Mittwoch, März 30 2011 02: 23

Synthetische Fasern

Artikel bewerten
(3 Stimmen)

Angepasst aus der 3. Auflage, Enzyklopädie der Arbeitssicherheit und des Gesundheitsschutzes.

Synthetische Fasern werden aus Polymeren hergestellt, die aus chemischen Elementen oder Verbindungen, die von der petrochemischen Industrie entwickelt wurden, synthetisch hergestellt wurden. Im Gegensatz zu Naturfasern (Wolle, Baumwolle und Seide), die bis in die Antike zurückreichen, haben synthetische Fasern eine relativ kurze Geschichte, die bis zur Perfektionierung des Viskoseverfahrens im Jahr 1891 durch die beiden britischen Wissenschaftler Cross und Bevan zurückreicht. Einige Jahre später begann die Viskoseproduktion in begrenztem Umfang, und Anfang des 1900. Jahrhunderts wurde sie kommerziell hergestellt. Seitdem wurde eine Vielzahl von synthetischen Fasern entwickelt, die jeweils mit speziellen Eigenschaften ausgestattet sind, die sie für eine bestimmte Art von Stoffen geeignet machen, entweder allein oder in Kombination mit anderen Fasern. Den Überblick zu behalten wird dadurch erschwert, dass dieselbe Faser in verschiedenen Ländern unterschiedliche Handelsnamen haben kann.

Die Fasern werden hergestellt, indem flüssige Polymere durch die Löcher einer Spinndüse gedrückt werden, um ein kontinuierliches Filament zu erzeugen. Das Filament kann direkt in Stoff gewebt werden oder, um ihm die Eigenschaften von Naturfasern zu verleihen, kann es zum Beispiel texturiert werden, um es voluminöser zu machen, oder es kann zu Stapeln geschnitten und gesponnen werden.

Klassen synthetischer Fasern

Zu den Hauptklassen von kommerziell verwendeten synthetischen Fasern gehören:

  • Polyamide (Nylons). Die Namen der langkettigen polymeren Amide werden durch eine Zahl unterschieden, die die Anzahl der Kohlenstoffatome in ihren chemischen Bestandteilen angibt, wobei das Diamin zuerst betrachtet wird. Daher ist das aus Hexamethylendiamin und Adipinsäure hergestellte ursprüngliche Nylon in den Vereinigten Staaten und im Vereinigten Königreich als Nylon 66 oder 6.6 bekannt, da sowohl das Diamin als auch die zweibasige Säure 6 Kohlenstoffatome enthalten. In Deutschland wird es als Perlon T, in Italien als Nailon, in der Schweiz als Mylsuisse, in Spanien als Anid und in Argentinien als Ducilo vertrieben.
  • Polyester. Polyester wurden erstmals 1941 eingeführt und werden hergestellt, indem Ethylenglykol mit Terephthalsäure umgesetzt wird, um ein Kunststoffmaterial aus langen Molekülketten zu bilden, das in geschmolzener Form aus Spinndüsen gepumpt wird, wodurch das Filament in kalter Luft aushärten kann. Es folgt ein Zieh- oder Streckvorgang. Polyester sind beispielsweise als Terylene in Großbritannien, Dacron in den Vereinigten Staaten, Tergal in Frankreich, Terital und Wistel in Italien, Lavsan in der Russischen Föderation und Tetoran in Japan bekannt.
  • Polyvinyle. Polyacrylnitril oder Acrylfaser, erstmals 1948 hergestellt, ist das wichtigste Mitglied dieser Gruppe. Es ist unter verschiedenen Handelsnamen bekannt: Acrilan und Orlon in den Vereinigten Staaten, Crylor in Frankreich, Leacril und Velicren in Italien, Amanian in Polen, Courtelle in Großbritannien und so weiter.
  • Polyolefine. Die häufigste Faser in dieser Gruppe, in Großbritannien als Courlene bekannt, wird nach einem ähnlichen Verfahren wie Nylon hergestellt. Das geschmolzene Polymer wird bei 300 °C durch Spinndüsen gedrückt und entweder in Luft oder Wasser gekühlt, um das Filament zu bilden. Es wird dann gezogen oder gedehnt.
  • Polypropylene. Dieses Polymer, das in Deutschland als Hostalen, in Italien als Meraklon und in Großbritannien als Ulstron bekannt ist, wird schmelzgesponnen, gestreckt oder gezogen und dann getempert.
  • Polyurethane. Erstmals 1943 als Perlon D durch die Reaktion von 1,4-Butandiol mit Hexamethylendiisocyanat hergestellt, sind die Polyurethane zur Grundlage einer neuen Art von hochelastischer Faser namens Spandex geworden. Diese Fasern werden aufgrund ihrer gummiartigen Elastizität manchmal als Snap-Back oder Elastomer bezeichnet. Sie werden aus einem linearen Polyurethankautschuk hergestellt, der durch Erhitzen bei sehr hohen Temperaturen und Drücken gehärtet wird, um ein „vulkanisiertes“ vernetztes Polyurethan zu erzeugen, das als Monofil extrudiert wird. Der Faden, der häufig in Kleidungsstücken verwendet wird, die Elastizität erfordern, kann mit Rayon oder Nylon überzogen werden, um sein Aussehen zu verbessern, während der Innenfaden für die „Stretch“ sorgt. Spandex-Garne sind beispielsweise in den Vereinigten Staaten als Lycra, Vyrene und Glospan und in Großbritannien als Spandrell bekannt.

 

SONDERPROZESSE

Heften

Seide ist die einzige Naturfaser, die als Endlosfaden vorliegt; andere Naturfasern kommen in kurzen Längen oder „Heftklammern“ vor. Baumwolle hat eine Stapellänge von etwa 2.6 cm, Wolle von 6 bis 10 cm und Flachs von 30 bis 50 cm. Die kontinuierlichen synthetischen Filamente werden manchmal durch eine Schneide- oder Heftmaschine geführt, um kurze Heftklammern wie die Naturfasern herzustellen. Sie können dann auf Baumwoll- oder Wollspinnmaschinen erneut gesponnen werden, um ein Finish zu erzeugen, das frei von dem glasigen Aussehen einiger synthetischer Fasern ist. Beim Spinnen können Kombinationen aus synthetischen und natürlichen Fasern oder Mischungen aus synthetischen Fasern hergestellt werden.

Crimpen

Um synthetischen Fasern das Aussehen und die Haptik von Wolle zu verleihen, werden die verdrillten und verschlungenen geschnittenen oder gestapelten Fasern durch eines von mehreren Verfahren gekräuselt. Sie können durch eine Kräuselmaschine geführt werden, in der heiße Riffelwalzen eine dauerhafte Kräuselung verleihen. Das Kräuseln kann auch chemisch erfolgen, indem die Koagulation des Filaments so gesteuert wird, dass eine Faser mit asymmetrischem Querschnitt entsteht (dh eine Seite ist dickhäutig und die andere dünn). Wenn diese Faser nass ist, neigt die dicke Seite dazu, sich zu kräuseln, wodurch eine Kräuselung entsteht. Um gekräuseltes Garn herzustellen, das in den Vereinigten Staaten als Non-Torque-Garn bekannt ist, wird das synthetische Garn zu einem Stoff gestrickt, fixiert und dann durch Rückspulen aus dem Stoff gewickelt. Das neueste Verfahren führt zwei Nylonfäden durch eine Heizung, die ihre Temperatur auf 180 °C erhöht, und führt sie dann durch eine sich schnell drehende Spindel, um die Kräuselung zu bewirken. Die Spindeln in der ersten Maschine liefen mit 60,000 Umdrehungen pro Minute (U/min), aber neuere Modelle haben Drehzahlen in der Größenordnung von 1.5 Millionen U/min.

Synthetische Fasern für Arbeitskleidung

Die Chemikalienbeständigkeit von Polyestergewebe macht das Gewebe besonders geeignet für Schutzkleidung für den Umgang mit Säuren. Polyolefin-Gewebe eignen sich zum Schutz gegen lange Einwirkung von Säuren und Laugen. Hochtemperaturbeständiges Nylon eignet sich gut für Kleidung zum Schutz vor Feuer und Hitze; es hat bei Raumtemperatur eine gute Beständigkeit gegenüber Lösungsmitteln wie Benzol, Aceton, Trichlorethylen und Tetrachlorkohlenstoff. Die Beständigkeit bestimmter Propylengewebe gegenüber einer Vielzahl von korrosiven Stoffen macht sie für Arbeits- und Laborkleidung geeignet.

Das geringe Gewicht dieser synthetischen Stoffe macht sie den schweren gummierten oder kunststoffbeschichteten Stoffen vorzuziehen, die sonst für einen vergleichbaren Schutz erforderlich wären. Sie sind auch in heißer und feuchter Atmosphäre viel angenehmer zu tragen. Bei der Auswahl von Schutzkleidung aus synthetischen Fasern sollte darauf geachtet werden, den Gattungsnamen der Faser zu bestimmen und Eigenschaften wie Schrumpfung zu überprüfen; Empfindlichkeit gegenüber Licht, chemischen Reinigungs- und Waschmitteln; Beständigkeit gegen Öl, ätzende Chemikalien und gängige Lösungsmittel; Hitzebeständigkeit; und Anfälligkeit für elektrostatische Aufladung.

Gefahren und ihre Vermeidung

Unfälle

Zusätzlich zu einer guten Haushaltsführung, was bedeutet, Böden und Durchgänge sauber und trocken zu halten, um Ausrutschen und Stürze zu minimieren (Behälter müssen auslaufsicher sein und, wenn möglich, Ablenkbleche haben, um Spritzer zu vermeiden), müssen Maschinen, Antriebsriemen, Riemenscheiben und Wellen ordnungsgemäß geschützt werden . Maschinen zum Spinnen, Krempeln, Wickeln und Schären sollten eingezäunt werden, um zu verhindern, dass Materialien und Teile herausfliegen und die Hände der Arbeiter nicht in die gefährlichen Bereiche gelangen. Sperrvorrichtungen müssen vorhanden sein, um einen Neustart von Maschinen zu verhindern, während sie gereinigt oder gewartet werden.

Feuer und Explosion

Die Kunstfaserindustrie verwendet große Mengen giftiger und brennbarer Materialien. Lagereinrichtungen für brennbare Stoffe sollten im Freien oder in einer speziellen feuerfesten Konstruktion liegen und von Wällen oder Deichen umschlossen sein, um Verschüttungen zu lokalisieren. Die Automatisierung der Abgabe giftiger, brennbarer Substanzen durch ein gut gewartetes System aus Pumpen und Rohren verringert die Gefahr beim Bewegen und Entleeren von Behältern. Geeignete Brandbekämpfungsausrüstung und -kleidung sollten leicht verfügbar sein und die Arbeiter in ihrer Verwendung durch regelmäßige Übungen geschult werden, die vorzugsweise in Absprache mit oder unter der Beobachtung der örtlichen Brandbekämpfungsbehörden durchgeführt werden.

Beim Austritt der Filamente aus den Spinndüsen zur Trocknung an der Luft oder durch Spinnen werden große Mengen an Lösungsmitteldämpfen freigesetzt. Diese stellen eine erhebliche Gift- und Explosionsgefahr dar und müssen von LEV entfernt werden. Ihre Konzentration muss überwacht werden, um sicherzustellen, dass sie unterhalb der Explosionsgrenzen des Lösungsmittels bleibt. Die abgezogenen Dämpfe können destilliert und zur weiteren Verwendung zurückgewonnen oder verbrannt werden; auf keinen Fall dürfen sie in die allgemeine Umweltatmosphäre freigesetzt werden.

Wo brennbare Lösungsmittel verwendet werden, sollte das Rauchen verboten und offenes Licht, Flammen und Funken beseitigt werden. Elektrische Geräte sollten eine zertifizierte explosionssichere Konstruktion aufweisen, und Maschinen sollten geerdet sein, um den Aufbau statischer Elektrizität zu verhindern, die zu katastrophalen Funken führen könnte.

Giftige Gefahren

Der Kontakt mit potenziell toxischen Lösungsmitteln und Chemikalien sollte durch eine angemessene LEV unter den entsprechenden maximal zulässigen Konzentrationen gehalten werden. Atemschutzausrüstung sollte zur Verwendung durch Wartungs- und Reparaturteams und durch Arbeiter verfügbar sein, die damit beauftragt sind, auf Notfälle zu reagieren, die durch Lecks, Verschütten und/oder Feuer verursacht werden.

 

Zurück

Lesen Sie mehr 8104 mal Zuletzt geändert am Mittwoch, 29. Juni 2011, 08:17 Uhr
Mehr in dieser Kategorie: « Viskose (Kunstseide) Naturfilzprodukte »

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Referenzen der Textilwarenindustrie

Amerikanischer Textilreporter. 1969. (10. Juli).

Anthony, HM und GM Thomas. 1970. Tumoren der Harnblase. J Natl Cancer Inst 45: 879–95.

Arlidge, JT. 1892. Die Hygiene, Krankheiten und Sterblichkeit der Berufe. London: Perzival und Co.

Beck, GJ, CA Doyle und EN Schachter. 1981. Rauchen und Lungenfunktion. Am Rev. Resp. Dis 123:149–155.

—. 1982. Eine Längsschnittstudie zur Gesundheit der Atemwege in einer ländlichen Gemeinde. Am Rev. Resp. Dis 125:375–381.

Beck, GJ, LR Maunder und EN Schachter. 1984. Auswirkungen von Baumwollstaub und Rauchen auf die Lungenfunktion bei Baumwolltextilarbeitern. Am J Epidemiol 119:33–43.

Beck, GJ, EN Schachter, L. Maunder und A. Bouhuys. 1981. Die Beziehung der Lungenfunktion zur späteren Beschäftigung und Sterblichkeit bei Baumwolltextilarbeitern. Brustunterstützung 79:26S–29S.

Bouhuys, A. 1974. Atmung. New York: Grune & Stratton.

Bouhuys, A, GJ Beck und J Schönberg. 1979. Epidemiologie umweltbedingter Lungenerkrankungen. Yale J Biol Med 52: 191–210.

Bouhuys, A., CA Mitchell, RSF Schilling und E. Zuskin. 1973. Eine physiologische Studie der Byssinose im kolonialen Amerika. Trans New York Acad Sciences 35: 537–546.

Bouhuys, A., JB Schönberg, GJ Beck und RSF Schilling. 1977. Epidemiologie chronischer Lungenerkrankungen in einer Baumwollspinnerei. Lunge 154: 167–186.

Britten, RH, JJ Bloomfield und JC Goddard. 1933. Gesundheit der Arbeiter in Textilfabriken. Bulletin Nr. 207. Washington, DC: US ​​Public Health Service.

Buiatti, E, A. Barchielli, M. Geddes, L. Natasi, D. Kriebel, M. Franchini und G. Scarselli. 1984. Risikofaktoren bei männlicher Unfruchtbarkeit. Arch Environ Health 39: 266–270.

Doig, AT. 1949. Andere Lungenerkrankungen durch Staub. Postgraduierten Med J 25: 639–649.

Arbeitsministerium (DOL). 1945. Special Bulletin Nr. 18. Washington, DC: DOL, Labor Standards Division.

Dubrow, R und DM Gute. 1988. Ursachenspezifische Mortalität bei männlichen Textilarbeitern in Rhode Island. Am J Ind Med 13: 439–454.

Edwards, C, J Macartney, G Rooke und F Ward. 1975. Die Pathologie der Lunge in der Byssinotik. Thorax 30: 612–623.

Estlander, T. 1988. Allergische Dermatosen und Atemwegserkrankungen durch Reaktivfarbstoffe. Wenden Sie sich an Dermat 18:290–297.

Eyeland, GM, GA Burkhart, TM Schnorr, FW Hornung, JM Fajen und ST Lee. 1992. Auswirkungen der Exposition gegenüber Schwefelkohlenstoff auf die Cholesterinkonzentration von Lipoproteinen niedriger Dichte und den diastolischen Blutdruck. Brit J Ind Med 49: 287–293.

Fishwick, D., AM Fletcher, AC Pickering, R. McNiven und EB Faragher. 1996. Lungenfunktion bei Arbeitern in Baumwoll- und Kunstfaserspinnereien in Lancashire. Occup Environ Med 53:46–50.

Forst, L und D Hryhorczuk. 1988. Berufliches Tarsaltunnelsyndrom. Brit J Ind Med 45: 277–278.

Fox, AJ, JBL Tombleson, A Watt und AG Wilkie. 1973a. Eine Übersicht über Atemwegserkrankungen bei Baumwollarbeitern: Teil I. Symptome und Ergebnisse von Beatmungstests. Brit J Ind Med 30:42-47.

—. 1973b. Eine Übersicht über Atemwegserkrankungen bei Baumwollarbeitern: Teil II. Symptome, Staubschätzung und die Wirkung der Rauchgewohnheiten. Brit J Ind Med 30: 48-53.

Glindmeyer, HW, JJ Lefante, RN Jones, RJ Rando, HMA Kader und H Weill. 1991. Expositionsbedingte Abnahme der Lungenfunktion von Baumwolltextilarbeitern. Am Rev Respir Dis 144:675–683.

Glindmeyer, HW, JJ Lefante, RN Jones, RJ Rando und H. Weill. 1994. Baumwollstaub und schichtübergreifende Änderung des FEV1 Am J Respir Crit Care Med 149:584–590.

Goldberg, MS und G Theriault. 1994a. Retrospektive Kohortenstudie von Arbeitern einer Fabrik für synthetische Textilien in Quebec II. Am J Ind Med 25:909–922.

—. 1994b. Retrospektive Kohortenstudie von Arbeitern einer Fabrik für synthetische Textilien in Quebec I. Am J Ind Med 25:889–907.

Grund, N. 1995. Umweltaspekte für Textildruckprodukte. Zeitschrift der Gesellschaft der Färber und Koloristen 111 (1/2): 7–10.

Harris, TR, JA Merchant, KH Kilburn und JD Hamilton. 1972. Byssinose und Atemwegserkrankungen bei Arbeitern in Baumwollfabriken. J Occup Med 14: 199–206.

Henderson, V und PE Enterline. 1973. Eine ungewöhnliche Sterblichkeitserfahrung bei Baumwolltextilarbeitern. J Occup Med 15: 717–719.

Hernberg, S, T Partanen und CH Nordman. 1970. Koronare Herzkrankheit bei Arbeitern, die Schwefelkohlenstoff ausgesetzt waren. Brit J Ind Med 27: 313–325.

McKerrow, CB und RSF Schilling. 1961. Eine Pilotuntersuchung über Byssinose in zwei Baumwollspinnereien in den Vereinigten Staaten. JAMA 177:850–853.

McKerrow, CB, SA Roach, JC Gilson und RSF Schilling. 1962. Die Größe von Baumwollstaubpartikeln, die Byssinose verursachen: Eine umwelt- und physiologische Studie. Brit J Ind Med 19: 1–8.

Kaufmann, JA und C Ortmeyer. 1981. Sterblichkeit von Angestellten zweier Baumwollspinnereien in North Carolina. Brustunterstützung 79: 6S–11S.

Kaufmann, JA, JC Lumsdun, KH Kilburn, WM O'Fallon, JR Ujda, VH Germino und JD Hamilton. 1973. Dosis-Wirkungs-Studien bei Baumwolltextilarbeitern. J Occup Med 15:222–230.

Ministerium für internationalen Handel und Industrie (Japan). 1996. Asia-Pacific Textile and Clothing Industry Form, 3.-4. Juni 1996. Tokio: Ministerium für internationalen Handel und Industrie.

Molyneux, MKB und JBL Tombleson. 1970. Eine epidemiologische Studie über Atemwegssymptome in Lancashire-Mühlen, 1963–1966. Brit J Ind Med 27: 225–234.

Moran, TJ. 1983. Emphysem und andere chronische Lungenerkrankungen bei Textilarbeitern: Eine 18-jährige Autopsiestudie. Arch Environ Health 38: 267–276.

Murray, R., J. Dingwall-Fordyce und RE Lane. 1957. Ein Ausbruch von Weberhusten im Zusammenhang mit Tamarindensamenpulver. Brit J Ind Med 14: 105–110.

Mustafa, KY, W Bos und AS Lakha. 1979. Byssinose bei tansanischen Textilarbeitern. Lunge 157: 39–44.

Myles, SM und AH Roberts. 1985. Handverletzungen in der Textilindustrie. J. Handchirurgie 10:293–296.

Neal, PA, R. Schneiter und BH Caminita. 1942. Bericht über akute Krankheiten bei ländlichen Matratzenherstellern, die minderwertige, befleckte Baumwolle verwenden. JAMA 119:1074–1082.

Arbeitsschutzbehörde (OSHA). 1985. Final Rule for Occupational Exposure to Cotton Dust. Federal Register 50, 51120-51179 (13. Dez. 1985). 29 CFR 1910.1043. Washington, DC: OSHA.

Parich, JR. 1992. Byssinose in Entwicklungsländern. Brit J Ind Med 49: 217–219.
Rachootin, P. und J. Olsen. 1983. Das Risiko von Unfruchtbarkeit und verzögerter Empfängnis im Zusammenhang mit Expositionen am dänischen Arbeitsplatz. J Occup Med 25:394–402.

Ramazzini, B. 1964. Diseases of Workers [De morbis artificum, 1713], übersetzt von WC Wright. New York: Hafner Publishing Co.

Redlich, CA, WS Beckett, J. Sparer, KW Barwick, CA Riely, H. Miller, SL Sigal, SL Shalat und MR Cullen. 1988. Lebererkrankung im Zusammenhang mit beruflicher Exposition gegenüber dem Lösungsmittel Dimethylformamid. Ann Int Med 108: 680–686.

Riihimaki, V, H Kivisto, K Peltonen, E Helpio und A Aitio. 1992. Bewertung der Exposition gegenüber Schwefelkohlenstoff bei Arbeitern in der Viskoseherstellung aus 2-Thiothiazolidin-4-Carbonsäure-Bestimmungen im Urin. Am J Ind Med 22:85–97.

Roach, SA und RSF Schilling. 1960. Eine klinische und Umweltstudie über Byssinose in der Baumwollindustrie von Lancashire. Brit J Ind Med 17:1–9.

Rooke, GB. 1981a. Die Pathologie der Byssinose. Brustunterstützung 79:67S–71S.

—. 1981b. Entschädigung für Byssinose in Großbritannien. Brustkorb 79:124S–127S.

Sadhro, S, P Duhra und IS Foulds. 1989. Berufliche Dermatitis durch Synocrilrot 3b flüssig (CI Basic Red 22). Wenden Sie sich an Dermat 21:316–320.

Schachter, EN, MC Kapp, GJ Beck, LR Maunder und TJ Witek. 1989. Auswirkungen von Rauchen und Baumwollstaub bei Baumwolltextilarbeitern. Brust 95: 997–1003.

Schilling, RSF. 1956. Byssinose bei Baumwoll- und anderen Textilarbeitern. Lancet 1:261–267, 319–324.

—. 1981. Weltweite Probleme der Byssinose. Brustunterstützung 79:3S–5S.

Schilling, RSF und N. Goodman. 1951. Herz-Kreislauf-Erkrankungen bei Baumwollarbeitern. Brit J Ind Med 8: 77–87.

Seidenari, S., BM Mauzini und P. Danese. 1991. Kontaktsensibilisierung gegen Textilfarbstoffe: Beschreibung von 100 Probanden. Wenden Sie sich an Dermat 24:253–258.

Siemiatycki, J, R. Dewar, L. Nadon und M. Gerin. 1994. Berufliche Risikofaktoren für Blasenkrebs. Am J Epidemiol 140: 1061–1080.

Silverman, DJ, LI Levin, RN Hoover und P. Hartge. 1989. Berufliche Risiken von Blasenkrebs in den Vereinigten Staaten. I. Weiße Männer. J Natl Cancer Inst 81: 1472–1480.

Steenland, K, C. Burnett und AM Osorio. 1987. Eine Fall-Kontroll-Studie zu Blasenkrebs unter Verwendung von Stadtverzeichnissen als Quelle für Berufsdaten. Am J Epidemiol 126:247–257.

Sweetnam, PM, SWS Taylor und PC Elwood. 1986. Exposition gegenüber Schwefelkohlenstoff und ischämische Herzkrankheit in einer Viskosefabrik. Brit J Ind Med 44: 220–227.

Thomas, RE. 1991. Bericht über eine multidisziplinäre Konferenz über die Kontrolle und Prävention von kumulativen Traumastörungen (CDT) oder Repetitive Motion Trauma (RMT) in der Textil-, Bekleidungs- und Faserindustrie. Am Ind Hyg Assoc. J 52: A562.

Uragoda, CG. 1977. Eine Untersuchung über die Gesundheit von Kapokarbeitern. Brit J Ind Med 34: 181–185.
Vigliani, EC, L Parmeggiani und C Sassi. 1954. Studio de un epidemio di bronchite asmatica fra gli opera di una tessiture di cotone. Med Lau 45: 349–378.

Vobecky, J, G Devroede und J Caro. 1984. Dickdarmkrebsrisiko bei der Kunstfaserherstellung. Krebs 54:2537–2542.

Vobecky, J, G Devroede, J La Caille und A Waiter. 1979. Eine Berufsgruppe mit einem hohen Dickdarmkrebsrisiko. Gastroenterologie 76:657.

Holz, CH und SA Plötze. 1964. Staub in Cardrooms: Ein anhaltendes Problem in der Baumwollspinnerei. Brit J Ind Med 21: 180–186.

Zuskin, E., D. Ivankovic, EN Schachter und TJ Witek. 1991. Eine zehnjährige Folgestudie von Baumwolltextilarbeitern. Am Rev Respir Dis 143: 301–305.