Imprimir
Viernes, marzo de 11 2011 16: 52

Humo de tabaco

Valora este artículo
(0 votos)

En 1985, el Cirujano General del Servicio de Salud Pública de EE. UU. revisó las consecuencias para la salud del tabaquismo con respecto al cáncer y la enfermedad pulmonar crónica en el lugar de trabajo. Se concluyó que para la mayoría de los trabajadores estadounidenses, fumar cigarrillos representa una causa mayor de muerte y discapacidad que su entorno laboral. Sin embargo, el control del tabaquismo y la reducción de la exposición a agentes peligrosos en el lugar de trabajo son fundamentales, ya que estos factores suelen actuar de forma sinérgica con el tabaquismo en la inducción y desarrollo de enfermedades respiratorias. Se sabe que varias exposiciones ocupacionales inducen bronquitis crónica en los trabajadores. Estos incluyen exposiciones a polvo de carbón, cemento y grano, a aerosoles de sílice, a vapores generados durante la soldadura y al dióxido de azufre. La bronquitis crónica entre los trabajadores de estas ocupaciones a menudo se ve agravada por el tabaquismo (US Surgeon General 1985).

Los datos epidemiológicos han documentado claramente que los mineros de uranio y los trabajadores del asbesto que fuman cigarrillos tienen un riesgo significativamente mayor de cáncer de las vías respiratorias que los no fumadores en estas ocupaciones. El efecto cancerígeno del uranio y el asbesto y el tabaquismo no es meramente aditivo, sino sinérgico al inducir el carcinoma de células escamosas del pulmón (US Surgeon General 1985; Hoffmann and Wynder 1976; Saccomanno, Huth and Auerbach 1988; Hilt et al. 1985). Los efectos cancerígenos de la exposición al níquel, los arsenicales, el cromato, los éteres de clorometilo y los del tabaquismo son al menos aditivos (US Surgeon General 1985; Hoffmann y Wynder 1976; IARC 1987a, Pershagen et al. 1981). Uno supondría que los trabajadores de hornos de coque que fuman tienen un mayor riesgo de cáncer de pulmón y riñón que los trabajadores de hornos de coque que no fuman; sin embargo, carecemos de datos epidemiológicos que sustenten este concepto (IARC 1987c).

El objetivo de este resumen es evaluar los efectos tóxicos de la exposición de hombres y mujeres al humo de tabaco ambiental (HTA) en el lugar de trabajo. Ciertamente, la reducción del consumo de tabaco en el lugar de trabajo beneficiará a los fumadores activos al reducir su consumo de cigarrillos durante la jornada laboral, aumentando así la posibilidad de que se conviertan en ex fumadores; pero dejar de fumar también beneficiará a aquellos no fumadores que sean alérgicos al humo del tabaco o que tengan dolencias pulmonares o cardíacas preexistentes.

Naturaleza fisicoquímica del humo de tabaco ambiental

Humo principal y secundario

ETS se define como el material en el aire interior que se origina a partir del humo del tabaco. Aunque fumar pipas y puros contribuye al ETS, el humo del cigarrillo es generalmente la principal fuente. ETS es un aerosol compuesto que se emite principalmente desde el cono de combustión de un producto de tabaco entre bocanadas. Esta emisión se denomina humo de corriente lateral (SS). En menor medida, el HTA se compone también de componentes del humo de la corriente principal (MS), es decir, los que exhala el fumador. La Tabla 7 enumera las proporciones de los principales agentes tóxicos y cancerígenos en el humo que se inhala, el humo principal y el humo secundario (Hoffmann y Hecht 1990; Brunnemann y Hoffmann 1991; Guerin et al. 1992; Luceri et al. 1993) . En "Tipo de toxicidad", los componentes del humo marcados con una "C" representan carcinógenos animales reconocidos por la Agencia Internacional para la Investigación del Cáncer (IARC). Entre estos se encuentran el benceno, la β-naftilamina, el 4-aminobifenilo y el polonio-210, que también son carcinógenos humanos establecidos (IARC 1987a; IARC 1988). Cuando se fuman cigarrillos con filtro, ciertos componentes volátiles y semivolátiles se eliminan selectivamente del MS mediante puntas con filtro (Hoffmann y Hecht 1990). Sin embargo, estos compuestos se encuentran en cantidades mucho mayores en SS sin diluir que en MS. Además, aquellos componentes del humo que se favorece que se formen durante la combustión sin llama en la atmósfera reductora del cono de combustión, se liberan en SS en un grado mucho mayor que en MS. Esto incluye grupos de carcinógenos como las nitrosaminas volátiles, las nitrosaminas específicas del tabaco (TSNA) y las aminas aromáticas.

Tabla 1. Algunos agentes tóxicos y tumorigénicos en el humo de la corriente secundaria de cigarrillos sin diluir

Compuesto

Tipo de
toxicidada

Cantidad en
corriente lateral
fumar por
cigarrillo

Relación de lado-
corriente a main-
corriente de humo

fase de vapor

Monóxido de carbono

T

26.80-61 mg

2.5 - 14.9

sulfuro de carbonilo

T

2-3 microgramos

0.03 - 0.13

1,3-butadieno

C

200-250 microgramos

3.8 - 10.8

Benceno

C

240-490 microgramos

8 - 10

Formaldehído

C

300-1,500 microgramos

10 - 50

Acroleína

T

40-100 microgramos

8 - 22

3-Vinilpiridina

T

330-450 microgramos

24 - 34

Cianuro de hidrógeno

T

14-110 microgramos

0.06 - 0.4

Hydrazine

C

90ng

3

Óxidos de nitrógeno (NOx)

T

500-2,000 microgramos

3.7 - 12.8

N-nitrosodimetilamina

C

200-1,040 ng

12 - 440

N-nitrosodietilamina

C

NDb-1,000 ng

<40

N-nitrosopirrolidina

C

7-700 ng

4 - 120

fase de partículas

Alquitrán

C

14-30 mg

1.1 - 15.7

Nicotina

T

2.1-46 mg

1.3 - 21

Fenol

TP

70-250 microgramos

1.3 - 3.0

Catecol

CdC

58-290 microgramos

0.67 - 12.8

2-toluidina

C

2.0-3.9 microgramos

18 - 70

β-naftilamina

C

19-70 ng

8.0 - 39

4-aminobifenilo

C

3.5-6.9 ng

7.0 - 30

Benz (a) antraceno

C

40-200 ng

2 - 4

Benzo (a) pireno

C

40-70 ng

2.5 - 20

Quinolina

C

15-20 microgramos

8 - 11

NNNc

C

0.15-1.7 microgramos

0.5 - 5.0

NNKd

C

0.2-1.4 microgramos

1.0 - 22

N-nitrosodietanolamina

C

43ng

1.2

Cadmio

C

0.72 μg

7.2

Níquel

C

0.2-2.5 microgramos

13 - 30

Zinc

T

6.0ng

6.7

polonio-210

C

0.5-1.6 pCi

1.06 - 3.7

a C=Carcinogénico; CoC=co-cancerígeno; T=tóxico; TP = promotor tumoral.
b ND=no detectado.
c NNN=N'-nitrosonornicotina.
d NNK=4-(metilnitrosamino)-1-(3-piridil)-1-butanona.

HTA en aire interior

Aunque el SS sin diluir contiene mayores cantidades de componentes tóxicos y cancerígenos que el MS, el SS inhalado por los no fumadores está muy diluido en el aire y sus propiedades se ven alteradas por la descomposición de ciertas especies reactivas. La Tabla 8 enumera los datos informados sobre agentes tóxicos y cancerígenos en muestras de aire interior de varios grados de contaminación por humo de tabaco (Hoffmann y Hecht 1990; Brunnemann y Hoffmann 1991; Luceri et al. 1993). La dilución en el aire de SS tiene un impacto significativo en las características físicas de este aerosol. En general, la distribución de varios agentes entre la fase de vapor y la fase de partículas cambia a favor de la primera. Las partículas en ETS son más pequeñas (<0.2 μ) que las de MS (~0.3 μ) y los niveles de pH de SS (pH 6.8 - 8.0) y de ETS son más altos que el pH de MS (5.8 - 6.2; Brunnemann y Hoffmann 1974). En consecuencia, del 90 al 95% de la nicotina está presente en la fase de vapor del ETS (Eudy et al. 1986). Asimismo, otros componentes básicos como el menor Nicotiana los alcaloides, así como las aminas y el amoníaco, están presentes principalmente en la fase de vapor del ETS (Hoffmann y Hecht 1990; Guerin et al. 1992).

Tabla 2. Algunos agentes tóxicos y tumorigénicos en ambientes interiores contaminados por humo de tabaco

Contaminante

Destino

Concentración/m3

Óxido nítrico

Salas de trabajo
Restaurantes
Barras
Cafeterias

50-440 microgramos
17-240 microgramos
80-250 microgramos
2.5-48 microgramos

Dioxido de nitrogeno

Salas de trabajo
Restaurantes
Barras
Cafeterias

68-410 microgramos
40-190 microgramos
2-116 microgramos
67-200 microgramos

Cianuro de hidrógeno

Salas

8-122 microgramos

1,3-butadieno

Barras

2.7-4.5 microgramos

Benceno

Lugares públicos

20-317 microgramos

Formaldehído

Salas
Tabernas

2.3-5.0 microgramos
89-104 microgramos

Acroleína

Lugares públicos

30-120 microgramos

Acetona

Cafeterias

910-1,400 microgramos

Fenoles (volátiles)

Cafeterias

7.4-11.5 ng

N-nitrosodimetilamina

Bares, restaurantes, oficinas

<10-240ng

N-nitrosodietilamina

Restaurantes

<10-30ng

Nicotina

Residencias
Oficinas
Edificios públicos

0.5-21 microgramos
1.1-36.6 microgramos
1.0-22 microgramos

2-toluidina

Oficinas
Sala de cartas con fumadores

3.0-12.8 ng
16.9ng

b-naftilamina

Oficinas
Sala de cartas con fumadores

0.27-0.34 ng
0.47ng

4-aminobifenilo

Oficinas
Sala de cartas con fumadores

0.1ng
0.11ng

Benz (a) antraceno

Restaurantes

1.8-9.3 ng

Benzo (a) pireno

Restaurantes
habitaciones de fumadores
Salas

2.8-760 microgramos
88-214 microgramos
10-20 microgramos

NNNa

Barras
Restaurantes

4.3-22.8 ng
NDb-5.7 ng

NNKc

Barras
Restaurantes
coches con fumadores

9.6-23.8 ng
1.4-3.3 ng
29.3ng

a NNN=N'-nitrosonornicotina.
b ND=no detectado.
c NNK=4-(metilnitrosamino)-1-(3-piridil)-1-butanona.

Biomarcadores de la captación de HTA por no fumadores

Aunque un número significativo de trabajadores que no fuman están expuestos al HTA en el lugar de trabajo, en los restaurantes, en sus propios hogares o en otros lugares cerrados, es casi imposible estimar la absorción real del HTA por una persona. La exposición al HTA se puede determinar con mayor precisión midiendo componentes específicos del humo o sus metabolitos en fluidos fisiológicos o en el aire exhalado. Aunque se han explorado varios parámetros, como el CO en el aire exhalado, la carboxihemoglobina en la sangre, el tiocianato (un metabolito del cianuro de hidrógeno) en la saliva o la orina, o la hidroxiprolina y la N-nitrosoprolina en la orina, solo tres medidas son realmente útiles para estimar la absorción de ETS por no fumadores. Nos permiten distinguir la exposición pasiva al humo de la de los fumadores activos y de los no fumadores que no tienen absolutamente ninguna exposición al humo del tabaco.

El biomarcador más utilizado para la exposición al HTA de los no fumadores es la cotinina, un metabolito principal de la nicotina. Se determina por cromatografía de gases, o por radioinmunoensayo en sangre o preferiblemente en orina, y refleja la absorción de nicotina a través del pulmón y la cavidad bucal. Unos pocos mililitros de orina de fumadores pasivos son suficientes para determinar la cotinina por cualquiera de los dos métodos. En general, un fumador pasivo tiene niveles de cotinina de 5 a 10 ng/ml de orina; sin embargo, ocasionalmente se han medido valores más altos para los no fumadores que estuvieron expuestos a HTA intenso durante un período más prolongado. Se ha establecido una respuesta a la dosis entre la duración de la exposición al HTA y la excreción urinaria de cotinina (tabla 3, Wald et al. 1984). En la mayoría de los estudios de campo, la cotinina en la orina de los fumadores pasivos ascendió a entre el 0.1 y el 0.3 % de las concentraciones medias encontradas en la orina de los fumadores; sin embargo, luego de una exposición prolongada a altas concentraciones de ETS, los niveles de cotinina han correspondido hasta al 1% de los niveles medidos en la orina de fumadores activos (US National Research Council 1986; IARC 1987b; US Environmental Protection Agency 1992).

Tabla 3. Cotinina urinaria en no fumadores según el número de horas reportadas de exposición al humo de tabaco ajeno en los últimos siete días

Duración de exposición

quintil

Límites (horas)

Número

Cotinina urinaria (media ± DE)
(ng/ml)
a

1

0.0 - 1.5

43

2.8±3.0

2nd

1.5 - 4.5

47

3.4±2.7

3rd

4.5 - 8.6

43

5.3±4.3

4

8.6 - 20.0

43

14.7±19.5

5

20.0 - 80.0

45

29.6±73.7

Todos

0.0 - 80.0

221

11.2±35.6

a La tendencia con el aumento de la exposición fue significativa (p<0.001).

Fuente: Basado en Wald et al. 1984.

El carcinógeno de la vejiga humana 4-aminobifenilo, que se transfiere del humo del tabaco al ETS, se ha detectado como un aducto de hemoglobina en fumadores pasivos en concentraciones de hasta el 10% del nivel medio de aducto encontrado en los fumadores (Hammond et al. 1993). Se ha medido hasta el 1 % de los niveles medios de un metabolito del carcinógeno derivado de la nicotina 4-(metilnitrosamino)-1-(3-piridil)-1-butanona (NNK), que se encuentra en la orina de los fumadores de cigarrillos. en la orina de no fumadores que habían estado expuestos a altas concentraciones de SS en un laboratorio de pruebas (Hecht et al. 1993). Aunque el último método de biomarcadores aún no se ha aplicado en estudios de campo, parece prometedor como indicador adecuado de la exposición de los no fumadores a un carcinógeno pulmonar específico del tabaco.

Humo de tabaco ambiental y salud humana

Trastornos distintos del cáncer

La exposición prenatal a MS y/o ETS y la exposición postnatal temprana a ETS aumentan la probabilidad de complicaciones durante las infecciones respiratorias virales en niños durante el primer año de vida.

La literatura científica contiene varias decenas de informes clínicos de varios países, que informan que los niños de padres fumadores, especialmente los niños menores de dos años, muestran un exceso de enfermedades respiratorias agudas (US Environmental Protection Agency 1992; US Surgeon General 1986; Medina et al. 1988; Riedel et al. 1989). Varios estudios también describieron un aumento de infecciones del oído medio en niños que estuvieron expuestos al humo del cigarrillo de los padres. El aumento de la prevalencia de derrame del oído medio atribuible al HTA condujo a una mayor hospitalización de niños pequeños para intervención quirúrgica (US Environmental Protection Agency 1992; US Surgeon General 1986).

En los últimos años, suficientes pruebas clínicas han llevado a la conclusión de que el tabaquismo pasivo está asociado con una mayor gravedad del asma en los niños que ya tienen la enfermedad, y que es muy probable que provoque nuevos casos de asma en los niños (US Environmental Protection Agency 1992). ).

En 1992, la Agencia de Protección Ambiental de EE. UU. (1992) revisó críticamente los estudios sobre los síntomas respiratorios y las funciones pulmonares en adultos no fumadores expuestos al HTA y concluyó que el tabaquismo pasivo tiene efectos sutiles pero estadísticamente significativos en la salud respiratoria de los adultos no fumadores.

Una búsqueda de la literatura sobre el efecto del tabaquismo pasivo en las enfermedades respiratorias o coronarias en los trabajadores reveló solo unos pocos estudios. Los hombres y mujeres que estuvieron expuestos al HTA en el lugar de trabajo (oficinas, bancos, instituciones académicas, etc.) durante diez años o más tenían una función pulmonar deteriorada (White y Froeb 1980; Masi et al. 1988).

Cáncer de pulmón

En 1985, la Agencia Internacional para la Investigación del Cáncer (IARC) revisó la asociación de la exposición pasiva al humo del tabaco con el cáncer de pulmón en no fumadores. Aunque en algunos estudios, se entrevistó personalmente a cada no fumador con cáncer de pulmón que informó haber estado expuesto al HTA y se le proporcionó información detallada sobre la exposición (US National Research Council 1986; US EPA 1992; US Surgeon General 1986; Kabat and Wynder 1984), el IARC concluyó:

Las observaciones sobre los no fumadores que se han hecho hasta ahora son compatibles con un aumento del riesgo del tabaquismo 'pasivo' o con una ausencia de riesgo. Sin embargo, el conocimiento de la naturaleza de la corriente lateral y principal del humo, de los materiales absorbidos durante el tabaquismo 'pasivo' y de la relación cuantitativa entre la dosis y el efecto que se observa comúnmente en la exposición a carcinógenos, lleva a la conclusión de que el tabaquismo pasivo da lugar a algunos riesgo de cáncer (IARC 1986).

Por lo tanto, existe una aparente dicotomía entre los datos experimentales que respaldan el concepto de que el HTA genera algún riesgo de cáncer y los datos epidemiológicos, que no son concluyentes con respecto a la exposición al HTA y el cáncer. Los datos experimentales, incluidos los estudios de biomarcadores, han fortalecido aún más el concepto de que el ETS es cancerígeno, como se discutió anteriormente. Ahora discutiremos en qué medida los estudios epidemiológicos que se han completado desde el informe IARC citado han contribuido a aclarar el problema del cáncer de pulmón ETS.

De acuerdo con los estudios epidemiológicos anteriores, y en unos 30 estudios informados después de 1985, la exposición al HTA de los no fumadores constituía un factor de riesgo de cáncer de pulmón de menos de 2.0, en relación con el riesgo de un no fumador sin una exposición significativa al HTA (US Environmental Protection Agency 1992, Kabat y Wynder 1984, IARC 1986, Brownson et al. 1992, Brownson et al. 1993). Pocos, si es que alguno, de estos estudios epidemiológicos cumplen los criterios de causalidad en la asociación entre un factor ambiental u ocupacional y el cáncer de pulmón. Los criterios que cumplen estos requisitos son:

  1. un grado de asociación bien establecido (factor de riesgo ≥3)
  2. reproducibilidad de la observación por una serie de estudios
  3. concordancia entre la duración de la exposición y el efecto
  4. plausibilidad biológica.

 

Una de las mayores incertidumbres sobre los datos epidemiológicos radica en la limitada fiabilidad de las respuestas obtenidas al interrogar a los casos y/oa sus familiares sobre el hábito tabáquico de los casos. Parece que, en general, existe una concordancia entre los antecedentes de tabaquismo de los padres y los cónyuges proporcionados por los casos y los controles; sin embargo, existen bajas tasas de concordancia para la duración y la intensidad del tabaquismo (Brownson et al. 1993; McLaughlin et al. 1987; McLaughlin et al. 1990). Algunos investigadores han cuestionado la confiabilidad de la información derivada de las personas sobre su estado de fumador. Esto se ejemplifica con una investigación a gran escala llevada a cabo en el sur de Alemania. Una población de estudio seleccionada al azar consistió en más de 3,000 hombres y mujeres, con edades comprendidas entre 25 y 64 años. Estas mismas personas fueron interrogadas tres veces en 1984-1985, en 1987-1988 y nuevamente en 1989-1990 sobre sus hábitos de fumar, mientras que cada vez se recolectó orina de cada probando y se analizó la cotinina. Aquellos voluntarios que tenían más de 20 ng de cotinina por ml de orina fueron considerados fumadores. Entre 800 ex fumadores que afirmaron ser no fumadores, el 6.3 %, el 6.5 % y el 5.2 % tenían niveles de cotinina superiores a 20 ng/ml durante los tres períodos de tiempo evaluados. Los autoproclamados no fumadores, que fueron identificados como fumadores reales según los análisis de cotinina, constituían el 0.5%, el 1.0% y el 0.9%, respectivamente (Heller et al. 1993).

La confiabilidad limitada de los datos obtenidos por cuestionario, y el número relativamente limitado de no fumadores con cáncer de pulmón que no estuvieron expuestos a carcinógenos en sus lugares de trabajo, apuntan a la necesidad de un estudio epidemiológico prospectivo con evaluación de biomarcadores (por ejemplo, cotinina, metabolitos de hidrocarburos aromáticos polinucleares y/o metabolitos de NNK en la orina) para llevar a cabo una evaluación concluyente de la cuestión de la causalidad entre el tabaquismo involuntario y el cáncer de pulmón. Si bien estos estudios prospectivos con biomarcadores representan una tarea importante, son esenciales para responder a las preguntas sobre exposición que tienen importantes implicaciones para la salud pública.

Humo de Tabaco Ambiental y Ambiente Laboral

Aunque hasta el momento los estudios epidemiológicos no han demostrado una asociación causal entre la exposición al HTA y el cáncer de pulmón, es muy deseable proteger a los trabajadores en el lugar de trabajo de la exposición al humo de tabaco ambiental. Este concepto está respaldado por la observación de que la exposición a largo plazo de los no fumadores al HTA en el lugar de trabajo puede conducir a una reducción de la función pulmonar. Además, en entornos laborales con exposición a carcinógenos, el tabaquismo involuntario puede aumentar el riesgo de cáncer. En los Estados Unidos, la Agencia de Protección Ambiental ha clasificado el ETS como carcinógeno del Grupo A (humano conocido); por lo tanto, la ley de los Estados Unidos requiere que los empleados estén protegidos contra la exposición al ETS.

Se pueden tomar varias medidas para proteger a los no fumadores de la exposición al ETS: prohibir fumar en el lugar de trabajo, o al menos separar a los fumadores de los no fumadores cuando sea posible, y garantizar que las habitaciones de los fumadores tengan un sistema de escape separado. El enfoque más gratificante y, con mucho, el más prometedor es ayudar a los empleados que fuman cigarrillos en los esfuerzos para dejar de fumar.

El lugar de trabajo puede ofrecer excelentes oportunidades para implementar programas para dejar de fumar; de hecho, numerosos estudios han demostrado que los programas en el lugar de trabajo tienen más éxito que los programas basados ​​en clínicas, porque los programas patrocinados por el empleador son de naturaleza más intensa y ofrecen incentivos económicos y/o de otro tipo (US Surgeon General 1985). También se indica que la eliminación de las enfermedades pulmonares crónicas relacionadas con el trabajo y el cáncer frecuentemente no puede llevarse a cabo sin esfuerzos para convertir a los trabajadores en ex fumadores. Además, las intervenciones en el lugar de trabajo, incluidos los programas para dejar de fumar, pueden producir cambios duraderos en la reducción de algunos factores de riesgo cardiovascular para los empleados (Gomel et al. 1993).

Agradecemos enormemente la asistencia editorial de Ilse Hoffmann y la preparación de este manuscrito por Jennifer Johnting. Estos estudios cuentan con el apoyo de USPHS Grants CA-29580 y CA-32617 del Instituto Nacional del Cáncer.

 

Atrás

Leer 6344 veces Ultima modificacion el Martes, septiembre 06 2011 22: 52