Drucken
Mittwoch, 03 August 2011 00: 24

Azide

Artikel bewerten
(0 Stimmen)

Verwendet

Azide werden vielfältig in der Chemie-, Farbstoff-, Kunststoff-, Gummi- und Metallindustrie eingesetzt. Mehrere Verbindungen werden in der Abwasserbehandlung und als chemische Zwischenprodukte, Lebensmittelzusatzstoffe und Desinfektionsmittel in Geschirrspülmitteln und Schwimmbädern verwendet.

1,1'-Azobis(formamid) ist ein Treibmittel für Synthese- und Naturkautschuk sowie Ethylen-Vinylacetat-Copolymere. Es ist auch nützlich als Treibmittel, das zugesetzt wird, um die Porosität von Kunststoffen zu erhöhen. Trichlorierte Isocyanursäure und Natriumdichlorisocyanurat werden als Desinfektionsmittel für Schwimmbäder und als Wirkstoffe in Waschmitteln, gewerblichen und Haushaltsbleichmitteln und Geschirrspülmitteln verwendet. Natriumdichlorisocyanurat wird auch in der Wasser- und Abwasserbehandlung eingesetzt.

Edetinsäure (EDTA) hat zahlreiche Funktionen in der Lebensmittel-, Metall-, Chemie-, Textil-, Foto- und Gesundheitsindustrie. Es ist ein Antioxidans in Lebensmitteln. EDTA wird als Chelatbildner zur Entfernung unerwünschter Metallionen in Kesselwasser und Kühlwasser, in der Vernickelung und in der Holzpulpe verwendet. Es dient auch als Bleichmittel für die Filmverarbeitung in der Fotoindustrie, als Ätzmittel in der Metallveredelung und als Färbemittel in der Textilindustrie. EDTA findet sich in Waschmitteln für Textilien, industriellen Germiziden, Metallschneideflüssigkeiten, Halbleiterproduktion, Flüssigseifen, Shampoos, Produkten der pharmazeutischen und kosmetischen Industrie. Es wird auch in der Medizin zur Behandlung von Bleivergiftungen eingesetzt.

Phenylhydrazin, Aminoazotoluol und Hydrazin sind in der Farbstoffindustrie nützlich. Phenylhydrazin wird auch bei der Herstellung von pharmazeutischen Produkten verwendet. Hydrazin ist ein Reaktant in Brennstoffzellen für militärische Zwecke und ein Reduktionsmittel bei der Plutoniumextraktion aus Reaktorabfällen. Es wird bei der Vernickelung, der Abwasserbehandlung und der elektrolytischen Beschichtung von Metallen auf Glas und Kunststoffen verwendet. Hydrazin wird zur Wiederaufbereitung von Kernbrennstoffen und als Bestandteil von hochenergetischen Brennstoffen eingesetzt. Es ist ein Korrosionsinhibitor im Kesselspeisewasser und im Reaktorkühlwasser. Hydrazin ist auch ein chemisches Zwischenprodukt und ein Raketentreibstoff. Diazomethan ist ein starkes Methylierungsmittel für saure Verbindungen wie Carbonsäuren und Phenole.

Natriumazid wird in der organischen Synthese, bei der Herstellung von Sprengstoffen und als Treibmittel in Auto-Airbags verwendet. Hydrazoesäure wird zur Herstellung von Kontaktsprengstoffen wie Bleiazid verwendet.

Andere Azide, einschließlich Methylhydrazin, Hydrazobenzol, 1,1-Dimethylhydrazin, Hydrazinsulfat und Diazomethan, werden in zahlreichen Branchen eingesetzt. Methylhydrazin ist ein Lösungsmittel, ein chemisches Zwischenprodukt und ein Raketentreibstoff, während Hydrazobenzol ein chemisches Zwischenprodukt und ein Antischlammadditiv für Motoröl ist. 1,1-Dimethylhydrazin wird in Raketentreibstoffformulierungen verwendet. Es ist ein Stabilisator für Kraftstoffzusätze mit organischen Peroxiden, ein Absorptionsmittel für saure Gase und ein Bestandteil von Düsentreibstoff. Hydrazinsulfat wird bei der gravimetrischen Schätzung von Nickel, Kobalt und Cadmium verwendet. Es ist ein Antioxidans in Lötflussmittel für Leichtmetalle, ein keimtötendes Mittel und ein Reduktionsmittel bei der Analyse von Mineralien und Schlacken.

Gefahren

Diazomethan

Brand- und Explosionsgefahr. Sowohl im gasförmigen als auch im flüssigen Zustand explodiert Diazomethan mit Blitzen und selbst bei –80 °C kann das flüssige Diazomethan detonieren. Es ist jedoch die allgemeine Erfahrung, dass keine Explosionen auftreten, wenn Diazomethan hergestellt und in Lösungsmitteln wie Ethylether enthalten ist.

Gesundheitsrisiken. Diazomethan wurde erstmals 1894 von von Pechmann beschrieben, der darauf hinwies, dass es extrem giftig sei und Lufthunger und Brustschmerzen verursache. Daraufhin berichteten andere Untersucher über Symptome von Schwindel und Tinnitus. Es wurde berichtet, dass die Exposition der Haut gegenüber Diazomethan zu einer Denudation der Haut und der Schleimhäute führt, und es wurde behauptet, dass seine Wirkung der von Dimethylsulfat ähnelt. Es wurde auch festgestellt, dass die Dämpfe aus der Ätherlösung des Gases die Haut reizten und die Finger so empfindlich machten, dass es schwierig war, eine Nadel aufzunehmen. Im Jahr 1930 führte die Exposition von zwei Personen zu Schmerzen in der Brust, Fieber und schweren asthmatischen Symptomen etwa 5 Stunden nach der Exposition gegenüber nur Spuren des Gases.

Die erste Einwirkung des Gases darf keine nennenswerten Anfangsreaktionen hervorrufen; jedoch können nachfolgende Expositionen selbst in geringen Mengen extrem schwere Asthmaanfälle und andere Symptome hervorrufen. Die pulmonalen Symptome können entweder durch eine echte allergische Empfindlichkeit nach wiederholter Gasexposition, insbesondere bei Personen mit erblicher Allergie, oder durch eine starke Reizwirkung des Gases auf die Schleimhäute erklärt werden.

Mindestens 16 Fälle von akuter Diazomethan-Vergiftung, darunter Todesfälle durch Lungenödem, wurden unter Chemikern und Labormitarbeitern gemeldet. Als Vergiftungssymptome traten in allen Fällen Reizhusten, Fieber und Unwohlsein auf, die je nach Grad und Dauer der Exposition unterschiedlich stark ausgeprägt waren. Nachfolgende Expositionen haben zu Überempfindlichkeit geführt.

Bei Tieren verursachte die 175-minütige Exposition gegenüber 10 ppm Diazomethan ein hämorrhagisches Emphysem und ein Lungenödem bei Katzen, was innerhalb von 3 Tagen zum Tod führte.

Toxizität. Eine Erklärung für die Toxizität von Diazomethan war die intrazelluläre Bildung von Formaldehyd. Diazomethan reagiert langsam mit Wasser zu Methylalkohol und setzt Stickstoff frei. Formaldehyd wiederum entsteht durch die Oxidation von Methylalkohol. Die Möglichkeiten der Freisetzung von Methylalkohol in vivo oder der Reaktion von Diazomethan mit Carboxylverbindungen zu toxischen Methylestern können in Betracht gezogen werden; andererseits dürften die schädlichen Wirkungen von Diazomethan in erster Linie auf die stark reizende Wirkung des Gases auf die Atemwege zurückzuführen sein.

Diazomethan hat sich bei Mäusen und Ratten als Lungenkrebserreger erwiesen. Es wurde auch gezeigt, dass Hautapplikation und subkutane Injektion sowie Inhalation der Verbindung bei Versuchstieren eine Tumorentwicklung verursachen. Bakterienstudien zeigen, dass es mutagen ist. Die Internationale Agentur für Krebsforschung (IARC) ordnet es jedoch in Gruppe 3 ein, nicht klassifizierbar in Bezug auf die Karzinogenität beim Menschen.

Diazomethan ist ein wirksames Insektizid zur chemischen Bekämpfung von Triatom Befall. Es ist auch als Algizid nützlich. Bei der ichthyotoxischen Komponente der Grünalge Chaetomorpha-Minima mit Diazomethan methyliert wird, wird ein Feststoff erhalten, der seine Fischtoxizität beibehält. Bemerkenswert ist, dass Diazomethan eines der Zwischenprodukte im Stoffwechsel der Karzinogene Dimethylnitrosamin und Cycasin ist.

Hydrazin und Derivate

Entflammbarkeit, Explosion und Toxizität sind Hauptgefahren der Hydrazine. Wenn beispielsweise Hydrazin mit Nitromethan gemischt wird, entsteht ein hochexplosiver Sprengstoff, der gefährlicher ist als TNT. Alle hier diskutierten Hydrazine haben ausreichend hohe Dampfdrücke, um ernsthafte Gesundheitsgefahren durch Einatmen darzustellen. Sie haben einen fischartigen, ammoniakalischen Geruch, der abstoßend genug ist, um auf das Vorhandensein gefährlicher Konzentrationen für kurze zufällige Expositionsbedingungen hinzuweisen. Bei niedrigeren Konzentrationen, die während Herstellungs- oder Transferprozessen auftreten können, reichen die Warneigenschaften des Geruchs möglicherweise nicht aus, um eine chronische berufliche Exposition in geringer Konzentration bei der Brennstoffhandhabung auszuschließen.

Mittlere bis hohe Konzentrationen von Hydrazin-Dämpfen sind stark reizend für Augen, Nase und Atemwege. Bei den Treibmitteln Hydrazine ist die Hautreizung ausgeprägt; Direkter Flüssigkeitskontakt führt zu Verbrennungen und sogar zu Sensibilisierungsdermatitis, insbesondere im Fall von Phenylhydrazin. Augenspritzer wirken stark reizend und Hydrazin kann dauerhafte Hornhautläsionen verursachen.

Zusätzlich zu ihren reizenden Eigenschaften üben Hydrazine auch ausgeprägte systemische Wirkungen auf jedem Aufnahmeweg aus. Nach der Inhalation ist die Hautaufnahme der zweitwichtigste Intoxikationsweg. Alle Hydrazine sind mäßige bis starke Gifte des Zentralnervensystems, die zu Zittern, erhöhter Erregbarkeit des Zentralnervensystems und bei ausreichend hohen Dosen zu Krämpfen führen. Dies kann zu Depressionen, Atemstillstand und Tod führen. Andere systemische Wirkungen treten im hämatopoetischen System, der Leber und der Niere auf. Der Grad der systemischen Toxizität der einzelnen Hydrazine hinsichtlich der Zielorgane ist sehr unterschiedlich.

Die hämatologischen Wirkungen sind aufgrund der hämolytischen Aktivität selbsterklärend. Diese sind dosisabhängig und treten mit Ausnahme von Monomethylhydrazin bei chronischen Intoxikationen am deutlichsten auf. Knochenmarkveränderungen sind mit Phenylhydrazin hyperplastisch, und es wurde auch eine Blutzellproduktion außerhalb des Knochenmarks beobachtet. Monomethylhydrazin ist ein starker Methämoglobinbildner und Blutfarbstoffe werden mit dem Urin ausgeschieden. Die Leberveränderungen sind in erster Linie fettiger Degenerationstyp, schreiten selten zur Nekrose fort und sind gewöhnlich mit dem Treibmittel Hydrazin reversibel. Monomethylhydrazin und Phenylhydrazin in hohen Dosen können umfangreiche Nierenschäden verursachen. Veränderungen im Herzmuskel sind in erster Linie fettiger Natur. Die bei all diesen Hydrazinen beobachtete Übelkeit ist zentralen Ursprungs und therapieresistent. Die stärksten Krampfmittel in dieser Reihe sind Monomethylhydrazin und 1,1-Dimethylhydrazin. Hydrazin verursacht in erster Linie Depressionen, und Krämpfe treten viel seltener auf.

Alle Hydrazine scheinen bei einigen Versuchstierarten über irgendeinen Eintrittsweg (Verfütterung mit Trinkwasser, Magenintubation oder Inhalation) irgendeine Art von Aktivität zu haben. IARC betrachtet sie als Gruppe 2B, möglicherweise krebserregend beim Menschen. Bei Labortieren gibt es mit Ausnahme eines hier nicht diskutierten Derivats, 1,2-Dimethylhydrazin (oder symmetrisches Dimethylhydrazin), eine eindeutige Dosiswirkung. Angesichts der Einstufung in Gruppe 2B sollte jegliche Exposition von Menschen durch geeignete Schutzausrüstung und Dekontaminierung versehentlich verschütteter Substanzen minimiert werden.

Phenylhydrazin

Die Pathologie von Phenylhydrazin wurde anhand von Tierversuchen und klinischen Beobachtungen untersucht. Informationen über die Wirkung von Phenylhydrazin beim Menschen wurden aus der therapeutischen Anwendung von Phenylhydrazinhydrochlorid gewonnen. Die beobachteten Zustände umfassten hämolytische Anämie mit Hyperbilirubinämie und Urobilinurie und das Auftreten von Heinz-Körperchen; Leberschäden mit Hepatomegalie, Ikterus und sehr dunklem, phenolhaltigem Urin; manchmal traten Anzeichen von Nierenmanifestationen auf. Hämatologische Wirkungen umfassten Zyanose, hämolytische Anämie, manchmal mit Methämoglobinämie, und Leukozytose. Zu den allgemeineren Symptomen gehörten Müdigkeit, Schwindel, Durchfall und Blutdruckabfall. Es wurde auch beobachtet, dass ein Student, der 300 g der Substanz auf Bauch und Oberschenkel bekommen hatte, einen Herzkollaps mit mehrstündigem Koma erlitt. Personen mit hereditärem Glucose-6-Phosphat-Dehydrogenase (G6PDH)-Mangel wären viel anfälliger für die hämolytischen Wirkungen von Phenylhydrazin und sollten ihm nicht ausgesetzt werden.

In Bezug auf Hautschäden liegen Berichte über akutes Ekzem mit Bläschenausschlag sowie chronisches Ekzem an Händen und Unterarmen von Arbeitern vor, die Antipyrin herstellen. Beschrieben wurde auch ein Fall von vesikulärer Dermatose mit Bildung von Phlyktänen am Handgelenk eines Apothekerassistenten. Dies trat 5 oder 6 Stunden nach der Handhabung auf und dauerte 2 Wochen, um zu heilen. Ein Chemieingenieur, der mit der Substanz umging, litt nur unter einigen Pickeln, die nach 2 oder 3 Tagen verschwanden. Phenylhydrazin gilt daher als starker Hautsensibilisator. Es wird sehr schnell von der Haut aufgenommen.

Aufgrund von Berichten über die Karzinogenität von Phenylhydrazin bei Mäusen hat das US-amerikanische National Institute for Occupational Safety and Health (NIOSH) seine Zulassung als menschliches Karzinogen empfohlen. Eine Vielzahl von Bakterien- und Gewebekulturstudien hat gezeigt, dass es mutagen ist. Die intraperitoneale Injektion von trächtigen Mäusen führte zu Nachkommen mit schwerer Gelbsucht, Anämie und einem Defizit im erworbenen Verhalten.

Natriumazid und Stickstoffwasserstoffsäure

Natriumazid wird durch Kombination von Sodamid mit Lachgas hergestellt. Es reagiert mit Wasser zu Stickstoffwasserstoffsäure. Beim Umgang mit Natriumazid können Dämpfe von Hydrazoesäure vorhanden sein. Kommerziell wird Stickstoffwasserstoffsäure durch Einwirkung von Säure auf Natriumazid hergestellt.

Natriumazid scheint nur geringfügig weniger akut toxisch zu sein als Natriumcyanid. Es kann tödlich sein, wenn es eingeatmet, verschluckt oder durch die Haut aufgenommen wird. Kontakt kann zu Verbrennungen an Haut und Augen führen. Ein Labortechniker nahm versehentlich eine schätzungsweise „sehr kleine Menge“ Natriumazid ein. Es wurden Symptome von Tachykardie, Hyperventilation und Hypotonie beobachtet. Die Autoren weisen darauf hin, dass die minimale blutdrucksenkende Dosis beim Menschen zwischen 0.2 und 0.4 mg/kg liegt.

Die Behandlung normaler Personen mit 3.9 mg/Tag Natriumazid über 10 Tage führte zu keinen anderen Wirkungen als einem Herzklopfen. Einige Bluthochdruckpatienten entwickelten eine Empfindlichkeit gegenüber Azid bei 0.65 mg/Tag.

Arbeiter, die 0.5 ppm Stickstoffwasserstoffsäure ausgesetzt waren, entwickelten Kopfschmerzen und eine verstopfte Nase. Zusätzliche Symptome von Schwäche und Augen- und Nasenreizung entwickelten sich bei Exposition gegenüber 3 ppm für weniger als 1 Stunde. Die Pulsfrequenz war variabel und der Blutdruck war niedrig oder normal. Ähnliche Symptome wurden bei Arbeitern berichtet, die Bleiazid herstellten. Sie hatten deutlich niedrigen Blutdruck, der sich während des Arbeitstages verstärkte und sich nach Beendigung der Arbeit wieder normalisierte.

Tierexperimentelle Studien zeigten einen raschen, aber vorübergehenden Abfall des Blutdrucks bei oralen Einzeldosen von 2 mg/kg oder mehr Natriumazid. Bei Katzen wurden bei Konzentrationen von 1 mg/kg i.v. assoziierte Hämaturie und Herzrhythmusstörungen beobachtet. Die bei Tieren nach relativ hohen Dosen von Natriumazid beobachteten Symptome sind Atemstimulation und Krämpfe, dann Depression und Tod. Die LD50 für Natriumazid beträgt 45 mg/kg bei Ratten und 23 mg/kg bei Mäusen.

Die Exposition von Nagetieren gegenüber Hydrazoesäuredämpfen verursacht eine akute Entzündung der tiefen Lunge. Hydrazoesäuredampf ist etwa achtmal weniger toxisch als Blausäure, wobei eine Konzentration von 1,024 ppm bei Mäusen nach 60 Minuten tödlich ist (im Vergleich zu 135 ppm für Blausäure).

Natriumazid war in Bakterien mutagen, obwohl diese Wirkung abgeschwächt war, wenn metabolisierende Enzyme vorhanden waren. Es war auch in Studien an Säugetierzellen mutagen.

Azide-Tabellen

Tabelle 1 - Chemische Informationen.

Tabelle 2 - Gesundheitsrisiken.

Tabelle 3 - Physikalische und chemische Gefahren.

Tabelle 4 - Physikalische und chemische Eigenschaften.

 

Zurück

Lesen Sie mehr 6066 mal Zuletzt geändert am Sonntag, den 07. August 2011 um 00:41 Uhr