Imprimir
Lunes, febrero 28 2011 22: 28

Etiopatogenia de las neumoconiosis

Valora este artículo
(0 votos)

Las neumoconiosis han sido reconocidas como enfermedades profesionales durante mucho tiempo. Se han dirigido esfuerzos sustanciales a la investigación, la prevención primaria y el manejo médico. Pero médicos e higienistas informan que el problema sigue presente tanto en países industrializados como en vías de industrialización (Valiante, Richards y Kinsley 1992; Markowitz 1992). Dado que existen pruebas sólidas de que los tres principales minerales industriales responsables de las neumoconiosis (amianto, carbón y sílice) seguirán teniendo cierta importancia económica, lo que implicará una mayor exposición posible, se espera que el problema continúe siendo de cierta magnitud a lo largo del el mundo, particularmente entre las poblaciones desatendidas en pequeñas industrias y pequeñas operaciones mineras. Las dificultades prácticas en la prevención primaria, o la comprensión insuficiente de los mecanismos responsables de la inducción y la progresión de la enfermedad son factores que posiblemente podrían explicar la presencia continua del problema.

La etiopatogenia de las neumoconiosis se puede definir como la valoración y comprensión de todos los fenómenos que ocurren en el pulmón tras la inhalación de partículas de polvo fibrogénicas. La expresion cascada de eventos se encuentra a menudo en la literatura sobre el tema. La cascada es una serie de eventos que por primera exposición y en su mayor extensión progresan a la enfermedad en sus formas más severas. Si exceptuamos las formas raras de silicosis acelerada, que pueden desarrollarse después de unos pocos meses de exposición, la mayoría de las neumoconiosis se desarrollan después de períodos de exposición medidos en décadas en lugar de años. Esto es especialmente cierto hoy en día en los lugares de trabajo que adoptan estándares modernos de prevención. Por lo tanto, los fenómenos de etiopatogenia deben analizarse en términos de su dinámica a largo plazo.

En los últimos 20 años, se dispone de una gran cantidad de información sobre las numerosas y complejas reacciones pulmonares involucradas en la fibrosis pulmonar intersticial inducida por diversos agentes, incluidos los polvos minerales. Estas reacciones fueron descritas a nivel bioquímico y celular (Richards, Masek y Brown 1991). Contribuyeron no solo físicos y patólogos experimentales, sino también médicos que utilizaron ampliamente el lavado broncoalveolar como una nueva técnica de investigación pulmonar. Estos estudios describieron la etiopatogenia como una entidad muy compleja, que sin embargo puede desglosarse para revelar varias facetas: (1) la propia inhalación de partículas de polvo y la consiguiente constitución y significado de la carga pulmonar (relaciones exposición-dosis-respuesta), ( 2) las características fisicoquímicas de las partículas fibrogénicas, (3) las reacciones bioquímicas y celulares que inducen las lesiones fundamentales de las neumoconiosis y (4) los determinantes de progresión y complicación. La última faceta no debe ser ignorada, ya que las formas más severas de neumoconiosis son las que cursan con deficiencia e invalidez.

Un análisis detallado de la etiopatogenia de las neumoconiosis está fuera del alcance de este artículo. Sería necesario distinguir los diversos tipos de polvo y profundizar en numerosas áreas especializadas, algunas de las cuales aún son objeto de investigación activa. Pero nociones generales interesantes emergen de la cantidad de conocimiento actualmente disponible sobre el tema. Se presentarán aquí a través de las cuatro “facetas” mencionadas anteriormente y la bibliografía remitirá al lector interesado a textos más especializados. Se darán ejemplos esencialmente para las tres neumoconiosis principales y más documentadas: asbestosis, neumoconiosis de los trabajadores del carbón (CWP) y silicosis. Se discutirán los posibles impactos en la prevención.

Relaciones exposición-dosis-respuesta

Las neumoconiosis resultan de la inhalación de ciertas partículas de polvo fibrogénicas. En la física de los aerosoles, el término polvo tiene un significado muy preciso (Hinds 1982). Se refiere a partículas en el aire obtenidas por trituración mecánica de un material original en estado sólido. Las partículas generadas por otros procesos no deben llamarse polvo. Las nubes de polvo en varios entornos industriales (p. ej., minería, construcción de túneles, limpieza con chorro de arena y fabricación) generalmente contienen una mezcla de varios tipos de polvo. Las partículas de polvo en el aire no tienen un tamaño uniforme. Exhiben una distribución de tamaño. El tamaño y otros parámetros físicos (densidad, forma y carga superficial) determinan el comportamiento aerodinámico de las partículas y la probabilidad de su penetración y depósito en los diversos compartimentos del sistema respiratorio.

En el campo de las neumoconiosis, el sitio de interés es el compartimento alveolar. Las partículas en el aire lo suficientemente pequeñas como para llegar a estos compartimentos se denominan partículas respirables. Todas las partículas que llegan a los compartimentos alveolares no se depositan sistemáticamente, algunas todavía están presentes en el aire exhalado. Los mecanismos físicos responsables de la deposición ahora se conocen bien para las partículas isométricas (Raabe 1984), así como para las partículas fibrosas (Sébastien 1991). Se han establecido las funciones que relacionan la probabilidad de depósito con los parámetros físicos. Las partículas respirables y las partículas depositadas en el compartimento alveolar tienen características de tamaño ligeramente diferentes. Para partículas no fibrosas, se utilizan instrumentos de muestreo de aire de tamaño selectivo e instrumentos de lectura directa para medir las concentraciones de masa de partículas respirables. Para partículas fibrosas, el enfoque es diferente. La técnica de medición se basa en la recolección de filtros de "polvo total" y el conteo de fibras bajo el microscopio óptico. En este caso, la selección del tamaño se hace excluyendo del conteo las fibras “no respirables” con dimensiones que excedan los criterios predeterminados.

Tras el depósito de partículas en las superficies alveolares comienza el llamado proceso de aclaramiento alveolar. El reclutamiento quimiotáctico de macrófagos y la fagocitosis constituyen sus primeras fases. Se han descrito varias vías de eliminación: eliminación de macrófagos cargados de polvo hacia las vías respiratorias ciliadas, interacción con las células epiteliales y transferencia de partículas libres a través de la membrana alveolar, fagocitosis por macrófagos intersticiales, secuestro en el área intersticial y transporte a los ganglios linfáticos. Lauweryns y Baert 1977). Las vías de aclaramiento tienen una cinética específica. No sólo el régimen de exposición, sino también las características fisicoquímicas de las partículas depositadas, desencadenan la activación de las diferentes vías responsables de la retención pulmonar de dichos contaminantes.

La noción de un patrón de retención específico para cada tipo de polvo es bastante nueva, pero ahora está lo suficientemente establecida como para integrarla en los esquemas de etiopatogenia. Por ejemplo, este autor ha encontrado que después de una exposición prolongada al asbesto, las fibras se acumularán en el pulmón si son del tipo anfíbol, pero no si son del tipo crisotilo (Sébastien 1991). Se ha demostrado que las fibras cortas se eliminan más rápidamente que las más largas. Se sabe que el cuarzo exhibe algo de tropismo linfático y penetra fácilmente en el sistema linfático. Se ha demostrado que la modificación de la química superficial de las partículas de cuarzo afecta el aclaramiento alveolar (Hemenway et al. 1994; Dubois et al. 1988). La exposición concomitante a varios tipos de polvo también puede influir en el aclaramiento alveolar (Davis, Jones y Miller 1991).

Durante el aclaramiento alveolar, las partículas de polvo pueden sufrir algunos cambios químicos y físicos. Ejemplos de estos cambios incluyen el recubrimiento con material ferruginoso, la lixiviación de algunos constituyentes elementales y la adsorción de algunas moléculas biológicas.

Otra noción derivada recientemente de experimentos con animales es la de “sobrecarga pulmonar” (Mermelstein et al. 1994). Las ratas muy expuestas por inhalación a una variedad de polvos insolubles desarrollaron respuestas similares: inflamación crónica, mayor cantidad de macrófagos cargados de partículas, mayor cantidad de partículas en el intersticio, engrosamiento del tabique, lipoproteinosis y fibrosis. Estos hallazgos no se atribuyeron a la reactividad del polvo analizado (dióxido de titanio, ceniza volcánica, ceniza volante, coque de petróleo, cloruro de polivinilo, tóner, negro de carbón y partículas de escape de diesel), sino a una exposición excesiva del pulmón. No se sabe si se debe considerar la sobrecarga pulmonar en el caso de exposición humana a polvos fibrogénicos.

Entre las vías de eliminación, la transferencia hacia el intersticio sería de especial importancia para las neumoconiosis. La eliminación de partículas que han sido secuestradas en el intersticio es mucho menos eficaz que la eliminación de partículas engullidas por macrófagos en el espacio alveolar y eliminadas por las vías respiratorias ciliadas (Vincent y Donaldson 1990). En humanos, se encontró que después de una exposición prolongada a una variedad de contaminantes inorgánicos transportados por el aire, el almacenamiento era mucho mayor en los macrófagos intersticiales que en los alveolares (Sébastien et al. 1994). También se expresó la opinión de que la fibrosis pulmonar inducida por sílice implica la reacción de partículas con macrófagos intersticiales en lugar de alveolares (Bowden, Hedgecock y Adamson 1989). La retención es responsable de la “dosis”, una medida del contacto entre las partículas de polvo y su entorno biológico. Una descripción adecuada de la dosis requeriría conocer en cada momento la cantidad de polvo almacenado en las diversas estructuras y células pulmonares, los estados fisicoquímicos de las partículas (incluidos los estados superficiales) y las interacciones entre las partículas y el células y fluidos pulmonares. Evidentemente, la evaluación directa de la dosis en seres humanos es una tarea imposible, incluso si se dispusiera de métodos para medir partículas de polvo en varias muestras biológicas de origen pulmonar, como esputo, líquido de lavado broncoalveolar o tejido tomado en biopsia o autopsia (Bignon, Sébastien y Bientz 1979). . Estos métodos se utilizaron para una variedad de propósitos: para proporcionar información sobre los mecanismos de retención, para validar cierta información sobre la exposición, para estudiar el papel de varios tipos de polvo en desarrollos patógenos (p. ej., anfíboles versus exposición al crisotilo en asbestosis o cuarzo versus carbón en CWP) y para ayudar en el diagnóstico.

Pero estas mediciones directas solo brindan una instantánea de la retención en el momento del muestreo y no permiten que el investigador reconstituya los datos de dosis. Los nuevos modelos dosimétricos ofrecen perspectivas interesantes en ese sentido (Katsnelson et al. 1994; Smith 1991; Vincent y Donaldson 1990). Estos modelos tienen como objetivo evaluar la dosis a partir de la información de exposición considerando la probabilidad de depósito y la cinética de las diferentes vías de eliminación. Recientemente se introdujo en estos modelos la interesante noción de “entrega de daños” (Vincent y Donaldson 1990). Esta noción tiene en cuenta la reactividad específica de las partículas almacenadas, considerándose cada partícula como una fuente que libera algunas entidades tóxicas en el medio pulmonar. En el caso de las partículas de cuarzo, por ejemplo, se podría plantear la hipótesis de que algunos sitios de la superficie podrían ser la fuente de especies de oxígeno activo. Los modelos desarrollados a lo largo de tales líneas también podrían refinarse para tener en cuenta la gran variación interindividual generalmente observada con el aclaramiento alveolar. Esto fue documentado experimentalmente con asbesto, siendo los “animales de alta retención” los que tienen mayor riesgo de desarrollar asbestosis (Bégin y Sébastien 1989).

Hasta ahora, estos modelos fueron utilizados exclusivamente por patólogos experimentales. Pero también podrían ser útiles para los epidemiólogos (Smith 1991). La mayoría de los estudios epidemiológicos que analizan las relaciones entre la exposición y la respuesta se basan en la "exposición acumulativa", un índice de exposición que se obtiene integrando a lo largo del tiempo las concentraciones estimadas de polvo en el aire a las que los trabajadores han estado expuestos (producto de la intensidad y la duración). El uso de la exposición acumulativa tiene algunas limitaciones. Los análisis basados ​​en este índice asumen implícitamente que la duración y la intensidad tienen efectos equivalentes sobre el riesgo (Vacek y McDonald 1991).

Tal vez el uso de estos modelos dosimétricos sofisticados podría proporcionar alguna explicación para una observación común en la epidemiología de las neumoconiosis: "las diferencias considerables entre la fuerza laboral" y este fenómeno se observó claramente para la asbestosis (Becklake 1991) y para CWP (Attfield y Morring 1992). Al relacionar la prevalencia de la enfermedad con la exposición acumulada, se observaron grandes diferencias —hasta 50 veces— en el riesgo entre algunos grupos ocupacionales. El origen geológico del carbón (carbón de rango) proporcionó una explicación parcial para CWP, ya que la extracción de depósitos de carbón de alto rango (un carbón con alto contenido de carbono, como la antracita) genera un mayor riesgo. El fenómeno queda por explicar en el caso de la asbestosis. Las incertidumbres sobre la curva de respuesta a la exposición adecuada tienen cierta relación, al menos teóricamente, con el resultado, incluso con los estándares de exposición actuales.

De manera más general, las métricas de exposición son esenciales en el proceso de evaluación de riesgos y el establecimiento de límites de control. El uso de los nuevos modelos dosimétricos puede mejorar el proceso de evaluación del riesgo de neumoconiosis con el objetivo final de aumentar el grado de protección que ofrecen los límites de control (Kriebel 1994).

Características fisicoquímicas de las partículas de polvo fibrogénico

Una toxicidad específica para cada tipo de polvo, relacionada con las características fisicoquímicas de las partículas (incluidas las más sutiles como las características de la superficie), constituye probablemente la noción más importante que ha surgido progresivamente durante los últimos 20 años. En las primeras etapas de la investigación, no se hizo ninguna diferenciación entre los "polvos minerales". Luego se introdujeron categorías genéricas: amianto, carbón, fibras inorgánicas artificiales, filosilicatos y sílice. Pero se encontró que esta clasificación no era lo suficientemente precisa para explicar la variedad de efectos biológicos observados. Hoy en día se utiliza una clasificación mineralógica. Por ejemplo, se distinguen varios tipos mineralógicos de amianto: crisotilo serpentino, amosita anfíbol, crocidolita anfíbol y tremolita anfíbol. Para la sílice, generalmente se hace una distinción entre cuarzo (con mucho, el más frecuente), otros polimorfos cristalinos y variedades amorfas. En el campo del carbón, los carbones de alto y bajo rango deben tratarse por separado, ya que existe una fuerte evidencia de que el riesgo de CWP y especialmente el riesgo de fibrosis masiva progresiva es mucho mayor después de la exposición al polvo producido en las minas de carbón de alto rango.

Pero la clasificación mineralógica también tiene algunos límites. Existe evidencia, tanto experimental como epidemiológica (teniendo en cuenta las “diferencias entre trabajadores”), de que la toxicidad intrínseca de un solo tipo mineralógico de polvo puede modularse actuando sobre las características fisicoquímicas de las partículas. Esto planteó la difícil cuestión de la importancia toxicológica de cada uno de los numerosos parámetros que pueden utilizarse para describir una partícula de polvo y una nube de polvo. A nivel de partícula individual, se pueden considerar varios parámetros: química a granel, estructura cristalina, forma, densidad, tamaño, área superficial, química superficial y carga superficial. Tratar con nubes de polvo agrega otro nivel de complejidad debido a la distribución de estos parámetros (p. ej., distribución de tamaño y composición del polvo mezclado).

El tamaño de las partículas y la química de su superficie fueron los dos parámetros más estudiados para explicar el efecto de modulación. Como se vio antes, los mecanismos de retención están relacionados con el tamaño. Pero el tamaño también puede modular la toxicidad. in situ, como lo demuestran numerosos animales y in vitro estudios.

En el campo de las fibras minerales, el tamaño se consideró de tanta importancia que constituyó la base de una teoría de la patogenia. Esta teoría atribuía la toxicidad de las partículas fibrosas (naturales y artificiales) a la forma y tamaño de las partículas, dejando sin papel a la composición química. Al tratar con fibras, el tamaño debe dividirse en longitud y diámetro. Se debe utilizar una matriz bidimensional para informar las distribuciones de tamaño, siendo los rangos útiles de 0.03 a 3.0 mm para el diámetro y de 0.3 a 300 mm para la longitud (Sébastien 1991). Integrando los resultados de numerosos estudios, Lippman (1988) asignó un índice de toxicidad a varias células de la matriz. Existe una tendencia general a creer que las fibras largas y delgadas son las más peligrosas. Dado que los estándares utilizados actualmente en higiene industrial se basan en el uso del microscopio óptico, ignoran las fibras más delgadas. Si evaluar la toxicidad específica de cada célula dentro de la matriz tiene algún interés académico, su interés práctico está limitado por el hecho de que cada tipo de fibra está asociada con una distribución de tamaño específica que es relativamente uniforme. Para las partículas compactas, como el carbón y la sílice, no hay pruebas claras sobre un posible papel específico de las subfracciones de diferentes tamaños de las partículas depositadas en la región alveolar del pulmón.

Las teorías de patogénesis más recientes en el campo del polvo mineral implican sitios químicos activos (o funcionalidades) presentes en la superficie de las partículas. Cuando la partícula "nace" por separación de su material original, algunos enlaces químicos se rompen de forma heterolítica u homolítica. Lo que ocurre durante la ruptura y las subsiguientes recombinaciones o reacciones con moléculas de aire ambiente o moléculas biológicas constituye la química superficial de las partículas. Respecto a las partículas de cuarzo, por ejemplo, se han descrito varias funcionalidades químicas de especial interés: puentes de siloxano, grupos silanol, grupos parcialmente ionizados y radicales basados ​​en silicio.

Estas funcionalidades pueden iniciar reacciones ácido-base y redox. Solo recientemente se ha llamado la atención sobre este último (Dalal, Shi y Vallyathan 1990; Fubini et al. 1990; Pézerat et al. 1989; Kamp et al. 1992; Kennedy et al. 1989; Bronwyn, Razzaboni y Bolsaitis 1990). Ahora hay buena evidencia de que las partículas con radicales basados ​​en la superficie pueden producir especies reactivas de oxígeno, incluso en un medio celular. No es seguro si toda la producción de especies de oxígeno debe atribuirse a los radicales de superficie. Se especula que estos sitios pueden desencadenar la activación de las células pulmonares (Hemenway et al. 1994). Otros sitios pueden estar involucrados en la actividad membranolítica de las partículas citotóxicas con reacciones tales como atracción iónica, enlaces de hidrógeno y enlaces hidrofóbicos (Nolan et al. 1981; Heppleston 1991).

Tras el reconocimiento de la química de la superficie como un determinante importante de la toxicidad del polvo, se hicieron varios intentos de modificar las superficies naturales de las partículas de polvo mineral para reducir su toxicidad, según lo evaluado en modelos experimentales.

Se encontró que la adsorción de aluminio en partículas de cuarzo reduce su fibrogenicidad y favorece el aclaramiento alveolar (Dubois et al. 1988). El tratamiento con N-óxido de polivinilpiridina (PVPNO) también tuvo algún efecto profiláctico (Goldstein y Rendall 1987; Heppleston 1991). Se utilizaron varios otros procesos de modificación: molienda, tratamiento térmico, grabado ácido y adsorción de moléculas orgánicas (Wiessner et al. 1990). Las partículas de cuarzo recién fracturadas exhibieron la mayor actividad superficial (Kuhn y Demers 1992; Vallyathan et al. 1988). Curiosamente, cada desviación de esta "superficie fundamental" condujo a una disminución de la toxicidad del cuarzo (Sébastien 1990). La pureza de la superficie de varias variedades de cuarzo naturales podría ser responsable de algunas diferencias observadas en la toxicidad (Wallace et al. 1994). Algunos datos apoyan la idea de que la cantidad de superficie de cuarzo no contaminada es un parámetro importante (Kriegseis, Scharman y Serafin 1987).

La multiplicidad de parámetros, junto con su distribución en la nube de polvo, produce una variedad de formas posibles de informar las concentraciones en el aire: concentración en masa, concentración en número, concentración en área de superficie y concentración en varias categorías de tamaño. Por lo tanto, se pueden construir numerosos índices de exposición y se debe evaluar la importancia toxicológica de cada uno. Los estándares actuales en higiene ocupacional reflejan esta multiplicidad. Para el asbesto, los estándares se basan en la concentración numérica de partículas fibrosas en una determinada categoría de tamaño geométrico. Para sílice y carbón, los estándares se basan en la concentración de masa de partículas respirables. También se han desarrollado algunos estándares para la exposición a mezclas de partículas que contienen cuarzo. Ningún estándar se basa en las características de la superficie.

Mecanismos biológicos que inducen las lesiones fundamentales

Las neumoconiosis son enfermedades pulmonares fibrosas intersticiales, siendo la fibrosis difusa o nodular. La reacción fibrótica involucra la activación del fibroblasto pulmonar (Goldstein y Fine 1986) y la producción y metabolismo de los componentes del tejido conectivo (colágeno, elastina y glicosaminoglicanos). Se considera que representa una etapa tardía de curación después de una lesión pulmonar (Niewoehner y Hoidal 1982). Si bien varios factores, esencialmente relacionados con las características de la exposición, pueden modular la respuesta patológica, es interesante notar que cada tipo de neumoconiosis se caracteriza por lo que podría llamarse una lesión fundamental. La alveolitis fibrosante alrededor de las vías respiratorias periféricas constituye la lesión fundamental de la exposición al asbesto (Bégin et al. 1992). El nódulo silicótico es la lesión fundamental de la silicosis (Ziskind, Jones y Weil 1976). La CWP simple se compone de máculas de polvo y nódulos (Seaton 1983).

La patogenia de las neumoconiosis se presenta generalmente como una cascada de eventos cuya secuencia es la siguiente: alveolitis macrófago alveolar, señalización por citoquinas de células inflamatorias, daño oxidativo, proliferación y activación de fibroblastos y metabolismo de colágeno y elastina. La alveolitis de macrófagos alveolares es una reacción característica a la retención de polvo mineral fibrosante (Rom 1991). La alveolitis se define por un mayor número de macrófagos alveolares activados que liberan cantidades excesivas de mediadores, incluidos oxidantes, quimiotaxinas, factores de crecimiento de fibroblastos y proteasa. Las quimiotaxinas atraen a los neutrófilos y, junto con los macrófagos, pueden liberar oxidantes capaces de dañar las células epiteliales alveolares. Los factores de crecimiento de fibroblastos obtienen acceso al intersticio, donde les indican a los fibroblastos que se repliquen y aumenten la producción de colágeno.

La cascada se inicia en el primer encuentro de partículas depositadas en los alvéolos. Con el asbesto, por ejemplo, la lesión pulmonar inicial ocurre casi inmediatamente después de la exposición en las bifurcaciones del conducto alveolar. Después de sólo 1 hora de exposición en experimentos con animales, las células epiteliales tipo I captan activamente las fibras (Brody et al. 1981). Dentro de las 48 horas, se acumula un mayor número de macrófagos alveolares en los sitios de depósito. Con la exposición crónica, este proceso puede provocar alveolitis fibrosante peribronquiolar.

Se desconoce el mecanismo exacto por el cual las partículas depositadas producen una lesión bioquímica primaria en el revestimiento alveolar, una célula específica o cualquiera de sus orgánulos. Puede ser que las reacciones bioquímicas extremadamente rápidas y complejas den como resultado la formación de radicales libres, la peroxidación de lípidos o el agotamiento de algunas especies de moléculas protectoras de células vitales. Se ha demostrado que las partículas minerales pueden actuar como sustratos catalíticos para la generación de radicales hidroxilo y superóxido (Guilianelli et al. 1993).

A nivel celular, hay un poco más de información. Después del depósito a nivel alveolar, la célula epitelial de tipo I muy delgada se daña fácilmente (Adamson, Young y Bowden 1988). Los macrófagos y otras células inflamatorias son atraídas al sitio dañado y la respuesta inflamatoria es amplificada por la liberación de metabolitos del ácido araquidónico como prostaglandinas y leucotrienos junto con la exposición de la membrana basal (Holtzman 1991; Kuhn et al. 1990; Engelen et al. 1989). En esta etapa de daño primario, la arquitectura pulmonar se desorganiza, mostrando un edema intersticial.

Durante el proceso inflamatorio crónico, tanto la superficie de las partículas de polvo como las células inflamatorias activadas liberan mayores cantidades de especies reactivas de oxígeno en el tracto respiratorio inferior. El estrés oxidativo en el pulmón tiene algunos efectos detectables sobre el sistema de defensa antioxidante (Heffner y Repine 1989), con expresión de enzimas antioxidantes como superóxido dismutasa, glutatión peroxidasas y catalasa (Engelen et al. 1990). Estos factores se localizan en el tejido pulmonar, el líquido intersticial y los eritrocitos circulantes. Los perfiles de enzimas antioxidantes pueden depender del tipo de polvo fibrogénico (Janssen et al. 1992). Los radicales libres son mediadores conocidos de lesiones y enfermedades tisulares (Kehrer 1993).

La fibrosis intersticial resulta de un proceso de reparación. Existen numerosas teorías para explicar cómo se lleva a cabo el proceso de reparación. La interacción macrófagos/fibroblastos ha recibido la mayor atención. Los macrófagos activados secretan una red de citocinas fibrogénicas proinflamatorias: TNF, IL-1, factor de crecimiento transformante y factor de crecimiento derivado de plaquetas. También producen fibronectina, una glicoproteína de la superficie celular que actúa como atrayente químico y, en algunas condiciones, como estimulante del crecimiento de las células mesenquimales. Algunos autores consideran que algunos factores son más importantes que otros. Por ejemplo, se atribuyó especial importancia al TNF en la patogenia de la silicosis. En animales de experimentación, se demostró que la deposición de colágeno después de la instilación de sílice en ratones se evitaba casi por completo con anticuerpos anti-TNF (Piguet et al. 1990). Se presentó que la liberación de factor de crecimiento derivado de plaquetas y factor de crecimiento transformante desempeña un papel importante en la patogenia de la asbestosis (Brody 1993).

Desafortunadamente, muchas de las teorías de macrófagos/fibroblastos tienden a ignorar el equilibrio potencial entre las citoquinas fibrogénicas y sus inhibidores (Kelley 1990). De hecho, el desequilibrio resultante entre los agentes oxidantes y antioxidantes, las proteasas y antiproteasas, los metabolitos del ácido araquidónico, las elastasas y las colagenasas, así como los desequilibrios entre las distintas citoquinas y factores de crecimiento, determinarían la remodelación anormal del componente intersticio hacia los diversos formas de neumoconiosis (Porcher et al. 1993). En las neumoconiosis, la balanza se dirige claramente hacia un efecto abrumador de las actividades dañinas de las citocinas.

Debido a que las células de tipo I son incapaces de dividirse, después de la agresión primaria, la barrera epitelial se reemplaza con células de tipo II (Lesur et al. 1992). Hay alguna indicación de que si este proceso de reparación epitelial tiene éxito y que las células de tipo II en regeneración no se dañan más, es probable que la fibrogénesis no continúe. En algunas condiciones, la reparación por parte de la célula de tipo II se lleva a un exceso, lo que da como resultado una proteinosis alveolar. Este proceso se demostró claramente después de la exposición al sílice (Heppleston 1991). No se sabe hasta qué punto las alteraciones en las células epiteliales influyen en los fibroblastos. Por lo tanto, parecería que la fibrogénesis se inicia en áreas de extenso daño epitelial, a medida que los fibroblastos se replican, luego se diferencian y producen más colágeno, fibronectina y otros componentes de la matriz extracelular.

Existe abundante literatura sobre la bioquímica de los diversos tipos de colágeno formados en las neumoconiosis (Richards, Masek y Brown 1991). El metabolismo de dicho colágeno y su estabilidad en el pulmón son elementos importantes del proceso de fibrogénesis. Lo mismo probablemente se aplica a los otros componentes del tejido conjuntivo dañado. El metabolismo del colágeno y la elastina es de particular interés en la fase de curación, ya que estas proteínas son muy importantes para la estructura y función pulmonar. Se ha demostrado muy bien que las alteraciones en la síntesis de estas proteínas podrían determinar si el enfisema o la fibrosis evolucionan después de una lesión pulmonar (Niewoehner y Hoidal 1982). En el estado de enfermedad, mecanismos como el aumento de la actividad transglutaminasa podrían favorecer la formación de masas proteicas estables. En algunas lesiones fibróticas de CWP, los componentes proteicos representan un tercio de la lesión, siendo el resto polvo y fosfato de calcio.

Considerando solo el metabolismo del colágeno, son posibles varias etapas de fibrosis, algunas de las cuales son potencialmente reversibles mientras que otras son progresivas. Existe evidencia experimental de que, a menos que se exceda una exposición crítica, las lesiones tempranas pueden retroceder y la fibrosis irreversible es un resultado poco probable. En la asbestosis, por ejemplo, se describieron varios tipos de reacciones pulmonares (Bégin, Cantin y Massé 1989): una reacción inflamatoria transitoria sin lesión, una reacción de retención baja con cicatriz fibrótica limitada a las vías aéreas distales, una reacción inflamatoria alta sostenida por la exposición continua y el escaso aclaramiento de las fibras más largas.

Se puede concluir a partir de estos estudios que la exposición a partículas de polvo fibrótico puede desencadenar varias vías bioquímicas y celulares complejas involucradas en la lesión y reparación pulmonar. El régimen de exposición, las características fisicoquímicas de las partículas de polvo y posiblemente los factores de susceptibilidad individuales parecen ser los determinantes del delicado equilibrio entre las diversas vías. Las características fisicoquímicas determinarán el tipo de lesión fundamental última. El régimen de exposición parece determinar el curso temporal de los acontecimientos. Hay algunos indicios de que los regímenes de exposición suficientemente bajos pueden, en la mayoría de los casos, limitar la reacción pulmonar a lesiones no progresivas sin discapacidad o deterioro.

La vigilancia médica y el tamizaje siempre han sido parte de las estrategias de prevención de las neumoconiosis. En ese contexto, la posibilidad de detectar algunas lesiones tempranas es ventajosa. El mayor conocimiento de la patogenia allanó el camino para el desarrollo de varios biomarcadores (Borm 1994) y para el refinamiento y uso de técnicas de investigación pulmonar "no clásicas", como la medición de la tasa de eliminación del 99 tecnecio dietilentriamino-pentaacetato depositado ( 99Tc-DTPA) para evaluar la integridad del epitelio pulmonar (O'Brodovich y Coates 1987), y gammagrafía pulmonar cuantitativa con galio-67 para evaluar la actividad inflamatoria (Bisson, Lamoureux y Bégin 1987).

Se consideraron varios biomarcadores en el campo de las neumoconiosis: macrófagos de esputo, factores de crecimiento sérico, péptido de procolágeno tipo III sérico, antioxidantes de glóbulos rojos, fibronectina, elastasa leucocitaria, metaloendopeptidasa neutra y péptidos de elastina en plasma, hidrocarburos volátiles en aire exhalado y liberación de TNF por monocitos de sangre periférica. Los biomarcadores son conceptualmente bastante interesantes, pero se necesitan muchos más estudios para evaluar su importancia con precisión. Este esfuerzo de validación será bastante exigente, ya que requerirá que los investigadores realicen estudios epidemiológicos prospectivos. Tal esfuerzo se llevó a cabo recientemente para la liberación de TNF por monocitos de sangre periférica en CWP. Se encontró que el TNF es un marcador interesante de la progresión de la CWP (Borm 1994). Además de los aspectos científicos de la importancia de los biomarcadores en la patogenia de las neumoconiosis, se deben examinar cuidadosamente otras cuestiones relacionadas con el uso de biomarcadores (Schulte 1993), a saber, las oportunidades de prevención, el impacto en la medicina del trabajo y los problemas éticos y legales.

Progresión y complicación de las neumoconiosis

En las primeras décadas de este siglo, la neumoconiosis se consideraba una enfermedad que incapacitaba a los jóvenes y los mataba prematuramente. En los países industrializados, ahora se considera generalmente como nada más que una anormalidad radiológica, sin deterioro o discapacidad (Sadoul 1983). Sin embargo, se deben hacer dos observaciones contra esta afirmación optimista. En primer lugar, aunque con una exposición limitada, la neumoconiosis sigue siendo una enfermedad relativamente silenciosa y asintomática, debe saberse que la enfermedad puede progresar hacia formas más graves e incapacitantes. Los factores que afectan esta progresión son definitivamente importantes para considerar como parte de la etiopatogenia de la condición. En segundo lugar, ahora hay evidencia de que algunas neumoconiosis pueden afectar el resultado de salud general y pueden ser un factor que contribuye al cáncer de pulmón.

La naturaleza crónica y progresiva de la asbestosis ha sido documentada desde la lesión subclínica inicial hasta la asbestosis clínica (Bégin, Cantin y Massé 1989). Las técnicas modernas de investigación pulmonar (BAL, tomografía computarizada, captación pulmonar de galio-67) revelaron que la inflamación y la lesión eran continuas desde el momento de la exposición, pasando por la fase latente o subclínica, hasta el desarrollo de la enfermedad clínica. Se ha informado (Bégin et al. 1985) que el 75% de los sujetos que inicialmente tuvieron una gammagrafía positiva con galio-67 pero que no tenían asbestosis clínica en ese momento, progresaron a una asbestosis clínica "completa" en un período de cuatro años. período. Tanto en humanos como en animales de experimentación, la asbestosis puede progresar después del reconocimiento de la enfermedad y el cese de la exposición. Es muy probable que el historial de exposición antes del reconocimiento sea un determinante importante de la progresión. Algunos datos experimentales respaldan la noción de asbestosis no progresiva asociada con la exposición a la inducción de luz y el cese de la exposición en el momento del reconocimiento (Sébastien, Dufresne y Bégin 1994). Suponiendo que la misma noción se aplica a los humanos, sería de primera importancia establecer con precisión las métricas de "exposición a la inducción de luz". A pesar de todos los esfuerzos para evaluar a las poblaciones de trabajadores expuestas al asbesto, aún falta esta información.

Es bien sabido que la exposición al amianto puede conducir a un riesgo excesivo de cáncer de pulmón. Aunque se admita que el amianto es cancerígeno per se, durante mucho tiempo se ha debatido si el riesgo de cáncer de pulmón entre los trabajadores del asbesto estaba relacionado con la exposición al asbesto o con la fibrosis pulmonar (Hughes y Weil 1991). Este problema aún no está resuelto.

Debido a la mejora continua de las condiciones de trabajo en las instalaciones mineras modernas, hoy en día, la CWP es una enfermedad que afecta esencialmente a los mineros jubilados. Si la PCR simple es una afección asintomática y sin efecto demostrable sobre la función pulmonar, la fibrosis masiva progresiva (FMP) es una afección mucho más grave, con importantes alteraciones estructurales del pulmón, déficit de la función pulmonar y reducción de la esperanza de vida. Numerosos estudios han tenido como objetivo identificar los determinantes de la progresión hacia la PMF (retención intensa de polvo en el pulmón, acumulación de carbón, infección micobacteriana o estimulación inmunológica). Se propuso una teoría unificadora (Vanhee et al. 1994), basada en una inflamación alveolar continua y grave con activación de los macrófagos alveolares y una producción sustancial de especies reactivas de oxígeno, factores quimiotácticos y fibronectina. Otras complicaciones de la CWP incluyen la infección por micobacterias, el síndrome de Caplan y la esclerodermia. No hay evidencia de un riesgo elevado de cáncer de pulmón entre los mineros del carbón.

La forma crónica de silicosis sigue a la exposición, medida en décadas en lugar de años, a polvo respirable que generalmente contiene menos del 30% de cuarzo. Pero en caso de exposición incontrolada a polvo rico en cuarzo (exposiciones históricas con chorro de arena, por ejemplo), se pueden encontrar formas agudas y aceleradas después de solo unos meses. Los casos de enfermedad aguda y acelerada tienen un riesgo particular de complicación por tuberculosis (Ziskind, Jones y Weil 1976). También puede ocurrir progresión, con el desarrollo de grandes lesiones que obliteran la estructura pulmonar, llamadas silicosis complicada or PMF.

Unos pocos estudios examinaron la progresión de la silicosis en relación con la exposición y arrojaron resultados divergentes sobre las relaciones entre la progresión y la exposición, antes y después del inicio (Hessel et al. 1988). Recientemente, Infante-Rivard et al. (1991) estudiaron los factores pronósticos que influyen en la supervivencia de los pacientes silicóticos compensados. Los pacientes con pequeñas opacidades únicamente en la radiografía de tórax y que no presentaban disnea, expectoración ni ruidos respiratorios anormales tuvieron una supervivencia similar a la de los referentes. Otros pacientes tuvieron una peor supervivencia. Finalmente, se debe mencionar la reciente preocupación por la sílice, la silicosis y el cáncer de pulmón. Hay alguna evidencia a favor y en contra de la proposición de que la sílice per se es cancerígeno (Agius 1992). La sílice puede crear sinergias con carcinógenos ambientales potentes, como los que se encuentran en el humo del tabaco, a través de un efecto de promoción relativamente débil sobre la carcinogénesis o al afectar su eliminación. Además, el proceso patológico asociado o que conduce a la silicosis podría conllevar un mayor riesgo de cáncer de pulmón.

Hoy en día, la progresión y complicación de las neumoconiosis podría considerarse como un tema clave para el manejo médico. El uso de técnicas clásicas de investigación pulmonar se ha refinado para el reconocimiento temprano de la enfermedad (Bégin et al. 1992), en una etapa donde la neumoconiosis se limita a su manifestación radiológica, sin deterioro o discapacidad. En un futuro próximo, es probable que se disponga de una batería de biomarcadores para documentar etapas incluso más tempranas de la enfermedad. La cuestión de si un trabajador diagnosticado con neumoconiosis, o documentado que está en sus primeras etapas, debería poder continuar con su trabajo ha desconcertado a los tomadores de decisiones de salud ocupacional durante algún tiempo. Es una pregunta bastante difícil que implica consideraciones éticas, sociales y científicas. Si bien existe una literatura científica abrumadora sobre la inducción de la neumoconiosis, la información sobre la progresión que pueden utilizar los responsables de la toma de decisiones es bastante escasa y algo confusa. Se hicieron algunos intentos para estudiar el papel de variables como el historial de exposición, la retención de polvo y la condición médica al inicio. Las relaciones entre todas estas variables complican el asunto. Se hacen recomendaciones para la detección y vigilancia de la salud de los trabajadores expuestos a polvo mineral (Wagner 1996). Los programas ya están implementados, o lo estarán, en consecuencia. Dichos programas definitivamente se beneficiarían de un mejor conocimiento científico sobre la progresión, y especialmente sobre la relación entre las características de exposición y retención.

Discusión

La información aportada por muchas disciplinas científicas sobre la etiopatogenia de las neumoconiosis es abrumadora. La principal dificultad ahora es volver a ensamblar los elementos dispersos del rompecabezas en vías mecánicas unificadoras que conduzcan a las lesiones fundamentales de las neumoconiosis. Sin esta necesaria integración, nos quedaríamos con el contraste entre unas pocas lesiones fundamentales y muy numerosas reacciones bioquímicas y celulares.

Nuestro conocimiento de la etiopatogenia ha influido hasta ahora en las prácticas de higiene ocupacional sólo de forma limitada, a pesar de la fuerte intención de los higienistas de operar de acuerdo con normas que tienen algún significado biológico. Se incorporaron dos nociones principales en sus prácticas: la selección del tamaño de las partículas de polvo respirables y la dependencia de la toxicidad del tipo de polvo. Este último arrojó algunos límites específicos para cada tipo de polvo. La evaluación cuantitativa del riesgo, paso necesario para definir los límites de exposición, constituye un ejercicio complicado por varias razones, como la variedad de posibles índices de exposición, la escasa información sobre exposiciones pasadas, la dificultad que se tiene con los modelos epidemiológicos para tratar con múltiples índices de exposición y la dificultad de estimar la dosis a partir de la información sobre la exposición. Los límites de exposición actuales, que a veces implican una incertidumbre considerable, son probablemente lo suficientemente bajos como para ofrecer una buena protección. Sin embargo, las diferencias entre trabajadores observadas en las relaciones exposición-respuesta reflejan nuestro control incompleto del fenómeno.

El impacto de una nueva comprensión de la cascada de eventos en la patogenia de las neumoconiosis no ha modificado el enfoque tradicional de la vigilancia de los trabajadores, pero ha ayudado significativamente a los médicos en su capacidad de reconocer la enfermedad (neumoconiosis) temprano, en un momento en que la enfermedad ha tenido solo un impacto limitado en la función pulmonar. De hecho, son los sujetos en la etapa temprana de la enfermedad los que deben ser reconocidos y retirados de una exposición significativa adicional si se quiere lograr la prevención de la discapacidad mediante vigilancia médica.

 

Atrás

Leer 5159 veces Última modificación en sábado, 23 julio 2022 19: 49