. استراتيجيات الحد من الخطأ البشري في أنظمة التصنيع المتقدمة. في التفاعل بين الإنسان والروبوت ، تم تحريره بواسطة M Rahimi و W Karwowski. لندن: تايلور وفرانسيس.