Lunes, febrero 28 2011 20: 21

Disolventes orgánicos

Valora este artículo
(Vote 1)

Introducción

Los disolventes orgánicos son volátiles y generalmente solubles en la grasa corporal (lipófilos), aunque algunos de ellos, por ejemplo, el metanol y la acetona, también son solubles en agua (hidrofílicos). Se han empleado ampliamente no solo en la industria sino también en productos de consumo, como pinturas, tintas, diluyentes, desengrasantes, agentes de limpieza en seco, quitamanchas, repelentes, etc. Si bien es posible aplicar el monitoreo biológico para detectar efectos en la salud, por ejemplo, efectos en el hígado y el riñón, para fines de vigilancia de la salud de los trabajadores expuestos ocupacionalmente a solventes orgánicos, es mejor utilizar el monitoreo biológico en su lugar para “ monitoreo de la exposición” para proteger la salud de los trabajadores de la toxicidad de estos solventes, porque este es un enfoque lo suficientemente sensible como para dar advertencias mucho antes de que ocurran efectos en la salud. La detección de la alta sensibilidad de los trabajadores a la toxicidad de los disolventes también puede contribuir a la protección de su salud.

Resumen de toxicocinética

Los solventes orgánicos son generalmente volátiles en condiciones estándar, aunque la volatilidad varía de un solvente a otro. Por lo tanto, la ruta principal de exposición en entornos industriales es a través de la inhalación. La tasa de absorción a través de la pared alveolar de los pulmones es mucho más alta que a través de la pared del tracto digestivo, y una tasa de absorción pulmonar de alrededor del 50% se considera típica para muchos solventes comunes como el tolueno. Algunos solventes, por ejemplo, el disulfuro de carbono y la N,N-dimetilformamida en estado líquido, pueden penetrar la piel humana intacta en cantidades lo suficientemente grandes como para ser tóxicas.

Cuando estos disolventes son absorbidos, una parte se exhala en el aliento sin biotransformación alguna, pero la mayor parte se distribuye en órganos y tejidos ricos en lípidos como consecuencia de su lipofilia. La biotransformación tiene lugar principalmente en el hígado (y también en otros órganos en menor medida), y la molécula de solvente se vuelve más hidrófila, generalmente por un proceso de oxidación seguido de conjugación, para ser excretado a través del riñón en la orina como metabolitos. ). Una pequeña porción puede eliminarse sin cambios en la orina.

Por lo tanto, tres materiales biológicos, orina, sangre y aliento exhalado, están disponibles para monitorear la exposición a solventes desde un punto de vista práctico. Otro factor importante en la selección de materiales biológicos para monitorear la exposición es la velocidad de desaparición de la sustancia absorbida, para lo cual la vida media biológica, o el tiempo necesario para que una sustancia disminuya a la mitad de su concentración original, es un parámetro cuantitativo. Por ejemplo, los solventes desaparecerán del aliento exhalado mucho más rápido que los metabolitos correspondientes de la orina, lo que significa que tienen una vida media mucho más corta. Dentro de los metabolitos urinarios, la vida media biológica varía según la rapidez con la que se metaboliza el compuesto original, por lo que el tiempo de muestreo en relación con la exposición suele ser de importancia crítica (ver más abajo). Una tercera consideración al elegir un material biológico es la especificidad de la sustancia química objetivo que se va a analizar en relación con la exposición. Por ejemplo, el ácido hipúrico es un marcador de exposición al tolueno utilizado desde hace mucho tiempo, pero no solo lo forma el cuerpo de forma natural, sino que también puede derivarse de fuentes no ocupacionales, como algunos aditivos alimentarios, y ya no se considera un indicador fiable. marcador cuando la exposición al tolueno es baja (menos de 50 cm3/m3). En términos generales, los metabolitos urinarios se han utilizado más ampliamente como indicadores de exposición a diversos disolventes orgánicos. El solvente en la sangre se analiza como una medida cualitativa de la exposición porque generalmente permanece en la sangre por menos tiempo y refleja más la exposición aguda, mientras que el solvente en el aliento exhalado es difícil de usar para estimar la exposición promedio porque la concentración en el aliento disminuye. rápidamente después del cese de la exposición. El solvente en orina es un candidato prometedor como medida de exposición, pero necesita más validación.

Pruebas de exposición biológica para solventes orgánicos

Al aplicar el monitoreo biológico para la exposición a solventes, el tiempo de muestreo es importante, como se indicó anteriormente. La Tabla 1 muestra los tiempos de muestreo recomendados para solventes comunes en el monitoreo de la exposición ocupacional diaria. Cuando se va a analizar el disolvente en sí, se debe prestar atención para evitar posibles pérdidas (p. ej., evaporación en el aire de la habitación) así como contaminación (p. ej., disolución del aire de la habitación en la muestra) durante el proceso de manipulación de la muestra. En caso de que las muestras deban transportarse a un laboratorio distante o almacenarse antes del análisis, se debe tener cuidado para evitar pérdidas. Se recomienda la congelación para los metabolitos, mientras que la refrigeración (pero no la congelación) en un recipiente hermético sin espacio de aire (o más preferiblemente, en un vial con espacio de cabeza) se recomienda para el análisis del solvente mismo. En el análisis químico, el control de calidad es esencial para obtener resultados fiables (para obtener más información, consulte el artículo “Garantía de calidad” en este capítulo). Al informar los resultados, se debe respetar la ética (ver capítulo Cuestiones éticas en otra parte del Enciclopedia).

Tabla 1. Algunos ejemplos de sustancias químicas objetivo para el monitoreo biológico y el tiempo de muestreo

Solvente

Producto químico objetivo

Orina/sangre

Tiempo de muestreo1

Disulfuro de carbono

Ácido 2-tiotiazolidina-4-carboxílico

Orina

Jue F

N,N-dimetilformamida

N-Metilformamida

Orina

lun mar mie jue

2-Etoxietanol y su acetato

Ácido etoxiacético

Orina

Th F (fin del último turno de trabajo)

hexano

2,4-hexanodiona

hexano

Orina

Sangre

lun mar mie jue

confirmación de exposición

Metanol

Metanol

Orina

lun mar mie jue

Estireno

Ácido mandélico

ácido fenilglioxílico

Estireno

Orina

Orina

Sangre

Jue F

Jue F

confirmación de exposición

tolueno

Ácido hipúrico

o-cresol

tolueno

tolueno

Orina

Orina

Sangre

Orina

mar mie jue

mar mie jue

confirmación de exposición

mar mie jue

Tricloroetileno

Ácido tricloroacético

(TCA)

Triclorocompuestos totales (suma de TCA y tricloroetanol libre y conjugado)

Tricloroetileno

Orina

Orina

Sangre

Jue F

Jue F

confirmación de exposición

Xilenos2

Ácidos metilhipúricos

Xilenos

Orina

Sangre

mar mie jue

mar mie jue

1 Fin del turno de trabajo a menos que se indique lo contrario: los días de la semana indican los días de muestreo preferidos.
2 Tres isómeros, ya sea por separado o en cualquier combinación.

Fuente: Resumido de OMS 1996.

 

Se establecen varios procedimientos analíticos para muchos disolventes. Los métodos varían según el producto químico objetivo, pero la mayoría de los métodos desarrollados recientemente utilizan cromatografía de gases (GC) o cromatografía líquida de alta resolución (HPLC) para la separación. Se recomienda el uso de un muestreador automático y un procesador de datos para un buen control de calidad en el análisis químico. Cuando se va a analizar un disolvente en sangre o en orina, la aplicación de la técnica headspace en GC (headspace GC) es muy conveniente, especialmente cuando el disolvente es lo suficientemente volátil. La Tabla 2 describe algunos ejemplos de los métodos establecidos para solventes comunes.

Tabla 2. Algunos ejemplos de métodos analíticos para el seguimiento biológico de la exposición a disolventes orgánicos

Solvente

Producto químico objetivo

sangre/orina

Método analítico

Disulfuro de carbono

2-tiotiazolidina-4-
ácido carboxílico

Orina

Cromatógrafo de líquidos de alta resolución con detección ultravioleta

(HPLC UV)

N, N-Dimetilformamida

N-metilformamida

Orina

Cromatógrafo de gases con detección termoiónica de llama (FTD-GC)

2-Etoxietanol y su acetato

Ácido etoxiacético

Orina

Extracción, derivatización y cromatógrafo de gases con detección de ionización de llama (FID-GC)

hexano

2,4-hexanodiona

hexano

Orina

Sangre

Extracción, (hidrólisis) y FID-GC

Espacio de cabeza FID-GC

Metanol

Metanol

Orina

Espacio de cabeza FID-GC

Estireno

Ácido mandélico

ácido fenilglioxílico

Estireno

Orina

Orina

Sangre

Desalación y UV-HPLC

Desalación y UV-HPLC

Espacio de cabeza FID-GC

tolueno

Ácido hipúrico

o-cresol

tolueno

tolueno

Orina

Orina

Sangre

Orina

Desalación y UV-HPLC

Hidrólisis, extracción y FID-GC

Espacio de cabeza FID-GC

Espacio de cabeza FID-GC

Tricloroetileno

Ácido tricloroacético
(TCA)

Triclorocompuestos totales (suma de TCA y tricloroetanol libre y conjugado)

Tricloroetileno

Orina

Orina

Sangre

Colorimetría o esterificación y cromatografía de gases con detección por captura de electrones (ECD-GC)

Oxidación y colorimetría, o hidrólisis, oxidación, esterificación y ECD-GC

Espacio de cabeza ECD-GC

Xilenos

Ácidos metilhipúricos (tres isómeros, ya sea por separado o en combinación)

Orina

Espacio de cabeza FID-GC

Fuente: Resumido de OMS 1996.

Evaluación

Se puede establecer una relación lineal de los indicadores de exposición (enumerados en la tabla 2) con la intensidad de la exposición a los solventes correspondientes ya sea a través de una encuesta de trabajadores ocupacionalmente expuestos a solventes, o por exposición experimental de voluntarios humanos. Así, la ACGIH (1994) y la DFG (1994), por ejemplo, han establecido el índice de exposición biológica (BEI) y el valor de tolerancia biológica (BAT), respectivamente, como los valores en las muestras biológicas equivalentes a la exposición ocupacional. límite de exposición para sustancias químicas transportadas por el aire, es decir, valor límite umbral (TLV) y concentración máxima en el lugar de trabajo (MAK), respectivamente. Sin embargo, se sabe que el nivel de la sustancia química objetivo en muestras obtenidas de personas no expuestas puede variar, reflejando, por ejemplo, las costumbres locales (p. ej., alimentos) y que pueden existir diferencias étnicas en el metabolismo de los solventes. Por lo tanto, es deseable establecer valores límite a través del estudio de la población local de interés.

Al evaluar los resultados, se deben excluir cuidadosamente la exposición no ocupacional al solvente (p. ej., mediante el uso de productos de consumo que contienen solventes o la inhalación intencional) y la exposición a sustancias químicas que generan los mismos metabolitos (p. ej., algunos aditivos alimentarios). En caso de que exista una gran diferencia entre la intensidad de la exposición al vapor y los resultados del control biológico, la diferencia puede indicar la posibilidad de absorción por la piel. Fumar cigarrillos suprimirá el metabolismo de algunos disolventes (p. ej., tolueno), mientras que la ingesta aguda de etanol puede suprimir el metabolismo del metanol de manera competitiva.

 

Atrás

Leer 9735 veces Ultima modificacion el Jueves, octubre 13 2011 20: 21

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de monitoreo biológico

Alcini, D, M Maroni, A Colombi, D Xaiz, V Foà. 1988. Evaluación de un método europeo estandarizado para la determinación de la actividad de colinesterasa en plasma y eritrocitos. Med Lavoro 79(1):42-53.

Alessio, L, A Berlin y V Foà. 1987. Factores de influencia distintos a la exposición en los niveles de indicadores biológicos. En Occupational and Environmental Chemical Hazards, editado por V Foà, FA Emmett, M ​​Maroni y A Colombi. Chichester: Wiley.

Alessio, L, L Apostoli, L Minoia y E Sabbioni. 1992. De macro- a micro-dosis: Valores de referencia para metales tóxicos. En Science of the Total Environment, editado por L Alessio, L Apostoli, L Minoia y E Sabbioni. Nueva York: Elsevier Science.

Conferencia Americana de Higienistas Industriales Gubernamentales (ACGIH). 1997. Valores Límite Umbral para Sustancias Químicas y Agentes Físicos e Índices de Exposición Biológica 1996-1997. Cincinnati, Ohio: ACGIH.

—. 1995. Valores Límite Umbral para Sustancias Químicas y Agentes Físicos e Índices de Exposición Biológica 1995-1996. Cincinnati, Ohio: ACGIH.

Augustinsson, KB. 1955. La variación normal de la actividad de la colinesterasa en sangre humana. Acta Physiol Scand 35:40-52.

Barquet, A, C Morgade y CD Pfaffenberger. 1981. Determinación de plaguicidas organoclorados y metabolitos en agua potable, sangre humana, suero y tejido adiposo. J Toxicol Salud Ambiental 7:469-479.

Berlín, A, RE Yodaiken y BA Henman. 1984. Evaluación de Agentes Tóxicos en el Lugar de Trabajo. Roles del Monitoreo Ambiental y Biológico. Actas del Seminario Internacional celebrado en Luxemburgo, del 8 al 12 de diciembre. 1980. Lancaster, Reino Unido: Martinus Nijhoff.

Bernard, A y R Lauwerys. 1987. Principios generales para el control biológico de la exposición a productos químicos. En Biological Monitoring of Exposure to Chemicals: Organic Compounds, editado por MH Ho y KH Dillon. Nueva York: Wiley.

Brugnone, F, L Perbellini, E Gaffuri y P Apostoli. 1980. Biomonitoreo de la exposición a solventes industriales del aire alveolar de los trabajadores. Int Arch Occup Environ Health 47:245-261.

Bullock, DG, NJ Smith y TP Whitehead. 1986. Evaluación externa de la calidad de los análisis de plomo en sangre. Clin Chem 32:1884-1889.

Canossa, E, G Angiuli, G Garasto, A Buzzoni, and E De Rosa. 1993. Indicadores de dosis en trabajadores agrícolas expuestos a mancozeb. Med Lavoro 84(1):42-50.

Catenacci, G, F Barbieri, M Bersani, A Ferioli, D Cottica y M Maroni. 1993. Monitoreo biológico de la exposición humana a la atrazina. Toxicol Letters 69:217-222.

Chalermchaikit, T, LJ Felice y MJ Murphy. 1993. Determinación simultánea de ocho rodenticidas anticoagulantes en suero sanguíneo e hígado. J Anal Toxicol 17:56-61.

Colosio, C, F Barbieri, M Bersani, H Schlitt y M Maroni. 1993. Marcadores de exposición ocupacional al pentaclorofenol. B Environ Contam Tox 51:820-826.

Comisión de las Comunidades Europeas (CEC). 1983. Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales. En EUR 8676 EN, editado por L Alessio, A Berlin, R Roi y M Boni. Luxemburgo: CEC.

—. 1984. Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales. En EUR 8903 EN, editado por L Alessio, A Berlin, R Roi y M Boni. Luxemburgo: CEC.

—. 1986. Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales. En EUR 10704 EN, editado por L Alessio, A Berlin, R Roi y M Boni. Luxemburgo: CEC.

—. 1987. Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales. En EUR 11135 EN, editado por L Alessio, A Berlin, R Roi y M Boni. Luxemburgo: CEC.

—. 1988a. Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales. En EUR 11478 EN, editado por L Alessio, A Berlin, R Roi y M Boni. Luxemburgo: CEC.

—. 1988b. Indicadores para evaluar la exposición y los efectos biológicos de los productos químicos genotóxicos. EUR 11642 Luxemburgo: CEC.

—. 1989. Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales. En EUR 12174 EN, editado por L Alessio, A Berlin, R Roi y M Boni. Luxemburgo: CEC.

Cranmer, M. 1970. Determinación de p-nitrofenol en orina humana. B Environ Contam Tox 5:329-332.

Dale, WE, A Curley y C Cueto. 1966. Insecticidas clorados extraíbles con hexano en sangre humana. Ciencias de la vida 5:47-54.

Dawson, JA, DF Heath, JA Rose, EM Thain y JB Ward. 1964. La excreción por humanos del fenol derivado in vivo del 2-isopropoxifenil-N-metilcarbamato. Bula OMS 30:127-134.

DeBernardis, MJ y WA Wargin. 1982. Determinación por cromatografía líquida de alta resolución de carbaril y 1 naftol en fluidos biológicos. J Chromatogr 246:89-94.

Deutsche Forschungsgemeinschaft (DFG). 1996. Concentraciones máximas en el lugar de trabajo (MAK) y valores de tolerancia biológica (CBAT) para materiales de trabajo. Informe No.28.VCH. Weinheim, Alemania: Comisión para la Investigación de Riesgos para la Salud de Compuestos Químicos en el Área de Trabajo.

—. 1994. Lista de valores MAK y BAT 1994. Weinheim, Alemania: VCH.

Dillon, HK y MHHo. 1987. Vigilancia biológica de la exposición a plaguicidas organofosforados. En Biological Monitoring of Exposure to Chemicals: Organic Compounds, editado por HK Dillon y MH Ho. Nueva York: Wiley.

Draper, WM. 1982. Un procedimiento de residuos múltiples para la determinación y confirmación de residuos de herbicidas ácidos en la orina humana. J Agricul Food Chem 30:227-231.

Eadsforth, CV, PC Bragt y NJ van Sittert. 1988. Estudios de excreción de dosis humana con insecticidas piretroides cipermetrina y alfacipermetrina: Relevancia para el control biológico. Xenobiótica 18:603-614.

Ellman, GL, KD Courtney, V Andres y RM Featherstone. 1961. Una nueva y rápida determinación colorimétrica de la actividad de la acetilcolinesterasa. Biochem Pharmacol 7:88-95.

Gage, JC. 1967. La importancia de las mediciones de la actividad de la colinesterasa en sangre. Residuo Rev 18:159-167.

Ejecutivo de Salud y Seguridad (HSE). 1992. Monitoreo biológico de exposiciones químicas en el lugar de trabajo. Nota de orientación EH 56. Londres: HMSO.

Agencia Internacional para la Investigación del Cáncer (IARC). 1986. Monografías de la IARC sobre la evaluación de los riesgos cancerígenos para los seres humanos: una actualización de las monografías (seleccionadas) de la IARC de los volúmenes 1 a 42. Suplemento 6: Efectos genéticos y relacionados; Suplemento 7: Evaluación global de carcinogenicidad. Lyon: IARC.

—. 1987. Método para detectar agentes que dañan el ADN en seres humanos: aplicaciones en epidemiología y prevención del cáncer. Publicaciones científicas de IARC, No.89, editado por H Bartsch, K Hemminki e IK O'Neill. Lyon: IARC.

—. 1992. Mecanismos de carcinogénesis en la identificación de riesgos. Publicaciones Científicas de IARC, No.116, editado por H Vainio. Lyon: IARC.

—. 1993. Aductos de ADN: identificación y significado biológico. Publicaciones Científicas de IARC, No.125, editado por K Hemminki. Lyon: IARC.

Kolmodin-Hedman, B, A Swensson y M Akerblom. 1982. Exposición ocupacional a algunos piretroides sintéticos (permetrina y fenvalerato). Arco Toxicol 50:27-33.

Kurttio, P, T Vartiainen y K Savolainen. 1990. Vigilancia ambiental y biológica de la exposición a fungicidas de etilenbisditiocarbamato y etilentiourea. Br J Ind Med 47:203-206.

Lauwerys, R y P Hoet. 1993. Exposición a productos químicos industriales: Directrices para el control biológico. Boca Ratón: Lewis.

Leyes, ERJ. 1991. Diagnóstico y tratamiento de las intoxicaciones. En Handbook of Pesticide Toxicology, editado por WJJ Hayes y ERJ Laws. Nueva York: Prensa Académica.

Lucas, AD, AD Jones, MH Goodrow y SG Saiz. 1993. Determinación de metabolitos de atrazina en orina humana: desarrollo de un biomarcador de exposición. Chem Res Toxicol 6:107-116.

Maroni, M, A Ferioli, A Fait y F Barbieri. 1992. Messa a punto del rischio tossicologico per l'uomo connesso alla produzione ed uso di antiparassitari. Anterior Oggi 4:72-133.

Reid, SJ y RR Watts. 1981. Un método para la determinación de residuos de diaklyl fosfato en la orina. J Anal Toxicol 5.

Richter, E. 1993. Plaguicidas organofosforados: un estudio epidemiológico multinacional. Copenhague: Programa de Salud Ocupacional y Oficina Regional de la OMS para Europa.

Shafik, MT, DE Bradway, HR Enos y AR Yobs. 1973a. Exposición humana a pesticidas organofosforados: un procedimiento modificado para el análisis cromatográfico de gas-líquido de los metabolitos de fosfato de alquilo en la orina. J Agricul Food Chem 21:625-629.

Shafik, MT, HC Sullivan y HR Enos. 1973b. Procedimiento de residuos múltiples para halo y nitrofenoles: Mediciones de exposición a pesticidas biodegradables que producen estos compuestos como metabolitos. J Agricul Food Chem 21:295-298.

Veranos, Los Ángeles. 1980. Los herbicidas de bipiridilio. Londres: Prensa académica.

Tordoir, WF, M Maroni y F He. 1994. Vigilancia de la salud de los trabajadores de pesticidas: Manual para profesionales de la salud ocupacional. Toxicología 91.

Oficina de Evaluación de Tecnología de EE. UU. 1990. Supervisión y detección genética en el lugar de trabajo. OTA-BA-455. Washington, DC: Imprenta del Gobierno de los Estados Unidos.

van Sittert, Nueva Jersey y EP Dumas. 1990. Estudio de campo sobre la exposición y los efectos en la salud de un pesticida organofosforado para mantener el registro en Filipinas. Med Lavoro 81:463-473.

van Sittert, NJ y WF Tordoir. 1987. Aldrín y dieldrín. En Indicadores biológicos para la evaluación de la exposición humana a productos químicos industriales, editado por L Alessio, A Berlin, M Boni y R Roi. Luxemburgo: CEC.

Verberk, MM, DH Brouwer, EJ Brouer y DP Bruyzeel. 1990. Efectos sobre la salud de los pesticidas en el cultivo de bulbos de flores en Holanda. Med Lavoro 81(6):530-541.

Westgard, JO, PL Barry, MR Hunt y T Groth. 1981. Un gráfico de Shewhart de múltiples reglas para el control de calidad en química clínica. Clin Chem 27:493-501.

Whitehead, TP. 1977. Control de Calidad en Química Clínica. Nueva York: Wiley.

Organización Mundial de la Salud (OMS). 1981. Evaluación Externa de la Calidad de los Laboratorios de Salud. EURO Reports and Studies 36. Copenhague: Oficina Regional de la OMS para Europa.

—. 1982a. Encuesta de Campo de Exposición a Plaguicidas, Protocolo Estándar. Documento. No. VBC/82.1 Ginebra: OMS.

—. 1982b. Límites recomendados basados ​​en la salud en la exposición ocupacional a pesticidas. Serie de Informes Técnicos, No.677. Ginebra: OMS.

—. 1994. Directrices para el control biológico de la exposición a sustancias químicas en el lugar de trabajo. vol. 1. Ginebra: OMS.