Domingo, marzo de 13 2011 16: 11

Mineral de procesamiento

Valora este artículo
(7 votos)

Casi todos los metales y otros materiales inorgánicos que han sido explotados ocurren como los compuestos que constituyen los minerales que componen la corteza terrestre. Las fuerzas y los procesos que han dado forma a la superficie terrestre han concentrado estos minerales en cantidades muy diferentes. Cuando esta concentración es lo suficientemente grande como para que el mineral pueda explotarse y recuperarse económicamente, el yacimiento se denomina mena o yacimiento. Sin embargo, incluso entonces, los minerales no suelen estar disponibles en una forma con la pureza necesaria para el procesamiento inmediato hasta el producto final deseado. En su obra del siglo XVI sobre procesamiento de minerales Agrícola (1950) escribió: “La naturaleza generalmente crea metales en estado impuro, mezclados con tierra, piedras y jugos solidificados, es necesario separar la mayor parte de estas impurezas de los minerales en la medida de lo posible. ser, antes de que sean fundidos.”

Los minerales valiosos deben separarse primero de los que no tienen valor comercial, que se denominan pandilla. El procesamiento del mineral se refiere a este tratamiento inicial del material extraído para producir un concentrado de mineral de un grado suficientemente alto para ser procesado satisfactoriamente hasta obtener el metal puro u otro producto final. Las diferentes características de los minerales que componen el mineral se aprovechan para separarlos entre sí mediante una variedad de métodos físicos que generalmente dejan sin cambios la composición química del mineral. (El procesamiento del carbón se trata específicamente en el artículo “Preparación del carbón”).

Trituración y Molienda

El tamaño de partícula del material que llega a la planta de procesamiento dependerá de la operación minera empleada y del tipo de mineral, pero será relativamente grande. Transformación en polvo, la reducción progresiva del tamaño de partícula del mineral en terrones, se lleva a cabo por dos razones: reducir el material a un tamaño más conveniente y liberar el componente valioso del material de desecho como un primer paso hacia su separación y recuperación efectivas. En la práctica, la trituración suele consistir en la trituración de material de mayor tamaño, seguida de la rotura del material en tamaños más finos al volcarlo en molinos de acero giratorios.

Aplastante

No es posible pasar de terrones muy grandes a material fino en una sola operación o usando una sola máquina. Por lo tanto, la trituración suele ser una operación en seco que normalmente tiene lugar en etapas que se designan como primaria, secundaria y terciaria.

Las trituradoras primarias reducen el mineral desde un tamaño de 1.5 m hasta 100 a 200 mm. Máquinas como trituradoras de mandíbula y giratorias aplican una fuerza de fractura a las partículas grandes, rompiendo el mineral por compresión.

En una trituradora de mandíbula, el mineral cae en un espacio en forma de cuña entre una placa de trituración fija y una móvil. El material se pellizca y aprieta hasta que se rompe y se suelta y se vuelve a morder más abajo a medida que las mordazas se abren y cierran, hasta que finalmente escapa a través del espacio establecido en la parte inferior.

En la trituradora giratoria, un husillo largo transporta un elemento triturador cónico de acero duro y pesado que se mueve excéntricamente mediante un manguito de cojinete inferior dentro de la cámara o carcasa de trituración. El movimiento relativo de las caras de trituración se produce por el giro del cono montado excéntricamente contra la cámara exterior. Por lo general, esta máquina se usa cuando se requiere una alta capacidad de producción.

La trituración secundaria reduce el tamaño de las partículas hasta 5 a 20 mm. Trituradoras de cono, molinos de rodillos y de martillos son ejemplos de los equipos utilizados. La trituradora de cono es una trituradora giratoria modificada con un husillo más corto que no está suspendido, sino apoyado en un cojinete debajo del cabezal. Una trituradora de rodillos consta de dos cilindros horizontales que giran uno hacia el otro, los rodillos arrastran el mineral hacia el espacio entre ellos y, después de un solo contacto, descargan el producto. El molino de martillos es un molino triturador de impacto típico. La conminución se produce por el impacto de golpes fuertes aplicados a alta velocidad por martillos unidos a un rotor dentro del espacio de trabajo.

Molienda

La molienda, la última etapa de la trituración, se realiza en recipientes de acero cilíndricos giratorios conocidos como molinos giratorios. Aquí las partículas minerales se reducen a entre 10 y 300 μm. Se agrega al molino un medio de molienda, como bolas, varillas o guijarros de acero (grumos de mineral de tamaño predeterminado mucho más grandes que la alimentación a granel del material), para que el mineral se descomponga al tamaño deseado. El uso de guijarros se denomina molienda autógena. Cuando el tipo de mineral sea adecuado, se puede utilizar la molienda ROM (run-of-mine). En esta forma de molienda autógena, todo el flujo de mineral de la mina se alimenta directamente al molino sin trituración previa, y los grandes terrones de mineral actúan como medio de molienda.

El molino generalmente se carga con mineral triturado y medio de molienda hasta poco menos de la mitad. Los estudios han demostrado que la rotura producida por el fresado es una combinación de impacto y abrasión. Los revestimientos de molino se utilizan para proteger la carcasa del molino del desgaste y, por su diseño, para reducir el deslizamiento de los medios de molienda y mejorar la parte de levantamiento e impacto de la molienda.

Hay un tamaño óptimo al que se debe moler el mineral para una separación y recuperación efectivas del componente valioso. El esmerilado resulta en una liberación incompleta y una mala recuperación. La sobremolienda aumenta la dificultad de separación, además de utilizar un exceso de energía costosa.

Separación de tamaño

Después de la trituración y la molienda, los productos suelen separarse simplemente según su tamaño. El objetivo principal es producir material de alimentación de tamaño adecuado para su tratamiento posterior. El material de gran tamaño se recicla para una mayor reducción.

Pantallas

El tamizado se aplica generalmente a material bastante grueso. También se puede usar para producir un tamaño de alimentación razonablemente uniforme para una operación posterior donde sea necesario. El grizzly es una serie de barras paralelas pesadas colocadas en un marco que filtra el material muy grueso. El trommel es una pantalla cilíndrica giratoria inclinada. Mediante el uso de varias secciones de pantallas de diferentes tamaños, se pueden producir simultáneamente productos de varios tamaños. Se puede emplear una variedad de otras pantallas y combinaciones de pantallas.

Clasificadores

La clasificación es la separación de partículas según su tasa de sedimentación en un fluido. Las diferencias en densidad, tamaño y forma se utilizan de manera efectiva. Los clasificadores se utilizan para separar material grueso y fino, fraccionando así una distribución de gran tamaño. Una aplicación típica es controlar una operación de rectificado de circuito cerrado. Si bien la separación por tamaño es el objetivo principal, generalmente se produce cierta separación por tipo de mineral debido a las diferencias de densidad.

En un clasificador en espiral, un mecanismo de rastrillo levanta las arenas más gruesas de una piscina de lodo para producir un producto limpio y deslamado.

El hidrociclón utiliza la fuerza centrífuga para acelerar las tasas de sedimentación y producir separaciones eficientes de partículas de tamaño fino. Se introduce tangencialmente una suspensión espesa a alta velocidad en un recipiente de forma cónica. Debido al movimiento de remolino, las partículas más grandes y pesadas se asientan más rápidamente hacia la pared exterior, donde la velocidad es más baja, y se asientan hacia abajo, mientras que las partículas más ligeras y pequeñas se mueven hacia la zona de baja presión a lo largo del eje, donde se encuentran. llevado hacia arriba.

Separación de concentración

La separación por concentración requiere que las partículas se distingan como las del mineral valioso o como partículas de ganga y su separación efectiva en un concentrado y un producto de cola. El objetivo es lograr la máxima recuperación del mineral valioso en un grado que sea aceptable para su posterior procesamiento o venta.

clasificación de minerales

El método de concentración más antiguo y simple es la selección de partículas visualmente y su eliminación a mano. La clasificación manual tiene sus equivalentes modernos en varios métodos electrónicos. En los métodos fotométricos, el reconocimiento de partículas se basa en la diferencia de reflectividad de diferentes minerales. Luego se activa una ráfaga de aire comprimido para eliminarlos de una cinta de material en movimiento. La diferente conductividad de diferentes minerales se puede utilizar de manera similar.

Separación de medios pesados

La separación de medio pesado o medio denso es un proceso que depende únicamente de la diferencia de densidad entre los minerales. Se trata de introducir la mezcla en un líquido de densidad intermedia a la de los dos minerales a separar, flotando el mineral más ligero y hundiéndose el más pesado. En algunos procesos se utiliza para la preconcentración de minerales antes de la molienda final y se emplea con frecuencia como paso de limpieza en la preparación del carbón.

Los fluidos orgánicos pesados ​​como el tetrabromoetano, que tiene una densidad relativa de 2.96, se utilizan en ciertas aplicaciones, pero a escala comercial se emplean generalmente suspensiones de sólidos finamente molidos que se comportan como fluidos newtonianos simples. Ejemplos del material utilizado son la magnetita y el ferrosilicio. Estos forman "fluidos" estables, inertes y de baja viscosidad y se eliminan fácilmente de la suspensión magnéticamente.

Gravedad

Los procesos naturales de separación, como los sistemas fluviales, han producido depósitos de placer donde las partículas más grandes y pesadas se han separado de las más pequeñas y ligeras. Las técnicas de gravedad imitan estos procesos naturales. La separación se produce por el movimiento de la partícula en respuesta a la fuerza de gravedad y la resistencia ejercida por el fluido en el que tiene lugar la separación.

A lo largo de los años, se han desarrollado muchos tipos de separadores por gravedad y su uso continuado atestigua la rentabilidad de este tipo de separación.

En un plantilla un lecho de partículas minerales se pone en suspensión ("fluidizado") por una corriente pulsante de agua. A medida que el agua vuelve a drenarse entre cada ciclo, las partículas más densas caen debajo de las menos densas y durante un período de drenaje de partículas pequeñas, y particularmente partículas más pequeñas y más densas, penetran entre los espacios entre las partículas más grandes y se asientan más abajo en el lecho. A medida que se repite el ciclo, aumenta el grado de separación.

Sacudir mesas trate material más fino que las plantillas. La mesa consiste en una superficie plana que está ligeramente inclinada de adelante hacia atrás y de un extremo al otro. Los rifles de madera dividen la mesa longitudinalmente en ángulo recto. El alimento ingresa a lo largo del borde superior y las partículas son transportadas hacia abajo por el flujo de agua. Al mismo tiempo, están sujetos a vibraciones asimétricas a lo largo del eje longitudinal u horizontal. Las partículas más densas que tienden a quedar atrapadas detrás del rifle son arrastradas por la mesa por las vibraciones.

Separación magnética

Todos los materiales están influenciados por campos magnéticos, aunque para la mayoría el efecto es demasiado leve para ser detectado. Sin embargo, si uno de los componentes minerales de una mezcla tiene una susceptibilidad magnética razonablemente fuerte, esto puede usarse para separarlo de los demás. Los separadores magnéticos se clasifican en máquinas de baja y alta intensidad, y además en separadores de alimentación seca y húmeda.

Un separador tipo tambor consta de un tambor giratorio no magnético que contiene en su interior imanes estacionarios de polaridad alterna. Las partículas magnéticas son atraídas por los imanes, fijadas al tambor y transportadas fuera del campo magnético. Un separador húmedo de alta intensidad (WHIMS) del tipo carrusel consta de una matriz giratoria concéntrica de bolas de hierro que pasa a través de un potente electroimán. Los residuos de la suspensión se vierten en la matriz donde opera el electroimán y las partículas magnéticas son atraídas a la matriz magnetizada mientras que la mayor parte de la suspensión pasa y sale a través de una rejilla base. Justo después del electroimán, el campo se invierte y se utiliza un chorro de agua para eliminar la fracción magnética.

separación electrostática

La separación electrostática, que alguna vez fue de uso común, fue desplazada en gran medida por el advenimiento de la flotación. Sin embargo, se aplica con éxito a un pequeño número de minerales, como el rutilo, para el que otros métodos resultan difíciles y donde la conductividad del mineral hace posible la separación electrostática.

El método aprovecha las diferencias en la conductividad eléctrica de los diferentes minerales. La alimentación seca se lleva al campo de un electrodo ionizante donde las partículas se cargan mediante bombardeo de iones. Las partículas conductoras pierden rápidamente esta carga en un rotor conectado a tierra y son expulsadas del rotor por la fuerza centrífuga. Los no conductores pierden su carga más lentamente, permanecen adheridos al conductor de tierra por fuerzas electrostáticas y son transportados a un punto de recolección.

Flotación

La flotación es un proceso de separación que aprovecha las diferencias en las propiedades físico-químicas de la superficie de diferentes minerales.

Los reactivos químicos llamados colectores se agregan a la pulpa y reaccionan selectivamente con la superficie de las valiosas partículas minerales. Los productos de reacción formados hacen que la superficie del mineral sea hidrófoba o no humectable, de modo que se adhiere fácilmente a una burbuja de aire.

En cada celda de un circuito de flotación se agita la pulpa y se dispersa el aire introducido en el sistema. Las partículas minerales hidrófobas se adhieren a las burbujas de aire y, con la presencia de un agente espumante adecuado, forman una espuma estable en la superficie. Este desborda continuamente los lados de la celda de flotación, llevando consigo su carga mineral.

Una planta de flotación consta de bancos de celdas interconectadas. Un primer concentrado producido en un banco de desbaste se limpia de componentes de ganga no deseados en un banco de limpieza y, si es necesario, se vuelve a limpiar en un tercer banco de celdas. El mineral valioso adicional se puede recolectar en un cuarto banco y reciclar a los bancos más limpios antes de que finalmente se desechen las colas.

Drenaje

Después de la mayoría de las operaciones, es necesario separar el agua utilizada en los procesos de separación del concentrado producido o del material de ganga de desecho. En ambientes secos esto es particularmente importante para que el agua pueda ser reciclada para su reutilización.

Un tanque de sedimentación consta de un recipiente cilíndrico en el que se alimenta pulpa en el centro a través de un pozo de alimentación. Esto se coloca debajo de la superficie para minimizar la perturbación de los sólidos sedimentados. El líquido clarificado se desborda por los lados del tanque hacia una colada. Brazos radiales con palas arrastran los sólidos sedimentados hacia el centro, donde son retirados. Se pueden agregar floculantes a la suspensión para acelerar la velocidad de sedimentación de los sólidos.

La filtración es la eliminación de partículas sólidas del fluido para producir una torta de concentrado que luego se puede secar y transportar. Una forma común es el filtro de vacío continuo, típico del cual es el filtro de tambor. Un tambor cilíndrico horizontal gira en un tanque abierto con la parte inferior sumergida en pulpa. La carcasa del tambor consta de una serie de compartimentos cubiertos por un medio filtrante. La carcasa interior de doble pared está conectada a un mecanismo de válvula en el eje central que permite aplicar vacío o presión. Se aplica vacío a la sección sumergida en la pulpa, extrayendo agua a través del filtro y formando una torta de concentrado sobre la tela. El vacío deshidrata la torta una vez fuera de la suspensión. Justo antes de que la sección vuelva a entrar en la lechada, se aplica presión para soplar la torta. Los filtros de disco funcionan según el mismo principio, pero consisten en una serie de discos unidos al eje central.

Disposición de relaves

Solo una pequeña fracción del mineral extraído consiste en mineral valioso. El resto es ganga que luego del procesamiento forma los relaves que deben ser eliminados.

Las dos consideraciones principales en la eliminación de relaves son la seguridad y la economía. Hay dos aspectos de la seguridad: las consideraciones físicas que rodean el vertedero o la presa en la que se colocan los relaves; y la contaminación por el material de desecho que puede afectar la salud humana y causar daños al medio ambiente. Los relaves deben eliminarse de la manera más rentable posible acorde con la seguridad.

En la mayoría de los casos, los relaves se dimensionan y la fracción de arena gruesa se usa para construir una presa en un sitio seleccionado. Luego, la fracción fina o limo se bombea a un estanque detrás de la pared de la presa.

Cuando haya sustancias químicas tóxicas como el cianuro en las aguas residuales, puede ser necesaria una preparación especial de la base de la presa (p. ej., mediante el uso de láminas de plástico) para evitar la posible contaminación de las aguas subterráneas.

En la medida de lo posible, el agua recuperada de la presa se recicla para su uso posterior. Esto puede ser de gran importancia en las regiones secas y es cada vez más requerido por la legislación destinada a prevenir la contaminación de las aguas subterráneas y superficiales por contaminantes químicos.

montón y en el lugar Lixiviación

Gran parte del concentrado producido por el procesamiento del mineral se procesa más mediante métodos hidrometalúrgicos. Los valores metálicos se lixivian o disuelven del mineral y los diferentes metales se separan entre sí. Las soluciones obtenidas se concentran y luego se recupera el metal mediante etapas como la precipitación y la deposición electrolítica o química.

Muchos minerales son de un grado demasiado bajo para justificar el costo de la preconcentración. El material de desecho también puede contener una cierta cantidad de valor de metal. En algunos casos, dicho material puede procesarse económicamente mediante una versión de un proceso hidrometalúrgico conocido como lixiviación en pilas o en vertedero.

La lixiviación en pilas se estableció en Rio Tinto en España hace más de 300 años. El agua que se filtraba lentamente a través de los montones de mineral de baja ley se coloreaba de azul debido a las sales de cobre disueltas que surgían de la oxidación del mineral. El cobre se recuperó de la solución por precipitación sobre chatarra.

Este proceso básico se utiliza para la lixiviación en pilas de óxidos y sulfuros de material de desecho y de bajo grado en todo el mundo. Una vez que se ha creado un montón o vertedero del material, se aplica un agente solubilizante adecuado (por ejemplo, una solución ácida) rociando o inundando la parte superior del montón y se recupera la solución que se filtra al fondo.

Si bien la lixiviación en pilas se ha practicado con éxito durante mucho tiempo, solo recientemente se reconoció el importante papel de ciertas bacterias en el proceso. Estas bacterias han sido identificadas como la especie oxidante de hierro Thiobacillus ferrooxidans y las especies oxidantes de azufre Thiobacillus tiooxidans. Las bacterias oxidantes de hierro obtienen energía de la oxidación de iones ferrosos a iones férricos y las especies oxidantes de azufre por oxidación de sulfuro a sulfato. Estas reacciones catalizan eficazmente la oxidación acelerada de los sulfuros metálicos a sulfatos metálicos solubles.

Las terapias de edición del genoma in situ la lixiviación, a veces llamada minería de solución, es efectivamente una variación de la lixiviación en pilas. Consiste en el bombeo de solución en minas abandonadas, derrumbes en labores, áreas remotas trabajadas o incluso cuerpos minerales completos donde se demuestra que son permeables a la solución. Las formaciones rocosas deben prestarse al contacto con la solución lixiviante ya la necesaria disponibilidad de oxígeno.

 

Atrás

Leer 8512 veces Ultima modificacion el Martes, junio 28 2011 12: 19

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de minería y explotación de canteras

Agricola, G. 1950. De Re Metallica, traducido por HC Hoover y LH Hoover. Nueva York: Publicaciones de Dover.

Bickel, KL. 1987. Análisis de equipos mineros a diesel. En Actas del Seminario de Transferencia de Tecnología de la Oficina de Minas: Diésel en Minas Subterráneas. Circular de Información 9141. Washington, DC: Oficina de Minas.

Oficina de Minas. 1978. Prevención de incendios y explosiones en minas de carbón. Circular de Información 8768. Washington, DC: Oficina de Minas.

—. 1988. Desarrollos recientes en protección contra incendios de metales y no metales. Circular de Información 9206. Washington, DC: Oficina de Minas.

Chamberlain, EAC. 1970. La oxidación a temperatura ambiente del carbón en relación con la detección temprana del calentamiento espontáneo. Ingeniero de Minas (octubre) 130(121):1-6.

Ellicott, CW. 1981. Evaluación de la explosibilidad de mezclas de gases y monitoreo de tendencias de tiempo de muestra. Actas del Simposio sobre Igniciones, Explosiones e Incendios. Illawara: Instituto Australiano de Minería y Metalurgia.

Agencia de Protección Ambiental (Australia). 1996. Mejores Prácticas de Gestión Ambiental en Minería. Canberra: Agencia de Protección Ambiental.

Funkemeyer, M y FJ Kock. 1989. Prevención de incendios en costuras de trabajo propensas a la combustión espontánea. Gluckauf 9-12.

Graham, JI. 1921. La producción normal de monóxido de carbono en las minas de carbón. Transacciones del Instituto de Ingenieros de Minas 60:222-234.

Grannes, SG, MA Ackerson y GR Green. 1990. Prevención de fallas en los sistemas automáticos de supresión de incendios en cintas transportadoras de minería subterránea. Circular de Información 9264. Washington, DC: Oficina de Minas.

Greuer, RE. 1974. Estudio de Combate de Incendios en Minas con Gases Inertes. Informe de Contrato USBM No. S0231075. Washington, DC: Oficina de Minas.

Grifo, RE. 1979. Evaluación de detectores de humo en la mina. Circular de Información 8808. Washington, DC: Oficina de Minas.

Hartman, HL (ed.). 1992. Manual de Ingeniería Minera SME, 2da edición. Baltimore, MD: Sociedad de Minería, Metalurgia y Exploración.

Hertzberg, M. 1982. Inhibición y extinción de explosiones de polvo de carbón y metano. Informe de Investigaciones 8708. Washington, DC: Oficina de Minas.

Hoek, E, PK Kaiser y WF Bawden. 1995. Diseño de Soporte para Minas Subterráneas de Roca Dura. Róterdam: AA Balkema.

Hughes, AJ y WE Raybold. 1960. La determinación rápida de la explosibilidad de los gases de incendios de minas. Ingeniero de Minas 29:37-53.

Consejo Internacional de Metales y Medio Ambiente (ICME). 1996. Estudios de casos que ilustran prácticas ambientales en procesos mineros y metalúrgicos. Ottawa: ICME.

Organización Internacional del Trabajo (OIT). 1994. Desarrollos recientes en la industria de la minería del carbón. Ginebra: OIT.

Jones, JE y JC Trickett. 1955. Algunas observaciones sobre el examen de gases resultantes de explosiones en minas de carbón. Transacciones del Instituto de Ingenieros de Minas 114: 768-790.

Mackenzie-Wood P y J Strang. 1990. Gases de fuego y su interpretación. Ingeniero de Minas 149(345):470-478.

Asociación para la Prevención de Accidentes en las Minas de Ontario. nd Pautas de preparación para emergencias. Informe del Comité Técnico Permanente. North Bay: Asociación de Prevención de Accidentes de Minas de Ontario.

Mitchell, D y F Burns. 1979. Interpretación del estado de un incendio en una mina. Washington, DC: Departamento de Trabajo de los Estados Unidos.

Morris, RM. 1988. Una nueva relación de fuego para determinar las condiciones en áreas selladas. Ingeniero de Minas 147(317):369-375.

Morrow, GS y CD Litton. 1992. Evaluación en la mina de detectores de humo. Circular de Información 9311. Washington, DC: Oficina de Minas.

Asociación Nacional de Protección contra Incendios (NFPA). 1992a. Código de Prevención de Incendios. NFPA 1. Quincy, MA: NFPA.

—. 1992b. Estándar en sistemas de combustible pulverizado. NFPA 8503. Quincy, MA: NFPA.

—. 1994a. Norma para la Prevención de Incendios en el Uso de Procesos de Corte y Soldadura. NFPA 51B. Quincy, MA: NFPA.

—. 1994b. Norma para extintores de incendios portátiles. NFPA 10. Quincy, MA: NFPA.

—. 1994c. Estándar para Sistemas de Espuma de Media y Alta Expansión. NFPA 11A. Quncy, MA: NFPA.

—. 1994d. Norma para Sistemas de Extinción de Químicos Secos. NFPA 17. Quincy, MA: NFPA.

—. 1994e. Norma para Plantas de Preparación de Carbón. NFPA 120. Quincy, MA: NFPA.

—. 1995a. Norma para la Prevención y Control de Incendios en Minas Subterráneas Metálicas y No Metálicas. NFPA 122. Quincy, MA: NFPA.

—. 1995b. Norma para la Prevención y Control de Incendios en Minas Subterráneas de Carbón Bituminoso. NFPA 123. Quincy, MA: NFPA.

—. 1996a. Norma sobre Protección contra Incendios para Equipos de Minería de Superficie Móviles y Autopropulsados. NFPA 121. Quincy, MA: NFPA.

—. 1996b. Código de Líquidos Inflamables y Combustibles. NFPA 30. Quincy, MA: NFPA.

—. 1996c. Código Eléctrico Nacional. NFPA 70. Quincy, MA: NFPA.

—. 1996d. Código Nacional de Alarmas contra Incendios. NFPA 72. Quincy, MA: NFPA.

—. 1996e. Norma para la Instalación de Sistemas de Rociadores. NFPA 13. Quincy, MA: NFPA.

—. 1996f. Norma para la Instalación de Sistemas de Rociado de Agua. NFPA 15. Quincy, MA: NFPA.

—. 1996g. Norma sobre sistemas de extinción de incendios con agentes limpios. NFPA 2001. Quincy, MA: NFPA.

—. 1996 h. Práctica recomendada para la protección contra incendios en plantas de generación eléctrica y estaciones convertidoras de CC de alto voltaje. NFPA 850. Quincy, MA: NFPA.

Ng, D y CP Lazzara. 1990. Comportamiento de tapones de bloques de hormigón y paneles de acero en un incendio simulado en una mina. Tecnología contra incendios 26(1):51-76.

Ninteman, DJ. 1978. Oxidación espontánea y combustión de minerales de sulfuro en minas subterráneas. Circular de Información 8775. Washington, DC: Oficina de Minas.

Pomroy, WH y TL Muldoon. 1983. Un nuevo sistema de advertencia de incendios por gases hediondos. En Actas de la Asamblea General Anual y Sesiones Técnicas de MAPAO de 1983. North Bay: Asociación de Prevención de Accidentes de Minas de Ontario.

Ramaswatny, A y PS Katiyar. 1988. Experiencias con nitrógeno líquido en el combate de incendios subterráneos de carbón. Revista de Minas, Metales y Combustibles 36(9):415-424.

Smith, AC y CN Thompson. 1991. Desarrollo y aplicación de un método para predecir el potencial de combustión espontánea de carbones bituminosos. Presentado en la 24ª Conferencia Internacional de Seguridad en Institutos de Investigación Minera, Instituto Estatal de Investigación de Makeevka para la Seguridad en la Industria del Carbón, Makeevka, Federación Rusa.

Timmons, ED, RP Vinson y FN Kissel. 1979. Pronóstico de peligros de metano en minas metálicas y no metálicas. Informe de Investigaciones 8392. Washington, DC: Oficina de Minas.

Departamento de Cooperación Técnica para el Desarrollo de las Naciones Unidas (ONU) y la Fundación Alemana para el Desarrollo Internacional. 1992. Minería y Medio Ambiente: Las Directrices de Berlín. Londres: Mining Journal Books.

Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). 1991. Aspectos ambientales de metales no ferrosos seleccionados (Cu, Ni, Pb, Zn, Au) en la minería de minerales. París: PNUMA.