Jueves, 10 Marzo 2011 14: 51

Operaciones manuales en agricultura

Valora este artículo
(29 votos)

Los métodos y prácticas agrícolas varían según las fronteras nacionales:

  • industrial agricultura: países industrializados de Occidente (clima templado) y sectores especializados de los países tropicales
  • revolución verde agricultura: áreas bien dotadas en los trópicos, principalmente llanuras irrigadas y deltas de Asia, América Latina y África del Norte
  • pobres en recursos agricultura: zonas del interior, tierras áridas, bosques, montañas y colinas, cerca de desiertos y pantanos. Aproximadamente mil millones de personas en Asia, 1 millones en el África subsahariana y 300 millones en América Latina dependen de esta forma de agricultura. Las mujeres constituyen una gran proporción de agricultores de subsistencia: casi el 100 % de los alimentos del África subsahariana, del 80 al 50 % de los alimentos de Asia, el 60 % de los alimentos del Caribe, el 46 % de los alimentos del norte de África y Oriente Medio y el 31 % de los Los alimentos de América Latina son producidos por mujeres (Dankelman y Davidson 30).

 

Con distintas características agroclimáticas, los cultivos de la finca se agrupan de la siguiente manera:

  • Campo cultivos (cereales, semillas oleaginosas, fibra, azúcar y cultivos forrajeros) son de secano o se cultivan mediante riego controlado.
  • Tierra alta y semi-secano (trigo, cacahuete, algodón, etc.) se practican donde el riego o el agua de lluvia no están disponibles en abundancia.
  • Humedal El cultivo (cultivos de arroz) se practica donde la tierra se ara y se encharca con 5 a 6 cm de agua estancada y se trasplantan las plántulas.
  • Horticultura Los cultivos son cultivos de frutas, hortalizas y flores.
  • Plantación o perenne los cultivos incluyen coco, caucho, café, té, etc.
  • Pastos son todo lo que la naturaleza crece sin intervención humana.

 

Operaciones Agrícolas, Herramientas Manuales y Maquinaria

La agricultura en los países tropicales requiere mucha mano de obra. La relación entre población rural y tierra cultivable en Asia es el doble de la de África y el triple de la de América Latina. Se estima que el esfuerzo humano proporciona más del 70% de la energía requerida para las tareas de producción de cultivos (FAO 1987). La mejora de las herramientas, el equipo y los métodos de trabajo existentes tiene efectos significativos en la reducción al mínimo del esfuerzo y la fatiga humanos y en el aumento de la productividad agrícola. Para los cultivos de campo, las actividades agrícolas pueden clasificarse en función de la demanda fisiológica de trabajo con referencia a la capacidad de trabajo máxima de un individuo (ver tabla 1).

Cuadro 1. Categorización de las actividades de la finca

Severidad del trabajo

operaciones agrícolas

 

preparación de la cama de semillas

Siembra

Deshierbe e intercultivo

Cosecha

Trabajo ligero

Escaleras (dos trabajadores)

Difusión de semillas/fertilizante, espantar pájaros, aporcamiento

Difusión de fertilizantes

Limpiar granos, clasificar, esparcir verduras (en cuclillas), machacar granos (ayudante), aventar (sentado)

Trabajo moderadamente pesado

Caminar detrás de implementos tirados por animales, nivelar la superficie del suelo con un rastrillo de madera, escalar (un trabajador), cavar el suelo con una pala, cortar arbustos

Arranque manual de plántulas (postura en cuclillas y encorvada), trasplante de plántulas (postura encorvada), caminar sobre un terreno encharcado

Deshierbe manual con hoz y azada de mano (en cuclillas y postura inclinada), riego por canal, fumigación de mochila con pesticidas, operación de deshierbe en suelo húmedo y seco

Cortar cultivos, cosechar arroz, trigo (en cuclillas y postura inclinada), arrancar verduras, aventar manualmente (sentado y de pie), cortar caña de azúcar, ayudante de trilladora de pedal, transporte de carga (20-35 kg)

Trabajo pesado

Arado, levantamiento de agua (columpio), cavado de suelo seco, recorte de terraplenes de suelo húmedo, trabajo con pala, rastra de discos

 

Funcionamiento de la escardadora en suelo seco

Trillar el grano golpeando, golpeando el grano

trabajo extremadamente pesado

Bund recorte de suelo seco

Germinación de la operación de la sembradora en un campo encharcado

 

Trilla a pedal, con carga sobre cabezal o yugo (60-80 kg)

Fuente: Basado en datos de Nag, Sebastian y Marlankar 1980; Nag y Chatterjee 1981.

Preparación del semillero

Un semillero adecuado es aquel que es suave pero compacto y libre de vegetación que podría interferir con la siembra. La preparación de la cama de siembra involucra el uso de diferentes tipos de herramientas manuales, un cincel poco profundo o un arado de vertedera tirado por animales de tiro (figura 1) o implementos de tractores para arar, rastrillar, etc. Aproximadamente 0.4 hectárea (ha) de tierra se pueden labrar con un arado tirado por bueyes en un día, y un par de bueyes pueden proporcionar energía en la medida de 1 caballo de fuerza (hp).

Figura 1. Arado desi de cincel poco profundo tirado por bueyes

AGR100F1

Al usar equipo tirado por animales, el trabajador actúa como un controlador de animales y guía el implemento con un mango. En la mayoría de los casos, el operador camina detrás del implemento o se sienta en el equipo (p. ej., gradas de discos y batidoras). La operación de implementos tirados por animales implica un gasto considerable de energía humana. Con un arado de 15 cm, una persona puede caminar unos 67 km para cubrir un área de 1 hectárea. A una velocidad de marcha de 1.5 km/h, el gasto energético humano asciende a 21 kJ/min (alrededor de 5.6 × 104 kJ por hectárea). Un mango de implementos que es demasiado largo o demasiado corto resulta en incomodidad física. Gite (1991) y Gite y Yadav (1990) sugirieron que la altura óptima del mango de un implemento puede ajustarse entre 64 y 84 cm (1.0 a 1.2 veces la altura del metacarpiano III del operador).

Las herramientas manuales (pala, pala, azadón, etc.) se utilizan para excavar y aflojar el suelo. Para minimizar la monotonía en el trabajo de palear, Freivalds (1984) dedujo la tasa óptima de trabajo (es decir, la tasa de paleado) (18 a 21 cucharadas/minuto), carga de pala (5 a 7 kg para 15 a 20 cucharadas/minuto, y 8 kg de 6 a 8 cucharadas/minuto), distancia de lanzamiento (1.2 m) y altura de lanzamiento (1 a 1.3 m). Las recomendaciones también incluyen un ángulo de elevación de la pala de aproximadamente 32°, un mango de herramienta largo, una hoja grande de punta cuadrada para palear, una hoja de punta redonda para excavar y una construcción trasera hueca para reducir el peso de la pala.

Nag y Pradhan (1992) sugirieron tareas de azada de baja y alta elevación (ver figura 2), basándose en estudios fisiológicos y biomecánicos. Como guía general, el método de trabajo y el diseño de la azada son los factores decisivos en la eficiencia del desempeño de las tareas de azada (Pradhan et al. 1986). El modo de golpear la hoja contra el suelo determina el ángulo en el que penetra en el suelo. Para trabajos de poca altura, la producción de trabajo se optimizó a 53 golpes/minuto, con un área de tierra excavada de 1.34 m2/minuto, y una relación trabajo-descanso de 10:7. Para trabajos de gran altura, las condiciones óptimas fueron 21 golpes por minuto y 0.33 m2/minuto de terreno excavado. La forma de la hoja (rectangular, trapezoidal, triangular o circular) depende del propósito y la preferencia de los usuarios locales. Para diferentes modos de azada, las dimensiones de diseño recomendadas son: peso 2 kg, ángulo entre la hoja y el mango de 65 a 70°, largo del mango de 70 a 75 cm, largo de la hoja de 25 a 30 cm, ancho de la hoja de 22 a 24 cm y diámetro del mango de 3 a 4 cm.

Figura 2. Tareas de azada en el recorte de terraplenes en arrozales

AGR100F2

Pranab Kumar Nag

Siembra/plantación y aplicación de fertilizantes

La siembra de semillas y la plantación de plántulas involucran el uso de sembradoras, sembradoras, sembradoras y la transmisión manual de semillas. Aproximadamente el 8% del total de horas-persona se requiere para esparcir semillas y arrancar y trasplantar plántulas.

  • En radiodifusión de semillas/fertilizante a mano, los esparcidores operados manualmente permiten una distribución uniforme con un trabajo mínimo.
  • Siembra detrás de un arado consiste en la siembra de semillas en un surco abierto por un arado de madera.
  • In perforación, las semillas se colocan en el suelo con una sembradora o una sembradora con fertilizante. La fuerza de empuje/tracción requerida para que un trabajador opere el taladro (unidades manuales o tiradas por animales montadas sobre ruedas) es una consideración de diseño importante.
  • dibujándose es la colocación de semillas a mano o con un pequeño implemento (un escurridizo), a una distancia media de 15 x 15 cm o 25 x 25 cm. La abrasión de los dedos y la incomodidad corporal debido a las posturas encorvadas y en cuclillas son quejas comunes.
  • In la plantación de, los conjuntos de caña de azúcar se plantan a 30 cm de longitud en un surco; Los tubérculos de semilla de papa se plantan planos y se hacen camellones.
  • Alrededor de 1/3 del arroz del mundo es cultivado por el trasplante sistema. Esto también se hace para el tabaco y algunos cultivos de hortalizas. Por lo general, las semillas en germinación se esparcen densamente en un campo encharcado. Las plántulas se arrancan de raíz y se trasplantan a un campo encharcado a mano o con trasplantadoras manuales o eléctricas. El operador de una trasplantadora operada manualmente camina detrás de la unidad para operar el mecanismo del mango para recoger y trasplantar las plántulas.

Para el trasplante manual, los trabajadores deben sumergirse hasta las rodillas en el lodo. La postura en cuclillas utilizada para plantar en tierra firme, con una o dos piernas flexionadas por la rodilla, no puede adoptarse en un campo regado. Se requieren alrededor de 85 horas-persona para trasplantar plántulas por cada hectárea de tierra. La postura incómoda y la carga estática ejercen presión sobre el sistema cardiovascular y causan dolor lumbar (Nag y Dutt 1980). Las sembradoras manuales producen una mayor producción de trabajo (es decir, una sembradora es unas ocho veces más eficiente que trasplantar a mano). Sin embargo, mantener el equilibrio de la máquina (ver figura 3) en un campo encharcado requiere unas 2.5 veces más energía que el trasplante manual.

Figura 3. Operando una sembradora germinada mejorada

AGR100F3

Paranab Kumar Nag

Plan de proteccion

Los aplicadores de fertilizantes, pesticidas, herbicidas y otros químicos son operados por presión a través de boquillas o por fuerza centrífuga. El rociado a gran escala se basa en el atomizador de rociado con boquilla hidráulica, ya sea de operación manual o con equipo montado en un tractor. Los rociadores de mochila son modelos reducidos de rociadores montados en vehículos (Bull 1982).

  • A pulverizador de mochila a compresión consta de un tanque, una bomba y una varilla con boquilla y manguera.
  • A pulverizador de mochila accionado por palanca (10 a 20 l) tiene una palanca de operación.
  • A pulverizador de mochila motorizado consta de un depósito de productos químicos de unos 10 litros de capacidad y un motor refrigerado por aire de 1 a 3 CV. El rociador y la unidad del motor están montados en un bastidor y se transportan en la espalda del operador.
  • A pulverizador de cubo manual y pulverizador de pie requieren dos personas para operar la bomba y rociar. A rociador oscilante es operado por el movimiento oscilante (hacia adelante y hacia atrás) de la palanca del mango.

 

Cuando se lleva al hombro durante períodos prolongados, las vibraciones de los pulverizadores de mochila/aplicadores de productos químicos tienen efectos perjudiciales para el cuerpo humano. El rociado con un rociador de mochila da como resultado una exposición potencial de la piel (las piernas experimentan el 61% de la contaminación total, las manos el 33%, el torso el 3%, la cabeza el 2% y los brazos el 1%) (Bonsall 1985). La ropa de protección personal (incluyendo guantes y botas) puede reducir la contaminación dérmica de los pesticidas (Forget 1991, 1992). El trabajo es bastante extenuante, debido al transporte de la carga en la espalda, así como al funcionamiento continuo de la manija del rociador (20 a 30 golpes/minuto); además, está la carga termorreguladora debida a las prendas de protección. El peso y la altura del rociador, la forma del tanque del rociador, el sistema de montaje y la fuerza requerida para operar la bomba son aspectos ergonómicos importantes.

Irrigación

El riego es un requisito previo para los cultivos intensivos en regiones áridas y semiáridas. Desde tiempos inmemoriales, se han utilizado varios dispositivos indígenas para levantar agua. Levantar agua por diferentes métodos manuales es físicamente extenuante. A pesar de la disponibilidad de conjuntos de bombas de agua (eléctricas o accionadas por motor), los dispositivos operados manualmente son ampliamente utilizados (por ejemplo, cestas giratorias, elevadores de agua de contrapeso, ruedas hidráulicas, bombas de cadena y lavadora, bombas recíprocas).

  • A cesta de oscilación se utiliza para levantar agua de un canal de riego (ver figura 4). La capacidad de la cesta es de unos 4 a 6 ly la frecuencia de funcionamiento es de unas 15 a 20 oscilaciones/minuto. Dos operadores trabajan en ángulo recto con respecto a la dirección del movimiento de la cesta. El trabajo exige una intensa actividad física, con la adopción de posturas y movimientos corporales extraños.
  • A elevación de agua de contrapeso consiste en un recipiente unido al extremo de una palanca horizontal que se apoya en un poste vertical. El trabajador ejerce fuerza sobre el contrapeso para operar el dispositivo.
  • Bombas recíprocas (bombas manuales de pistón-cilindro) se operan manualmente en modo alternativo o pedaleando en modo giratorio.

 

Figura 4. Elevación de agua del canal de riego usando una canasta giratoria

AGR100F4

Pranab Kumar Nag

Deshierbe e intercultivo

Las plantas y malezas indeseables causan pérdidas al afectar el rendimiento y la calidad de los cultivos, albergar plagas de plantas y aumentar los costos de riego. La reducción en el rendimiento varía de 10 a 60% dependiendo del grosor del crecimiento y el tipo de maleza. Alrededor del 15% del trabajo humano se gasta en eliminar las malas hierbas durante la temporada de cultivo. Las mujeres suelen constituir una gran parte de la mano de obra que se dedica al deshierbe. En una situación típica, un trabajador pasa alrededor de 190 a 220 horas desherbando una hectárea de tierra a mano o con una azada. Las palas también se utilizan para deshierbar e intercultivar.

De varios métodos (p. ej., mecánico, químico, biológico, cultural), el deshierbe mecánico, ya sea arrancando las malezas a mano o con herramientas manuales como el azadón manual y las escardadoras simples, es útil tanto en terrenos secos como húmedos (Nag y Dutt 1979; Gite y Yadav 1990). En secano, los trabajadores se acuclillan en el suelo con una o dos piernas flexionadas a la altura de la rodilla y quitan las malas hierbas con una hoz o un azadón de mano. En terrenos regados, los trabajadores adoptan una postura inclinada hacia delante para quitar las malas hierbas manualmente o con la ayuda de desbrozadoras.

La demanda fisiológica en el uso de desmalezadores (p. ej., cuchilla y rastrillo, dedos de proyección, desyerbadores de doble barrido) es relativamente mayor que en el desherbado manual. Sin embargo, la eficiencia del trabajo en términos de área cubierta es significativamente mejor con los deshierbadores que con el deshierbe manual. La demanda de energía en trabajos de deshierbe manual es solo alrededor del 27% de la capacidad de trabajo de uno, mientras que para diferentes desherbadores, la demanda de energía sube hasta el 56%. Sin embargo, la tensión es relativamente menor en el caso de las desbrozadoras de ruedas, con las que se necesitan entre 110 y 140 horas-persona para cubrir una hectárea. Una desbrozadora tipo azada de ruedas (empujar/tirar) consta de una o dos ruedas, una cuchilla, un marco y un mango. Se requiere una fuerza (empujar o tirar) de unos 5 a 20 kilogramos de fuerza (1 kgf = 9.81 Newton), con una frecuencia de unos 20 a 40 golpes por minuto. Las especificaciones técnicas de las desbrozadoras tipo azada de ruedas, sin embargo, necesitan ser estandarizadas para una mejor operación.

Cosecha

En los cultivos de arroz y trigo, la cosecha requiere del 8 al 10% del total de horas-persona utilizadas en la producción de cultivos. A pesar de la rápida mecanización en la cosecha, la dependencia a gran escala de los métodos manuales (ver figura 5) continuará en los próximos años. Las herramientas manuales (hoz, guadaña, etc.) se utilizan en la cosecha manual. La guadaña se usa comúnmente en algunas partes del mundo, debido a su gran área de cobertura. Sin embargo, requiere más energía que cosechar con una hoz.

Figura 5. Cosecha de la cosecha de trigo con una hoz

AGR100F5

Pranab Kumar Nag

La popularidad de la hoz se debe a su simplicidad en la construcción y operación. Una hoz es una hoja curva, de filo liso o dentado, unida a un mango de madera. El diseño de la hoz varía de una región a otra y existe una diferencia en la carga cardiorrespiratoria con diferentes tipos de hoces. La salida varía de 110 a 165 m2/hora, valores correspondientes a 90 y 60 horas-persona por hectárea de terreno. Las posturas de trabajo incómodas pueden provocar complicaciones clínicas a largo plazo relacionadas con la espalda y las articulaciones de las extremidades. Cosechar en una postura inclinada tiene la ventaja de la movilidad tanto en tierra seca como húmeda, y es aproximadamente un 16% más rápido que en cuclillas; sin embargo, una postura inclinada requiere un 18% más de energía que ponerse en cuclillas (Nag et al. 1988).

Los accidentes de cosecha, las laceraciones y las heridas por incisión son comunes en los campos de arroz, trigo y caña de azúcar. Las herramientas manuales están diseñadas principalmente para personas diestras, pero a menudo son utilizadas por usuarios zurdos, que desconocen las posibles implicaciones de seguridad. Los factores importantes en el diseño de una hoz son la geometría de la hoja, el dentado de la hoja, la forma y el tamaño del mango. Con base en un estudio de ergonomía, las dimensiones de diseño sugeridas de una hoz son: peso, 200 g; longitud total, 33 cm; longitud del mango, 11 cm; diámetro del mango, 3 cm; radio de curvatura de la hoja, 15 cm; concavidad de la hoja, 5 cm. Para una hoz dentada: paso de diente, 0.2 cm; ángulo de diente, 60°; y relación entre la longitud de la superficie de corte y la longitud de la cuerda, 1.2. Dado que los trabajadores realizan actividades en condiciones climáticas extremas, los problemas de salud y seguridad son de importancia crítica en la agricultura tropical. La tensión cardiorrespiratoria se acumula durante largas horas de trabajo. Las condiciones climáticas extremas y los trastornos del calor añaden estrés al trabajador y disminuyen la capacidad de trabajo.

Las máquinas cosechadoras incluyen segadoras, picadoras, empacadoras, etc. Las segadoras accionadas por motor o tiradas por animales también se utilizan para cosechar cultivos de campo. Las cosechadoras combinadas (autopropulsadas o accionadas por tractor) son útiles cuando se practica un cultivo intensivo y la escasez de mano de obra es aguda.

La cosecha del sorgo se realiza cortando la cabeza de la mazorca y luego cortando la planta, o viceversa. La cosecha de algodón se recolecta en 3 a 5 cosechas a mano a medida que la bola madura. La cosecha de patatas y remolacha azucarera se realiza manualmente (ver figura 6) o utilizando una grada de palas o una excavadora, que puede ser de tracción animal o de tractor. En el caso de los cacahuetes, las vides se arrancan manualmente o se extraen con excavadoras y se separan las vainas.

Figura 6. Cosecha manual de patatas con azadón

AGR100F6

Trilla

La trilla incluye la separación de los granos de las espigas. Los antiguos métodos manuales para trillar el grano del pináculo del arroz son: frotar las espigas con los pies, golpear la cosecha sobre una tabla, pisar con animales, etc. La trilla se clasifica como una tarea moderadamente pesada (Nag y Dutt 1980). En la trilla manual mediante batido (ver figura 7) se separan alrededor de 1.6 a 1.8 kg de grano y 1.8 a 2.1 kg de paja por minuto de plantas de arroz/trigo de tamaño mediano.

Figura 7. Trillar el pináculo del arroz golpeando

AGR100F7

Pranab Kumar Nag

Las trilladoras mecánicas realizan simultáneamente las operaciones de trilla y aventado. La trilladora de pedal (modo oscilante o giratorio) aumenta la producción de 2.3 a 2.6 kg de grano (cáscara/trigo) y de 3.1 a 3.6 kg de paja por minuto. La trilla a pedal (ver figura 8) es una actividad más extenuante que la trilla manual a golpes. El pedaleo y la sujeción de las plantas de arroz en el tambor rodante dan como resultado una gran tensión muscular. Las mejoras ergonómicas en la trilladora de pedal pueden permitir un patrón rítmico de trabajo de piernas en posturas alternas de estar sentado y de pie y minimizar las tensiones posturales. El impulso óptimo de la trilladora se puede alcanzar con un peso de aproximadamente 8 kg del tambor rodante.

Figura 8. Una trilladora de pedal en funcionamiento

AGR100F8

Pranab Krumar Nag

Las trilladoras eléctricas se están introduciendo gradualmente en las áreas de la revolución verde. Esencialmente consisten en un motor primario, una unidad de trilla, una unidad de aventado, una unidad de alimentación y una salida para el grano limpio. Las cosechadoras autopropulsadas son una combinación de una cosechadora y una trilladora para cultivos de cereales.

Se han reportado accidentes fatales en la trilla de granos usando trilladoras eléctricas y cortadoras de forraje. La incidencia de lesiones moderadas a severas por trilladoras fue de 13.1 por cada mil trilladoras (Mohan y Patel 1992). El rotor puede lesionar las manos y los pies. La posición de la tolva de alimentación puede resultar en posturas incómodas al alimentar la cosecha en la trilladora. La correa que acciona la trilladora también es una causa común de lesiones. Con las cortadoras de forraje, los operadores pueden sufrir lesiones mientras introducen el forraje en las cuchillas móviles. Los niños sufren lesiones cuando juegan con las máquinas.

Los trabajadores a menudo se paran en plataformas inestables. En caso de sacudida o pérdida del equilibrio, el peso del torso empuja las manos hacia el tambor de trilla/cortador de forraje. La trilladora debe diseñarse de modo que la tolva de alimentación esté al nivel del codo y los operadores estén de pie sobre una plataforma estable. El diseño de la cortadora de forraje puede mejorarse por motivos de seguridad de la siguiente manera (Mohan y Patel 1992):

  • un rodillo de advertencia colocado en la tolva antes de los rodillos de alimentación
  • un pasador de bloqueo para fijar el volante cuando el cortador no está en uso
  • cubierta de engranajes y protectores de cuchillas para empujar las ramas y evitar que la ropa se enrede.

 

Para la trilla del maní, la práctica tradicional es sujetar las plantas con una mano y golpearlas contra una varilla o parrilla. Para la trilla del maíz se utilizan desgranadoras de maíz tubulares. El trabajador sostiene el equipo en la palma de su mano e inserta y rota las mazorcas a través del equipo para separar los granos de maíz de las mazorcas. El rendimiento con este equipo es de unos 25 kg/hora. Las desgranadoras de maíz de tipo rotatorio manual tienen una mayor producción de trabajo, alrededor de 50 a 120 kg/hora. La longitud del mango, la fuerza requerida para operarlo y la velocidad de operación son las consideraciones importantes en las desgranadoras de maíz rotativas manuales.

Aventando

El aventar es un proceso para separar los granos de la paja soplando aire, usando un ventilador de mano o un ventilador de pedal o de motor. En los métodos manuales (ver figura 9), todo el contenido se lanza al aire y el grano y la paja se separan por impulso diferencial. Una aventadora mecánica puede, con un esfuerzo humano considerable, operarse a mano o con un pedal.

Figura 9. Aventado manual

AGR100F9

Pranab Kumar Nag

Otras operaciones posteriores a la cosecha incluyen la limpieza y clasificación de los granos, el descascarillado, la descortezado, el descascarillado, el pelado, el rebanado, la extracción de fibras, etc. En las operaciones posteriores a la cosecha se utilizan diferentes tipos de equipos operados manualmente (p. ej., peladoras y rebanadoras de papas, descascarilladoras de coco). Decorticación implica romper las cáscaras y quitar las semillas (p. ej., cacahuetes, semillas de ricino). Una descortezadora de maní separa los granos de las vainas. La decorticación manual tiene un rendimiento muy bajo (alrededor de 2 kg de descascarado de vainas por persona-hora). Los trabajadores se quejan de molestias corporales debido a la postura continua sentada o en cuclillas. Los descortezadores de modo oscilante o rotatorio tienen una producción de alrededor de 40 a 60 kg de vainas por hora. Bombardeo y descascarado se refieren a la separación de la cubierta o cáscara de la semilla de la parte interna del grano (p. ej., arroz, soja). Las descascaradoras de arroz tradicionales se operan manualmente (a mano o con el pie) y se utilizan ampliamente en las zonas rurales de Asia. La fuerza máxima que se puede ejercer con la mano o el pie determina el tamaño y otras características del dispositivo. Hoy en día, los molinos de arroz motorizados se utilizan para descascarar. En algunos granos, como el guandú, la cubierta de la semilla o la cáscara están muy unidas. La eliminación de la cáscara en tales casos se llama descascarar.

Para diferentes herramientas manuales e implementos operados manualmente, el tamaño de la empuñadura y la fuerza ejercida sobre los mangos son consideraciones importantes. En el caso de las cizallas, la fuerza que se puede aplicar con las dos manos es importante. Aunque la mayoría de las lesiones relacionadas con las herramientas manuales se clasifican como menores, sus consecuencias suelen ser dolorosas e incapacitantes debido a la demora en el tratamiento. Los cambios de diseño en las herramientas manuales deben limitarse a aquellas que los artesanos del pueblo puedan fabricar fácilmente. Los aspectos de seguridad deben tenerse debidamente en cuenta en los equipos motorizados. Los zapatos y guantes de seguridad disponibles en la actualidad son demasiado caros y no son adecuados para los agricultores de los trópicos.

Tareas manuales de manipulación de materiales.

La mayoría de las actividades agrícolas implican tareas manuales de manipulación de materiales (por ejemplo, levantar, bajar, tirar, empujar y transportar cargas pesadas), lo que provoca distensiones musculoesqueléticas, caídas, lesiones en la columna, etc. La tasa de lesiones por caídas aumenta drásticamente cuando la altura de la caída es de más de 2 m; las fuerzas de impacto se reducen muchas veces si la víctima cae sobre tierra blanda, heno o arena.

En las zonas rurales, las cargas que pesan entre 50 y 100 kg pueden transportarse varias millas diariamente (Sen y Nag 1975). En algunos países, las mujeres y los niños tienen que ir a buscar agua en grandes cantidades desde la distancia. Estas arduas tareas deben minimizarse en la medida de lo posible. Los diferentes métodos de transporte de agua implican llevar en la cabeza, en la cadera, en la espalda y en el hombro. Éstos se han asociado con una variedad de efectos biomecánicos y trastornos de la columna (Dufaut 1988). Se han realizado intentos para mejorar las técnicas de transporte de carga sobre los hombros, los diseños de las carretillas, etc. El transporte de carga mediante yugo transversal y carga frontal es más eficiente que el yugo frontal. La optimización de la carga que pueden llevar los hombres se puede obtener del nomograma que se muestra (figura 10). El nomograma se basa en una regresión múltiple trazada entre la demanda de oxígeno (la variable independiente) y la carga transportada y la velocidad al caminar (las variables dependientes). Se puede poner una escala en el gráfico a través de las variables para identificar el resultado. Se deben conocer dos variables para encontrar la tercera. Por ejemplo, con una demanda de oxígeno de 1.4 l/min (equivalente aproximado al 50% de la capacidad máxima de trabajo) y una velocidad de marcha de 30 m/min, la carga óptima sería de unos 65 kg.

Figura 10. Un nomograma para optimizar la carga a llevar sobre la cabeza/horquilla, con referencia a la velocidad de la marcha y la demanda de oxígeno del trabajo.

AG100F10

En vista de la diversidad de actividades agrícolas, ciertas medidas organizativas para rediseñar las herramientas y la maquinaria, los métodos de trabajo, la instalación de protecciones de seguridad en la maquinaria, la optimización de la exposición humana a un entorno de trabajo adverso, etc., pueden mejorar significativamente las condiciones de trabajo de las poblaciones agrícolas. (Christiani 1990). Una amplia investigación ergonómica sobre métodos y prácticas agrícolas, herramientas y equipos puede generar una gran cantidad de conocimientos para mejorar la salud, la seguridad y la productividad de miles de millones de trabajadores agrícolas. Siendo esta la industria más grande del mundo, la imagen primitiva del sector, particularmente la agricultura tropical pobre en recursos, podría transformarse en una orientada a tareas. De este modo, los trabajadores rurales pueden recibir capacitación sistemática sobre los peligros del trabajo y se pueden desarrollar procedimientos operativos seguros.

 

Atrás

Leer 35576 veces Ultima modificacion el Miércoles, agosto 24 2011 01: 53

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido