Mittwoch, März 30 2011 01: 45

Die Textilindustrie: Geschichte und Gesundheit und Sicherheit

Artikel bewerten
(17 Stimmen)

Die Textilindustrie

Die Textilindustrie (aus dem Lateinischen Text, zum Weben) wurde ursprünglich auf das Weben von Stoffen aus Fasern angewendet, umfasst aber heute eine breite Palette anderer Prozesse wie Stricken, Tuften, Filzen und so weiter. Es wurde auch um die Herstellung von Garnen aus natürlichen oder synthetischen Fasern sowie die Veredelung und Färbung von Stoffen erweitert.

Garn machen

In prähistorischen Epochen wurden Tierhaare, Pflanzen und Samen zur Herstellung von Fasern verwendet. Seide wurde um 2600 v. Chr. in China eingeführt und Mitte des 18. Jahrhunderts n. Chr. wurden die ersten synthetischen Fasern hergestellt. Während synthetische Fasern aus Zellulose oder Petrochemikalien, entweder allein oder in verschiedenen Kombinationen mit anderen synthetischen und/oder natürlichen Fasern, eine zunehmend breitere Verwendung gefunden haben, konnten sie Gewebe aus natürlichen Fasern wie Wolle, Baumwolle, Flachs nicht vollständig verdrängen und Seide.

Seide ist die einzige Naturfaser, die in Filamenten gebildet wird, die zu Garn verdreht werden können. Die anderen Naturfasern müssen zunächst geglättet, durch Kämmen parallelisiert und dann durch Spinnen zu einem Endlosgarn gezogen werden. Das Spindel ist das früheste Spinnwerkzeug; es wurde in Europa erstmals um 1400 n. Chr. durch die Erfindung des Spinnrads mechanisiert. Das späte 17. Jahrhundert sah die Erfindung des Drehende Jenny, die mehrere Spindeln gleichzeitig betreiben könnte. Dann, dank Richard Arkwrights Erfindung des Spinnrahmen im Jahr 1769 und Samuel Cromptons Einführung des Maultier, wodurch ein Arbeiter 1,000 Spindeln gleichzeitig bedienen konnte, verlagerte sich die Garnherstellung von einer Heimindustrie in die Mühlen.

Herstellung von Stoff

Die Herstellung von Stoffen hatte eine ähnliche Geschichte. Seit seinen Anfängen in der Antike ist der Handwebstuhl die grundlegende Webmaschine. Mechanische Verbesserungen begannen in der Antike mit der Entwicklung der hecheln, an die abwechselnd Kettfäden gebunden sind; im 13. Jahrhundert n. Chr., die Fußtritt, die mehrere Weblitzensätze bedienen konnte, eingeführt. Mit dem Zusatz der rahmenmontierte Latte, der die Schuss- oder Schussfäden an Ort und Stelle schlägt, wurde der „mechanisierte“ Webstuhl zum vorherrschenden Webinstrument in Europa und, mit Ausnahme traditioneller Kulturen, in denen die ursprünglichen Handwebstühle fortbestanden, auf der ganzen Welt.

John Kays Erfindung des fliegender Shuttle 1733, der es dem Weber ermöglichte, das Schiffchen automatisch über die Breite des Webstuhls zu schicken, war der erste Schritt zur Mechanisierung des Webens. Edmund Cartwright entwickelte die Dampfbetriebener Webstuhl und baute 1788 mit James Watt die erste dampfbetriebene Textilfabrik in England. Dies befreite die Mühlen von ihrer Abhängigkeit von wasserbetriebenen Maschinen und ermöglichte es ihnen, sie überall zu bauen. Eine weitere bedeutende Entwicklung war die Lochkarte System, 1801 in Frankreich von Joseph Marie Jacquard entwickelt; Dies ermöglichte das automatisierte Weben von Mustern. Die früheren Maschinenwebstühle aus Holz wurden nach und nach durch Webstühle aus Stahl und anderen Metallen ersetzt. Seitdem konzentriert sich der technologische Wandel darauf, sie größer, schneller und stärker automatisiert zu machen.

Färben und Drucken

Natürliche Farbstoffe wurden ursprünglich verwendet, um Garnen und Stoffen Farbe zu verleihen, aber mit der Entdeckung von Kohlenteerfarbstoffen im 19. Jahrhundert und der Entwicklung von synthetischen Fasern im 20. Jahrhundert wurden die Färbeverfahren komplizierter. Der Blockdruck wurde ursprünglich zum Färben von Stoffen verwendet (der Siebdruck von Stoffen wurde Mitte des 1800. Jahrhunderts entwickelt), wurde jedoch bald durch den Walzendruck ersetzt. Gravierte Kupferwalzen wurden erstmals 1785 in England verwendet, gefolgt von raschen Verbesserungen, die den Walzendruck in sechs Farben in perfektem Register ermöglichten. Moderner Rollendruck kann in 180 Minute über 16 m Stoff in 1 oder mehr Farben bedrucken.

Konfektionierung

Schon früh wurden Stoffe veredelt, indem der Flor des Stoffes gebürstet oder geschoren, der Stoff gefüllt oder geschlichtet oder durch Kalanderwalzen geführt wurde, um einen glasierten Effekt zu erzielen. Heute sind Stoffe vorgeschrumpft, mercerisiert (Baumwollgarne und -gewebe werden mit Laugen behandelt, um ihre Festigkeit und ihren Glanz zu verbessern) und durch eine Vielzahl von Veredelungsverfahren behandelt, die beispielsweise die Knitterfestigkeit, Knitterbeständigkeit und Beständigkeit gegen Wasser, Flammen und Schimmel erhöhen.

Spezielle Behandlungen produzieren Hochleistungsfasern, so genannt wegen ihrer außergewöhnlichen Festigkeit und extrem hohen Temperaturbeständigkeit. So ist Aramid, eine nylonähnliche Faser, stärker als Stahl, und Kevlar, eine aus Aramid hergestellte Faser, wird zur Herstellung von kugelsicheren Stoffen und Kleidungsstücken verwendet, die sowohl hitze- als auch chemikalienbeständig sind. Andere synthetische Fasern in Kombination mit Kohlenstoff, Bor, Silizium, Aluminium und anderen Materialien werden verwendet, um die leichten, superstarken Strukturmaterialien herzustellen, die in Flugzeugen, Raumfahrzeugen, chemikalienbeständigen Filtern und Membranen sowie Sportschutzausrüstung verwendet werden.

Vom Handwerk bis zur Industrie

Die Textilherstellung war ursprünglich ein Handwerk, das von Hüttenspinnern und -webern und kleinen Gruppen erfahrener Handwerker ausgeübt wurde. Mit den technologischen Entwicklungen entstanden vor allem in Großbritannien und den westeuropäischen Ländern große und wirtschaftlich bedeutende Textilunternehmen. Frühe Siedler in Nordamerika brachten Tuchfabriken nach Neuengland (Samuel Slater, der in England Fabrikaufseher gewesen war, konstruierte 1790 aus der Erinnerung heraus eine Spinnmaschine in Providence, Rhode Island) und die Erfindung von Eli Whitney Baumwoll-Gin, die geerntete Baumwolle mit großer Geschwindigkeit reinigen konnte, schuf eine neue Nachfrage nach Baumwollstoffen.

Beschleunigt wurde dies durch die Kommerzialisierung der Nähmaschine. Im frühen 18. Jahrhundert stellten eine Reihe von Erfindern Maschinen her, die Stoff nähten. In Frankreich erhielt Barthelemy Thimonnier 1830 ein Patent für seine Nähmaschine; 1841, als 80 seiner Maschinen damit beschäftigt waren, Uniformen für die französische Armee zu nähen, wurde seine Fabrik von Schneidern zerstört, die in seinen Maschinen eine Bedrohung ihrer Existenz sahen. Ungefähr zu dieser Zeit entwickelte Walter Hunt in England eine verbesserte Maschine, gab das Projekt jedoch auf, weil er der Meinung war, dass es arme Näherinnen arbeitslos machen würde. 1848 erhielt Elias Howe ein US-Patent für eine Maschine ähnlich der von Hunt, wurde jedoch in Rechtsstreitigkeiten verwickelt, die er schließlich gewann und viele Hersteller wegen Verletzung seines Patents anklagte. Die Erfindung der modernen Nähmaschine wird Isaac Merritt Singer zugeschrieben, der den überhängenden Arm, den Nähfuß zum Niederhalten des Stoffes, ein Rad zum Zuführen des Stoffes zur Nadel und ein Fußpedal anstelle einer Handkurbel erfand und beides hinterließ Hände frei, um den Stoff zu manövrieren. Neben der Entwicklung und Herstellung der Maschine schuf er das erste große Unternehmen für Verbrauchergeräte, das Innovationen wie eine Werbekampagne, den Verkauf der Maschinen auf Raten und die Bereitstellung eines Servicevertrags aufwies.

So waren die technologischen Fortschritte im 18. Jahrhundert nicht nur der Anstoß für die moderne Textilindustrie, sondern auch die Entstehung des Fabriksystems und die tiefgreifenden Veränderungen im Familien- und Gemeinschaftsleben, die als industrielle Revolution bezeichnet werden. Die Veränderungen setzen sich bis heute fort, da große Textilbetriebe aus den alten Industriegebieten in neue Regionen ziehen, die billigere Arbeitskräfte und Energiequellen versprechen, während der Wettbewerb kontinuierliche technologische Entwicklungen wie computergesteuerte Automatisierung fördert, um den Arbeitskräftebedarf zu verringern und die Qualität zu verbessern. Unterdessen debattieren Politiker über Quoten, Zölle und andere wirtschaftliche Hindernisse, um ihren Ländern Wettbewerbsvorteile zu verschaffen und/oder zu erhalten. So liefert die Textilindustrie nicht nur Produkte, die für die wachsende Weltbevölkerung unverzichtbar sind; es hat auch einen tiefgreifenden Einfluss auf den internationalen Handel und die Volkswirtschaften der Nationen.

Sicherheits- und Gesundheitsbedenken

Als die Maschinen größer, schneller und komplizierter wurden, brachten sie auch neue potenzielle Gefahren mit sich. Als Materialien und Prozesse immer komplexer wurden, durchsetzten sie den Arbeitsplatz mit potenziellen Gesundheitsgefahren. Und da die Arbeiter mit der Mechanisierung und der Forderung nach steigender Produktivität fertig werden mussten, übte Arbeitsstress, der weitgehend unerkannt oder ignoriert wurde, einen zunehmenden Einfluss auf ihr Wohlbefinden aus. Die vielleicht größte Auswirkung der industriellen Revolution hatte das Gemeinschaftsleben, als Arbeiter vom Land in die Städte zogen, wo sie mit allen Übeln der Urbanisierung zu kämpfen hatten. Diese Auswirkungen werden heute sichtbar, wenn die Textil- und andere Industrien in Entwicklungsländer und -regionen abwandern, nur dass die Veränderungen schneller sind.

Die Gefahren, die in verschiedenen Segmenten der Industrie auftreten, sind in den anderen Artikeln in diesem Kapitel zusammengefasst. Sie betonen die Bedeutung einer guten Haushaltsführung und ordnungsgemäßen Wartung von Maschinen und Geräten, die Installation wirksamer Schutzvorrichtungen und Zäune, um den Kontakt mit beweglichen Teilen zu verhindern, die Verwendung einer lokalen Absaugung (LEV) als Ergänzung zu einer guten allgemeinen Belüftung und Temperaturkontrolle und die Bereitstellung geeigneter persönlicher Schutzausrüstung (PSA) und Kleidung, wenn eine Gefahr nicht vollständig durch Konstruktionstechnik und/oder Ersatz durch weniger gefährliche Materialien kontrolliert oder verhindert werden kann. Wiederholte Aus- und Weiterbildung von Arbeitnehmern auf allen Ebenen und effektive Überwachung sind wiederkehrende Themen.

Umweltfragen

Die von der Textilindustrie geäußerten Umweltbedenken stammen aus zwei Quellen: den Prozessen der Textilherstellung und den Gefahren im Zusammenhang mit der Art und Weise, wie die Produkte verwendet werden.

Textile Herstellung

Die hauptsächlichen Umweltprobleme, die von Textilherstellungsanlagen verursacht werden, sind giftige Substanzen, die in die Atmosphäre und ins Abwasser freigesetzt werden. Neben potenziell giftigen Stoffen sind oft unangenehme Gerüche ein Problem, insbesondere wenn Färbereien und Druckereien in der Nähe von Wohngebieten liegen. Lüftungsabgase können Lösungsmitteldämpfe, Formaldehyd, Kohlenwasserstoffe, Schwefelwasserstoff und Metallverbindungen enthalten. Lösungsmittel können manchmal aufgefangen und zur Wiederverwendung destilliert werden. Partikel können durch Filtration entfernt werden. Das Schrubben ist wirksam für wasserlösliche flüchtige Verbindungen wie Methanol, aber es funktioniert nicht beim Pigmentdruck, wo Kohlenwasserstoffe den größten Teil der Emissionen ausmachen. Brennbare Stoffe können abgebrannt werden, obwohl dies relativ teuer ist. Die ultimative Lösung ist jedoch der Einsatz möglichst emissionsfreier Materialien. Dies bezieht sich nicht nur auf die beim Druck verwendeten Farbstoffe, Bindemittel und Vernetzer, sondern auch auf den Formaldehyd- und Restmonomergehalt der Textilien.

Die Verunreinigung von Abwässern durch unfixierte Farbstoffe ist nicht nur wegen der potenziellen Gesundheitsgefährdung für Mensch und Tier, sondern auch wegen der Verfärbung, die sie gut sichtbar macht, ein ernsthaftes Umweltproblem. Beim gewöhnlichen Färben kann eine Fixierung von über 90 % des Farbstoffs erreicht werden, aber Fixiergrade von nur 60 % oder weniger sind beim Drucken mit Reaktivfarbstoffen üblich. Das bedeutet, dass mehr als ein Drittel des Reaktivfarbstoffes beim Auswaschen der bedruckten Ware ins Abwasser gelangt. Beim Waschen von Sieben, Drucktüchern und Trommeln werden zusätzliche Farbstoffmengen ins Abwasser eingetragen.

In einigen Ländern wurden Grenzwerte für die Abwasserverfärbung festgelegt, die jedoch ohne eine teure Abwasserreinigungsanlage oft nur sehr schwer einzuhalten sind. Eine Lösung wird in der Verwendung von Farbstoffen mit geringerer Kontaminationswirkung und der Entwicklung von Farbstoffen und synthetischen Verdickungsmitteln gefunden, die den Farbstofffixierungsgrad erhöhen und damit die Mengen des auszuwaschenden Überschusses reduzieren (Grund 1995).

Umweltbedenken bei der Textilnutzung

Reste von Formaldehyd und einigen Schwermetallkomplexen (die meisten davon sind inert) können ausreichen, um bei Personen, die die gefärbten Stoffe tragen, Hautreizungen und Sensibilisierungen hervorzurufen.

Formaldehyd und Restlösemittel in Teppichen, Polsterstoffen und Gardinen verdampfen noch einige Zeit nach und nach. In versiegelten Gebäuden, in denen die Klimaanlage den größten Teil der Luft umwälzt, anstatt sie an die Außenumgebung abzugeben, können diese Substanzen Werte erreichen, die hoch genug sind, um bei den Bewohnern des Gebäudes Symptome hervorzurufen, wie an anderer Stelle in diesem Dokument erörtert Enzyklopädie.

Um die Sicherheit von Stoffen zu gewährleisten, ging Marks and Spencer, der britisch-kanadische Bekleidungseinzelhändler, voran, indem er Grenzwerte für Formaldehyd in Kleidungsstücken festlegte, die sie kaufen würden. Seitdem sind andere Bekleidungshersteller, insbesondere Levi Strauss in den Vereinigten Staaten, diesem Beispiel gefolgt. In einer Reihe von Ländern wurden diese Grenzwerte gesetzlich verankert (z. B. Dänemark, Finnland, Deutschland und Japan), und als Reaktion auf die Verbraucheraufklärung haben sich Stoffhersteller freiwillig an solche Grenzwerte gehalten, um eco verwenden zu können Etiketten (siehe Abbildung 1).

Abbildung 1. Ökologische Labels für Textilien

TEX005F1

Fazit

Technologische Entwicklungen erweitern weiterhin das Spektrum der von der Textilindustrie hergestellten Stoffe und steigern ihre Produktivität. Es ist jedoch äußerst wichtig, dass diese Entwicklungen auch von der Notwendigkeit geleitet werden, die Gesundheit, Sicherheit und das Wohlbefinden der Arbeitnehmer zu verbessern. Aber selbst dann stellt sich das Problem, diese Entwicklungen in älteren Unternehmen, die finanziell kaum noch lebensfähig sind und nicht in der Lage sind, die notwendigen Investitionen zu tätigen, sowie in aufstrebenden Gebieten, die neue Industrien haben wollen, auch auf Kosten der Gesundheit und Sicherheit der Mitarbeiter umzusetzen Arbeitskräfte. Aber auch unter diesen Umständen kann durch Aus- und Weiterbildung der Arbeitnehmer viel erreicht werden, um die Risiken, denen sie möglicherweise ausgesetzt sind, zu minimieren.

 

Zurück

Lesen Sie mehr 20208 mal Zuletzt geändert am Samstag, 30. Juli 2022 21:44
Mehr in dieser Kategorie: Globale Trends in der Textilindustrie »

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Referenzen der Textilwarenindustrie

Amerikanischer Textilreporter. 1969. (10. Juli).

Anthony, HM und GM Thomas. 1970. Tumoren der Harnblase. J Natl Cancer Inst 45: 879–95.

Arlidge, JT. 1892. Die Hygiene, Krankheiten und Sterblichkeit der Berufe. London: Perzival und Co.

Beck, GJ, CA Doyle und EN Schachter. 1981. Rauchen und Lungenfunktion. Am Rev. Resp. Dis 123:149–155.

—. 1982. Eine Längsschnittstudie zur Gesundheit der Atemwege in einer ländlichen Gemeinde. Am Rev. Resp. Dis 125:375–381.

Beck, GJ, LR Maunder und EN Schachter. 1984. Auswirkungen von Baumwollstaub und Rauchen auf die Lungenfunktion bei Baumwolltextilarbeitern. Am J Epidemiol 119:33–43.

Beck, GJ, EN Schachter, L. Maunder und A. Bouhuys. 1981. Die Beziehung der Lungenfunktion zur späteren Beschäftigung und Sterblichkeit bei Baumwolltextilarbeitern. Brustunterstützung 79:26S–29S.

Bouhuys, A. 1974. Atmung. New York: Grune & Stratton.

Bouhuys, A, GJ Beck und J Schönberg. 1979. Epidemiologie umweltbedingter Lungenerkrankungen. Yale J Biol Med 52: 191–210.

Bouhuys, A., CA Mitchell, RSF Schilling und E. Zuskin. 1973. Eine physiologische Studie der Byssinose im kolonialen Amerika. Trans New York Acad Sciences 35: 537–546.

Bouhuys, A., JB Schönberg, GJ Beck und RSF Schilling. 1977. Epidemiologie chronischer Lungenerkrankungen in einer Baumwollspinnerei. Lunge 154: 167–186.

Britten, RH, JJ Bloomfield und JC Goddard. 1933. Gesundheit der Arbeiter in Textilfabriken. Bulletin Nr. 207. Washington, DC: US ​​Public Health Service.

Buiatti, E, A. Barchielli, M. Geddes, L. Natasi, D. Kriebel, M. Franchini und G. Scarselli. 1984. Risikofaktoren bei männlicher Unfruchtbarkeit. Arch Environ Health 39: 266–270.

Doig, AT. 1949. Andere Lungenerkrankungen durch Staub. Postgraduierten Med J 25: 639–649.

Arbeitsministerium (DOL). 1945. Special Bulletin Nr. 18. Washington, DC: DOL, Labor Standards Division.

Dubrow, R und DM Gute. 1988. Ursachenspezifische Mortalität bei männlichen Textilarbeitern in Rhode Island. Am J Ind Med 13: 439–454.

Edwards, C, J Macartney, G Rooke und F Ward. 1975. Die Pathologie der Lunge in der Byssinotik. Thorax 30: 612–623.

Estlander, T. 1988. Allergische Dermatosen und Atemwegserkrankungen durch Reaktivfarbstoffe. Wenden Sie sich an Dermat 18:290–297.

Eyeland, GM, GA Burkhart, TM Schnorr, FW Hornung, JM Fajen und ST Lee. 1992. Auswirkungen der Exposition gegenüber Schwefelkohlenstoff auf die Cholesterinkonzentration von Lipoproteinen niedriger Dichte und den diastolischen Blutdruck. Brit J Ind Med 49: 287–293.

Fishwick, D., AM Fletcher, AC Pickering, R. McNiven und EB Faragher. 1996. Lungenfunktion bei Arbeitern in Baumwoll- und Kunstfaserspinnereien in Lancashire. Occup Environ Med 53:46–50.

Forst, L und D Hryhorczuk. 1988. Berufliches Tarsaltunnelsyndrom. Brit J Ind Med 45: 277–278.

Fox, AJ, JBL Tombleson, A Watt und AG Wilkie. 1973a. Eine Übersicht über Atemwegserkrankungen bei Baumwollarbeitern: Teil I. Symptome und Ergebnisse von Beatmungstests. Brit J Ind Med 30:42-47.

—. 1973b. Eine Übersicht über Atemwegserkrankungen bei Baumwollarbeitern: Teil II. Symptome, Staubschätzung und die Wirkung der Rauchgewohnheiten. Brit J Ind Med 30: 48-53.

Glindmeyer, HW, JJ Lefante, RN Jones, RJ Rando, HMA Kader und H Weill. 1991. Expositionsbedingte Abnahme der Lungenfunktion von Baumwolltextilarbeitern. Am Rev Respir Dis 144:675–683.

Glindmeyer, HW, JJ Lefante, RN Jones, RJ Rando und H. Weill. 1994. Baumwollstaub und schichtübergreifende Änderung des FEV1 Am J Respir Crit Care Med 149:584–590.

Goldberg, MS und G Theriault. 1994a. Retrospektive Kohortenstudie von Arbeitern einer Fabrik für synthetische Textilien in Quebec II. Am J Ind Med 25:909–922.

—. 1994b. Retrospektive Kohortenstudie von Arbeitern einer Fabrik für synthetische Textilien in Quebec I. Am J Ind Med 25:889–907.

Grund, N. 1995. Umweltaspekte für Textildruckprodukte. Zeitschrift der Gesellschaft der Färber und Koloristen 111 (1/2): 7–10.

Harris, TR, JA Merchant, KH Kilburn und JD Hamilton. 1972. Byssinose und Atemwegserkrankungen bei Arbeitern in Baumwollfabriken. J Occup Med 14: 199–206.

Henderson, V und PE Enterline. 1973. Eine ungewöhnliche Sterblichkeitserfahrung bei Baumwolltextilarbeitern. J Occup Med 15: 717–719.

Hernberg, S, T Partanen und CH Nordman. 1970. Koronare Herzkrankheit bei Arbeitern, die Schwefelkohlenstoff ausgesetzt waren. Brit J Ind Med 27: 313–325.

McKerrow, CB und RSF Schilling. 1961. Eine Pilotuntersuchung über Byssinose in zwei Baumwollspinnereien in den Vereinigten Staaten. JAMA 177:850–853.

McKerrow, CB, SA Roach, JC Gilson und RSF Schilling. 1962. Die Größe von Baumwollstaubpartikeln, die Byssinose verursachen: Eine umwelt- und physiologische Studie. Brit J Ind Med 19: 1–8.

Kaufmann, JA und C Ortmeyer. 1981. Sterblichkeit von Angestellten zweier Baumwollspinnereien in North Carolina. Brustunterstützung 79: 6S–11S.

Kaufmann, JA, JC Lumsdun, KH Kilburn, WM O'Fallon, JR Ujda, VH Germino und JD Hamilton. 1973. Dosis-Wirkungs-Studien bei Baumwolltextilarbeitern. J Occup Med 15:222–230.

Ministerium für internationalen Handel und Industrie (Japan). 1996. Asia-Pacific Textile and Clothing Industry Form, 3.-4. Juni 1996. Tokio: Ministerium für internationalen Handel und Industrie.

Molyneux, MKB und JBL Tombleson. 1970. Eine epidemiologische Studie über Atemwegssymptome in Lancashire-Mühlen, 1963–1966. Brit J Ind Med 27: 225–234.

Moran, TJ. 1983. Emphysem und andere chronische Lungenerkrankungen bei Textilarbeitern: Eine 18-jährige Autopsiestudie. Arch Environ Health 38: 267–276.

Murray, R., J. Dingwall-Fordyce und RE Lane. 1957. Ein Ausbruch von Weberhusten im Zusammenhang mit Tamarindensamenpulver. Brit J Ind Med 14: 105–110.

Mustafa, KY, W Bos und AS Lakha. 1979. Byssinose bei tansanischen Textilarbeitern. Lunge 157: 39–44.

Myles, SM und AH Roberts. 1985. Handverletzungen in der Textilindustrie. J. Handchirurgie 10:293–296.

Neal, PA, R. Schneiter und BH Caminita. 1942. Bericht über akute Krankheiten bei ländlichen Matratzenherstellern, die minderwertige, befleckte Baumwolle verwenden. JAMA 119:1074–1082.

Arbeitsschutzbehörde (OSHA). 1985. Final Rule for Occupational Exposure to Cotton Dust. Federal Register 50, 51120-51179 (13. Dez. 1985). 29 CFR 1910.1043. Washington, DC: OSHA.

Parich, JR. 1992. Byssinose in Entwicklungsländern. Brit J Ind Med 49: 217–219.
Rachootin, P. und J. Olsen. 1983. Das Risiko von Unfruchtbarkeit und verzögerter Empfängnis im Zusammenhang mit Expositionen am dänischen Arbeitsplatz. J Occup Med 25:394–402.

Ramazzini, B. 1964. Diseases of Workers [De morbis artificum, 1713], übersetzt von WC Wright. New York: Hafner Publishing Co.

Redlich, CA, WS Beckett, J. Sparer, KW Barwick, CA Riely, H. Miller, SL Sigal, SL Shalat und MR Cullen. 1988. Lebererkrankung im Zusammenhang mit beruflicher Exposition gegenüber dem Lösungsmittel Dimethylformamid. Ann Int Med 108: 680–686.

Riihimaki, V, H Kivisto, K Peltonen, E Helpio und A Aitio. 1992. Bewertung der Exposition gegenüber Schwefelkohlenstoff bei Arbeitern in der Viskoseherstellung aus 2-Thiothiazolidin-4-Carbonsäure-Bestimmungen im Urin. Am J Ind Med 22:85–97.

Roach, SA und RSF Schilling. 1960. Eine klinische und Umweltstudie über Byssinose in der Baumwollindustrie von Lancashire. Brit J Ind Med 17:1–9.

Rooke, GB. 1981a. Die Pathologie der Byssinose. Brustunterstützung 79:67S–71S.

—. 1981b. Entschädigung für Byssinose in Großbritannien. Brustkorb 79:124S–127S.

Sadhro, S, P Duhra und IS Foulds. 1989. Berufliche Dermatitis durch Synocrilrot 3b flüssig (CI Basic Red 22). Wenden Sie sich an Dermat 21:316–320.

Schachter, EN, MC Kapp, GJ Beck, LR Maunder und TJ Witek. 1989. Auswirkungen von Rauchen und Baumwollstaub bei Baumwolltextilarbeitern. Brust 95: 997–1003.

Schilling, RSF. 1956. Byssinose bei Baumwoll- und anderen Textilarbeitern. Lancet 1:261–267, 319–324.

—. 1981. Weltweite Probleme der Byssinose. Brustunterstützung 79:3S–5S.

Schilling, RSF und N. Goodman. 1951. Herz-Kreislauf-Erkrankungen bei Baumwollarbeitern. Brit J Ind Med 8: 77–87.

Seidenari, S., BM Mauzini und P. Danese. 1991. Kontaktsensibilisierung gegen Textilfarbstoffe: Beschreibung von 100 Probanden. Wenden Sie sich an Dermat 24:253–258.

Siemiatycki, J, R. Dewar, L. Nadon und M. Gerin. 1994. Berufliche Risikofaktoren für Blasenkrebs. Am J Epidemiol 140: 1061–1080.

Silverman, DJ, LI Levin, RN Hoover und P. Hartge. 1989. Berufliche Risiken von Blasenkrebs in den Vereinigten Staaten. I. Weiße Männer. J Natl Cancer Inst 81: 1472–1480.

Steenland, K, C. Burnett und AM Osorio. 1987. Eine Fall-Kontroll-Studie zu Blasenkrebs unter Verwendung von Stadtverzeichnissen als Quelle für Berufsdaten. Am J Epidemiol 126:247–257.

Sweetnam, PM, SWS Taylor und PC Elwood. 1986. Exposition gegenüber Schwefelkohlenstoff und ischämische Herzkrankheit in einer Viskosefabrik. Brit J Ind Med 44: 220–227.

Thomas, RE. 1991. Bericht über eine multidisziplinäre Konferenz über die Kontrolle und Prävention von kumulativen Traumastörungen (CDT) oder Repetitive Motion Trauma (RMT) in der Textil-, Bekleidungs- und Faserindustrie. Am Ind Hyg Assoc. J 52: A562.

Uragoda, CG. 1977. Eine Untersuchung über die Gesundheit von Kapokarbeitern. Brit J Ind Med 34: 181–185.
Vigliani, EC, L Parmeggiani und C Sassi. 1954. Studio de un epidemio di bronchite asmatica fra gli opera di una tessiture di cotone. Med Lau 45: 349–378.

Vobecky, J, G Devroede und J Caro. 1984. Dickdarmkrebsrisiko bei der Kunstfaserherstellung. Krebs 54:2537–2542.

Vobecky, J, G Devroede, J La Caille und A Waiter. 1979. Eine Berufsgruppe mit einem hohen Dickdarmkrebsrisiko. Gastroenterologie 76:657.

Holz, CH und SA Plötze. 1964. Staub in Cardrooms: Ein anhaltendes Problem in der Baumwollspinnerei. Brit J Ind Med 21: 180–186.

Zuskin, E., D. Ivankovic, EN Schachter und TJ Witek. 1991. Eine zehnjährige Folgestudie von Baumwolltextilarbeitern. Am Rev Respir Dis 143: 301–305.