Domingo, marzo de 13 2011 15: 57

Minería subterránea del carbón

Valora este artículo
(10 votos)

La producción subterránea de carbón comenzó primero con túneles de acceso, o socavones, que se extraían en vetas de sus afloramientos superficiales. Sin embargo, los problemas causados ​​por los medios de transporte inadecuados para llevar el carbón a la superficie y por el riesgo cada vez mayor de encender bolsas de metano de las velas y otras luces de llama abierta limitaron la profundidad a la que se podía trabajar en las primeras minas subterráneas.

La creciente demanda de carbón durante la Revolución Industrial dio el incentivo para hundir pozos para acceder a reservas de carbón más profundas y, a mediados del siglo XX, la mayor proporción de la producción mundial de carbón provenía de operaciones subterráneas. Durante las décadas de 1970 y 1980 hubo un desarrollo generalizado de la capacidad de nuevas minas de carbón a cielo abierto, particularmente en países como Estados Unidos, Sudáfrica, Australia e India. En la década de 1990, sin embargo, el renovado interés en la minería subterránea dio como resultado el desarrollo de nuevas minas (en Queensland, Australia, por ejemplo) desde los puntos más profundos de las antiguas minas a cielo abierto. A mediados de la década de 1990, la minería subterránea representaba quizás el 45% de toda la hulla extraída en todo el mundo. La proporción real varió ampliamente, desde menos del 30 % en Australia e India hasta alrededor del 95 % en China. Por razones económicas, el lignito y el lignito rara vez se extraen bajo tierra.

Una mina de carbón subterránea consta esencialmente de tres componentes: un área de producción; transporte de carbón al pie de un pozo o declive; y izar o transportar el carbón a la superficie. La producción también incluye el trabajo preparatorio que se necesita para permitir el acceso a las futuras áreas de producción de una mina y, en consecuencia, representa el nivel más alto de riesgo personal.

Desarrollo de la mina

El medio más simple para acceder a una veta de carbón es seguirla desde su afloramiento superficial, una técnica que aún se practica ampliamente en áreas donde la topografía suprayacente es empinada y las vetas son relativamente planas. Un ejemplo es la cuenca carbonífera de los Apalaches en el sur de Virginia Occidental en los Estados Unidos. El método de minería real utilizado en la veta es irrelevante en este punto; el factor importante es que el acceso puede obtenerse a bajo costo y con un mínimo esfuerzo de construcción. Los socavones también se usan comúnmente en áreas de minería de carbón de baja tecnología, donde el carbón producido durante la extracción del socavón se puede usar para compensar sus costos de desarrollo.

Otros medios de acceso incluyen descensos (o rampas) y pozos verticales. La elección generalmente depende de la profundidad de la veta de carbón que se está trabajando: cuanto más profunda sea la veta, más costoso será desarrollar una rampa escalonada a lo largo de la cual puedan operar los vehículos o las cintas transportadoras.

El hundimiento del pozo, en el que se extrae un pozo verticalmente hacia abajo desde la superficie, es costoso y requiere mucho tiempo y requiere un tiempo de espera más largo entre el comienzo de la construcción y la extracción del primer carbón. En los casos en que las vetas son profundas, como en la mayoría de los países europeos y en China, los pozos a menudo tienen que hundirse a través de rocas acuíferas que recubren las vetas de carbón. En este caso, se deben utilizar técnicas especializadas, como la congelación del suelo o la lechada, para evitar que el agua fluya hacia el pozo, que luego se recubre con anillos de acero u hormigón colado para proporcionar un sello a largo plazo.

Los declives se utilizan típicamente para acceder a vetas que son demasiado profundas para la minería a cielo abierto, pero que todavía están relativamente cerca de la superficie. En la cuenca carbonífera de Mpumalanga (Transvaal oriental) en Sudáfrica, por ejemplo, las vetas explotables se encuentran a una profundidad de no más de 150 m; en algunas áreas, se extraen a cielo abierto, y en otras es necesaria la minería subterránea, en cuyo caso las rampas se utilizan a menudo para proporcionar acceso a los equipos de minería y para instalar las cintas transportadoras que se utilizan para sacar el carbón extraído de la mina.

Los declives difieren de los socavones en que generalmente se excavan en roca, no en carbón (a menos que la veta se sumerja a un ritmo constante), y se extraen a un gradiente constante para optimizar el acceso de vehículos y transportadores. Una innovación desde la década de 1970 ha sido el uso de cintas transportadoras que funcionan en descensos para transportar la producción de minas profundas, un sistema que tiene ventajas sobre el izaje de pozo tradicional en términos de capacidad y confiabilidad.

Métodos de minería

La minería subterránea del carbón abarca dos métodos principales, de los cuales han evolucionado muchas variaciones para abordar las condiciones de la minería en operaciones individuales. La extracción de habitaciones y pilares involucra túneles de minería (o caminos) en una cuadrícula regular, a menudo dejando pilares sustanciales para el soporte a largo plazo del techo. La minería de tajo largo logra la extracción total de grandes partes de una veta de carbón, lo que hace que las rocas del techo se derrumben en el área minada.

Minería de cámara y pilar

La minería de cámaras y pilares es el sistema de minería subterránea de carbón más antiguo y el primero en utilizar el concepto de soporte de techo regular para proteger a los trabajadores de la mina. El nombre de minería de cuarto y pilar se deriva de los pilares de carbón que se dejan en una red regular para proporcionar in situ apoyo al techo. Se ha convertido en un método mecanizado de alta producción que, en algunos países, representa una proporción sustancial de la producción subterránea total. Por ejemplo, el 60% de la producción subterránea de carbón en los Estados Unidos proviene de minas de cámara y pilar. En términos de escala, algunas minas en Sudáfrica tienen capacidades instaladas superiores a 10 millones de toneladas por año a partir de operaciones de sección de producción múltiple en vetas de hasta 6 m de espesor. Por el contrario, muchas minas de cuarto y pilar en los Estados Unidos son pequeñas, operan en espesores de veta tan bajos como 1 m, con la capacidad de detener y reiniciar la producción rápidamente según lo dicten las condiciones del mercado.

La minería de cuarto y pilar se usa típicamente en vetas menos profundas, donde la presión aplicada por las rocas superpuestas sobre los pilares de soporte no es excesiva. El sistema tiene dos ventajas clave sobre la minería de tajo largo: su flexibilidad y seguridad inherente. Su principal desventaja es que la recuperación del recurso de carbón es solo parcial, y la cantidad precisa depende de factores como la profundidad de la veta debajo de la superficie y su espesor. Son posibles recuperaciones de hasta el 60%. La recuperación del XNUMX% es posible si los pilares se extraen como segunda fase del proceso de extracción.

El sistema también es capaz de varios niveles de sofisticación técnica, que van desde técnicas intensivas en mano de obra (como la "minería en canasta" en la que la mayoría de las etapas de la minería, incluido el transporte de carbón, son manuales) hasta técnicas altamente mecanizadas. El carbón se puede extraer del frente del túnel usando explosivos o máquinas de minería continua. Vehículos o cintas transportadoras móviles proporcionan transporte de carbón mecanizado. Se utilizan pernos de techo y flejes de metal o madera para sostener el techo de la calzada y las intersecciones entre calzadas donde la luz abierta es mayor.

Un minero continuo, que incorpora un cabezal de corte y un sistema de carga de carbón montado sobre orugas, normalmente pesa entre 50 y 100 toneladas, dependiendo de la altura operativa en la que está diseñado para trabajar, la potencia instalada y el ancho de corte requerido. Algunos están equipados con máquinas de instalación de pernos de roca a bordo que brindan soporte al techo simultáneamente con el corte de carbón; en otros casos, se utilizan secuencialmente máquinas mineras continuas y empernadoras de techo separadas.

Los transportadores de carbón pueden recibir energía eléctrica de un cable umbilical o pueden funcionar con baterías o con un motor diésel. Este último proporciona una mayor flexibilidad. El carbón se carga desde la parte trasera del minero continuo al vehículo, que luego transporta una carga útil, generalmente entre 5 y 20 toneladas, a una corta distancia de una tolva de alimentación para el sistema de cinta transportadora principal. Se puede incluir una trituradora en el alimentador de la tolva para romper carbón o rocas de gran tamaño que podrían bloquear los conductos o dañar las cintas transportadoras más adelante en el sistema de transporte.

Una alternativa al transporte vehicular es el sistema de transporte continuo, un transportador seccional flexible montado sobre orugas que transporta el carbón cortado directamente desde el minero continuo hasta la tolva. Estos ofrecen ventajas en términos de seguridad del personal y capacidad productiva, y su uso se está extendiendo a los sistemas de desarrollo de caminos de tajo largo por las mismas razones.

Las carreteras se extraen a anchos de 6.0 m, normalmente la altura total de la veta. Los tamaños de los pilares dependen de la profundidad debajo de la superficie; Pilares cuadrados de 15.0 m en centros de 21.0 m serían representativos del diseño de pilares para una mina poco profunda de veta baja.

Minería de tajo largo

La minería de tajo largo es ampliamente percibida como un desarrollo del siglo XX; sin embargo, se cree que el concepto se desarrolló más de 200 años antes. El principal avance es que las operaciones anteriores eran principalmente manuales, mientras que, desde la década de 1950, el nivel de mecanización ha aumentado hasta el punto de que un frente de tajo largo ahora es una unidad de alta productividad que puede ser operada por una cuadrilla muy pequeña de trabajadores.

Longwalling tiene una ventaja primordial en comparación con la minería de cuarto y pilar: puede lograr la extracción completa del panel en una sola pasada y recupera una mayor proporción general del recurso total de carbón. Sin embargo, el método es relativamente inflexible y exige tanto un gran recurso explotable como ventas garantizadas para ser viable, debido a los altos costos de capital involucrados en el desarrollo y equipamiento de un frente de tajo largo moderno (más de US$20 millones en algunos casos).

Si bien en el pasado, las minas individuales a menudo operaban simultáneamente varios frentes largos (en países como Polonia, más de diez por mina en varios casos), la tendencia actual es hacia la consolidación de la capacidad minera en menos unidades de trabajo pesado. Las ventajas de esto son los requisitos de mano de obra reducidos y la necesidad de un desarrollo y mantenimiento de infraestructura subterránea menos extenso.

En la minería de tajo largo, el techo se derrumba deliberadamente a medida que se extrae la veta; solo las principales rutas de acceso subterráneo están protegidas por pilares de soporte. El control del techo se proporciona en una cara de tajo largo mediante soportes hidráulicos de dos o cuatro patas que toman la carga inmediata del techo suprayacente, lo que permite su distribución parcial a la cara no minada y los pilares a cada lado del panel, y protegen el equipo de la cara. y personal del techo colapsado detrás de la línea de soportes. El carbón se corta con una cizalla eléctrica, generalmente equipada con dos tambores de corte de carbón, que extrae una franja de carbón de hasta 1.1 m de espesor desde el frente en cada pasada. La cizalla avanza y carga el carbón cortado en un transportador blindado que serpentea hacia adelante después de cada corte mediante el movimiento secuencial de los soportes frontales.

En el extremo frontal, el carbón cortado se transfiere a una cinta transportadora para transportarlo a la superficie. En una cara de avance, el cinturón debe extenderse regularmente a medida que aumenta la distancia desde el punto de partida de la cara, mientras que en retirada-taladro largo se aplica lo contrario.

Durante los últimos 40 años, ha habido aumentos sustanciales tanto en la longitud del frente de frente largo extraído como en la longitud del panel de frente largo individual (el bloque de carbón a través del cual avanza el frente). A modo de ilustración, en los Estados Unidos, la longitud promedio de la cara de tajo largo aumentó de 150 m en 1980 a 227 m en 1993. En Alemania, el promedio de mediados de la década de 1990 fue de 270 m y se están planificando longitudes de cara de más de 300 m. Tanto en el Reino Unido como en Polonia, se extraen frentes de hasta 300 m de largo. Las longitudes de los paneles están determinadas en gran medida por las condiciones geológicas, como las fallas o los límites de la mina, pero ahora superan constantemente los 2.5 km en buenas condiciones. En Estados Unidos se está discutiendo la posibilidad de paneles de hasta 6.7 ​​km de largo.

La minería en retirada se está convirtiendo en el estándar de la industria, aunque implica un mayor gasto de capital inicial en el desarrollo de la carretera hasta la extensión más lejana de cada panel antes de que pueda comenzar el tajo largo. Siempre que sea posible, las carreteras ahora se excavan en la veta, utilizando mineros continuos, con soporte de pernos de roca que reemplazan los arcos de acero y las cerchas que se usaban anteriormente para brindar un soporte positivo a las rocas suprayacentes, en lugar de una reacción pasiva a los movimientos de las rocas. Sin embargo, su aplicabilidad está limitada a rocas de techo competentes.

Precauciones de Seguridad

Las estadísticas de la OIT (1994) indican una amplia variación geográfica en la tasa de muertes en la minería del carbón, aunque estos datos deben tener en cuenta el nivel de sofisticación de la minería y el número de trabajadores empleados en cada país. Las condiciones han mejorado en muchos países industrializados.

Los principales incidentes mineros ahora son relativamente poco frecuentes, ya que los estándares de ingeniería han mejorado y se ha incorporado resistencia al fuego en materiales como las bandas transportadoras y los fluidos hidráulicos utilizados bajo tierra. No obstante, sigue existiendo la posibilidad de que se produzcan incidentes capaces de causar daños personales o estructurales. Todavía se producen explosiones de gas metano y polvo de carbón, a pesar de las prácticas de ventilación muy mejoradas, y las caídas de techos representan la mayoría de los accidentes graves en todo el mundo. Los incendios, ya sea en equipos o que se produzcan como resultado de una combustión espontánea, representan un peligro particular.

Considerando los dos extremos, minería intensiva en mano de obra y altamente mecanizada, también existen grandes diferencias tanto en las tasas de accidentes como en los tipos de incidentes involucrados. Los trabajadores empleados en una mina manual a pequeña escala tienen más probabilidades de sufrir lesiones por caídas de rocas o carbón desde el techo o las paredes laterales de la carretera. También corren el riesgo de una mayor exposición al polvo y al gas inflamable si los sistemas de ventilación son inadecuados.

Tanto la minería de cuarto y pilar como el desarrollo de caminos para brindar acceso a los paneles de tajo largo requieren soporte para el techo y las rocas del flanco. El tipo y densidad de apoyo varía según el espesor de la veta, la competencia de las rocas suprayacentes y la profundidad de la veta, entre otros factores. El lugar más peligroso en cualquier mina está debajo de un techo sin soporte, y la mayoría de los países imponen restricciones legislativas estrictas sobre la longitud de la carretera que se puede desarrollar antes de instalar el soporte. La recuperación de pilares en las operaciones de cuarto y pilar presenta peligros específicos a través del potencial de colapso repentino del techo y debe programarse cuidadosamente para evitar un mayor riesgo para los trabajadores.

Los frentes de tajo largo modernos de alta productividad requieren un equipo de seis a ocho operadores, por lo que la cantidad de personas expuestas a peligros potenciales se reduce notablemente. El polvo generado por la cizalladora de tajo largo es una gran preocupación. Por lo tanto, el corte de carbón a veces se restringe a una dirección a lo largo de la cara para aprovechar el flujo de ventilación para alejar el polvo de los operadores de la cizalla. El calor generado por máquinas eléctricas cada vez más potentes en los confines del frente también tiene efectos potencialmente nocivos para los trabajadores del frente, especialmente a medida que las minas se vuelven más profundas.

La velocidad a la que trabajan las cizallas a lo largo del frente también está aumentando. Las tasas de corte de hasta 45 m/minuto están bajo consideración activa a fines de la década de 1990. Es dudosa la capacidad física de los trabajadores para seguir el ritmo de la cortadora de carbón que se mueve repetidamente sobre una cara de 300 m de largo durante un turno de trabajo completo y, por lo tanto, el aumento de la velocidad de la cizalla es un incentivo importante para la introducción más amplia de sistemas de automatización para los que actuarían los mineros. como monitores en lugar de operadores prácticos.

La recuperación de equipos frontales y su transferencia a un nuevo lugar de trabajo ofrece peligros únicos para los trabajadores. Se han desarrollado métodos innovadores para asegurar el techo de tajo largo y el carbón frontal a fin de minimizar el riesgo de caída de rocas durante la operación de transferencia. Sin embargo, los elementos individuales de la maquinaria son extremadamente pesados ​​(más de 20 toneladas para un soporte frontal grande y mucho más para una cizalla) y, a pesar del uso de transportadores diseñados a medida, sigue existiendo el riesgo de lesiones personales por aplastamiento o levantamiento durante el salvamento de tajo largo. .

 

Atrás

Leer 14604 veces Ultima modificacion el Martes, junio 28 2011 12: 18

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de minería y explotación de canteras

Agricola, G. 1950. De Re Metallica, traducido por HC Hoover y LH Hoover. Nueva York: Publicaciones de Dover.

Bickel, KL. 1987. Análisis de equipos mineros a diesel. En Actas del Seminario de Transferencia de Tecnología de la Oficina de Minas: Diésel en Minas Subterráneas. Circular de Información 9141. Washington, DC: Oficina de Minas.

Oficina de Minas. 1978. Prevención de incendios y explosiones en minas de carbón. Circular de Información 8768. Washington, DC: Oficina de Minas.

—. 1988. Desarrollos recientes en protección contra incendios de metales y no metales. Circular de Información 9206. Washington, DC: Oficina de Minas.

Chamberlain, EAC. 1970. La oxidación a temperatura ambiente del carbón en relación con la detección temprana del calentamiento espontáneo. Ingeniero de Minas (octubre) 130(121):1-6.

Ellicott, CW. 1981. Evaluación de la explosibilidad de mezclas de gases y monitoreo de tendencias de tiempo de muestra. Actas del Simposio sobre Igniciones, Explosiones e Incendios. Illawara: Instituto Australiano de Minería y Metalurgia.

Agencia de Protección Ambiental (Australia). 1996. Mejores Prácticas de Gestión Ambiental en Minería. Canberra: Agencia de Protección Ambiental.

Funkemeyer, M y FJ Kock. 1989. Prevención de incendios en costuras de trabajo propensas a la combustión espontánea. Gluckauf 9-12.

Graham, JI. 1921. La producción normal de monóxido de carbono en las minas de carbón. Transacciones del Instituto de Ingenieros de Minas 60:222-234.

Grannes, SG, MA Ackerson y GR Green. 1990. Prevención de fallas en los sistemas automáticos de supresión de incendios en cintas transportadoras de minería subterránea. Circular de Información 9264. Washington, DC: Oficina de Minas.

Greuer, RE. 1974. Estudio de Combate de Incendios en Minas con Gases Inertes. Informe de Contrato USBM No. S0231075. Washington, DC: Oficina de Minas.

Grifo, RE. 1979. Evaluación de detectores de humo en la mina. Circular de Información 8808. Washington, DC: Oficina de Minas.

Hartman, HL (ed.). 1992. Manual de Ingeniería Minera SME, 2da edición. Baltimore, MD: Sociedad de Minería, Metalurgia y Exploración.

Hertzberg, M. 1982. Inhibición y extinción de explosiones de polvo de carbón y metano. Informe de Investigaciones 8708. Washington, DC: Oficina de Minas.

Hoek, E, PK Kaiser y WF Bawden. 1995. Diseño de Soporte para Minas Subterráneas de Roca Dura. Róterdam: AA Balkema.

Hughes, AJ y WE Raybold. 1960. La determinación rápida de la explosibilidad de los gases de incendios de minas. Ingeniero de Minas 29:37-53.

Consejo Internacional de Metales y Medio Ambiente (ICME). 1996. Estudios de casos que ilustran prácticas ambientales en procesos mineros y metalúrgicos. Ottawa: ICME.

Organización Internacional del Trabajo (OIT). 1994. Desarrollos recientes en la industria de la minería del carbón. Ginebra: OIT.

Jones, JE y JC Trickett. 1955. Algunas observaciones sobre el examen de gases resultantes de explosiones en minas de carbón. Transacciones del Instituto de Ingenieros de Minas 114: 768-790.

Mackenzie-Wood P y J Strang. 1990. Gases de fuego y su interpretación. Ingeniero de Minas 149(345):470-478.

Asociación para la Prevención de Accidentes en las Minas de Ontario. nd Pautas de preparación para emergencias. Informe del Comité Técnico Permanente. North Bay: Asociación de Prevención de Accidentes de Minas de Ontario.

Mitchell, D y F Burns. 1979. Interpretación del estado de un incendio en una mina. Washington, DC: Departamento de Trabajo de los Estados Unidos.

Morris, RM. 1988. Una nueva relación de fuego para determinar las condiciones en áreas selladas. Ingeniero de Minas 147(317):369-375.

Morrow, GS y CD Litton. 1992. Evaluación en la mina de detectores de humo. Circular de Información 9311. Washington, DC: Oficina de Minas.

Asociación Nacional de Protección contra Incendios (NFPA). 1992a. Código de Prevención de Incendios. NFPA 1. Quincy, MA: NFPA.

—. 1992b. Estándar en sistemas de combustible pulverizado. NFPA 8503. Quincy, MA: NFPA.

—. 1994a. Norma para la Prevención de Incendios en el Uso de Procesos de Corte y Soldadura. NFPA 51B. Quincy, MA: NFPA.

—. 1994b. Norma para extintores de incendios portátiles. NFPA 10. Quincy, MA: NFPA.

—. 1994c. Estándar para Sistemas de Espuma de Media y Alta Expansión. NFPA 11A. Quncy, MA: NFPA.

—. 1994d. Norma para Sistemas de Extinción de Químicos Secos. NFPA 17. Quincy, MA: NFPA.

—. 1994e. Norma para Plantas de Preparación de Carbón. NFPA 120. Quincy, MA: NFPA.

—. 1995a. Norma para la Prevención y Control de Incendios en Minas Subterráneas Metálicas y No Metálicas. NFPA 122. Quincy, MA: NFPA.

—. 1995b. Norma para la Prevención y Control de Incendios en Minas Subterráneas de Carbón Bituminoso. NFPA 123. Quincy, MA: NFPA.

—. 1996a. Norma sobre Protección contra Incendios para Equipos de Minería de Superficie Móviles y Autopropulsados. NFPA 121. Quincy, MA: NFPA.

—. 1996b. Código de Líquidos Inflamables y Combustibles. NFPA 30. Quincy, MA: NFPA.

—. 1996c. Código Eléctrico Nacional. NFPA 70. Quincy, MA: NFPA.

—. 1996d. Código Nacional de Alarmas contra Incendios. NFPA 72. Quincy, MA: NFPA.

—. 1996e. Norma para la Instalación de Sistemas de Rociadores. NFPA 13. Quincy, MA: NFPA.

—. 1996f. Norma para la Instalación de Sistemas de Rociado de Agua. NFPA 15. Quincy, MA: NFPA.

—. 1996g. Norma sobre sistemas de extinción de incendios con agentes limpios. NFPA 2001. Quincy, MA: NFPA.

—. 1996 h. Práctica recomendada para la protección contra incendios en plantas de generación eléctrica y estaciones convertidoras de CC de alto voltaje. NFPA 850. Quincy, MA: NFPA.

Ng, D y CP Lazzara. 1990. Comportamiento de tapones de bloques de hormigón y paneles de acero en un incendio simulado en una mina. Tecnología contra incendios 26(1):51-76.

Ninteman, DJ. 1978. Oxidación espontánea y combustión de minerales de sulfuro en minas subterráneas. Circular de Información 8775. Washington, DC: Oficina de Minas.

Pomroy, WH y TL Muldoon. 1983. Un nuevo sistema de advertencia de incendios por gases hediondos. En Actas de la Asamblea General Anual y Sesiones Técnicas de MAPAO de 1983. North Bay: Asociación de Prevención de Accidentes de Minas de Ontario.

Ramaswatny, A y PS Katiyar. 1988. Experiencias con nitrógeno líquido en el combate de incendios subterráneos de carbón. Revista de Minas, Metales y Combustibles 36(9):415-424.

Smith, AC y CN Thompson. 1991. Desarrollo y aplicación de un método para predecir el potencial de combustión espontánea de carbones bituminosos. Presentado en la 24ª Conferencia Internacional de Seguridad en Institutos de Investigación Minera, Instituto Estatal de Investigación de Makeevka para la Seguridad en la Industria del Carbón, Makeevka, Federación Rusa.

Timmons, ED, RP Vinson y FN Kissel. 1979. Pronóstico de peligros de metano en minas metálicas y no metálicas. Informe de Investigaciones 8392. Washington, DC: Oficina de Minas.

Departamento de Cooperación Técnica para el Desarrollo de las Naciones Unidas (ONU) y la Fundación Alemana para el Desarrollo Internacional. 1992. Minería y Medio Ambiente: Las Directrices de Berlín. Londres: Mining Journal Books.

Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). 1991. Aspectos ambientales de metales no ferrosos seleccionados (Cu, Ni, Pb, Zn, Au) en la minería de minerales. París: PNUMA.