Domingo, marzo de 13 2011 16: 14

Preparación de carbón

Valora este artículo
(2 votos)

La preparación del carbón es el proceso mediante el cual el carbón bruto de la mina se convierte en un producto de carbón limpio vendible de tamaño y calidad consistentes especificados por el consumidor. El uso final del carbón se divide en las siguientes categorías generales:

  • Generación eléctrica: El carbón se quema para suministrar calor para impulsar turbinas que generan electricidad.
  • Fabricación de hierro y acero: El carbón se calienta en hornos, en ausencia de aire, para expulsar los gases (materia volátil) para producir coque. El coque se utiliza en los altos hornos para fabricar hierro y acero. El carbón también se puede agregar directamente al alto horno como en el proceso de inyección de carbón pulverizado (PCI).
  • Industrial: El carbón se utiliza en la industria metalúrgica como reductor, por lo que su contenido de carbono se utiliza para eliminar el oxígeno (reductor) en un proceso metalúrgico.
  • Calefacción: El carbón se puede utilizar a nivel doméstico e industrial como combustible para la calefacción de espacios. También se utiliza como combustible en hornos secos para la fabricación de cemento.

 

Triturar y Romper

El carbón extraído de la mina debe triturarse hasta un tamaño superior aceptable para su tratamiento en la planta de preparación. Los dispositivos típicos de trituración y rotura son:

  • Interruptores de alimentación: Un tambor de rotación provisto de picos que fracturan el carbón. El carbón es entregado por un transportador raspador y el tambor gira en la misma dirección que el flujo de carbón. Los interruptores de alimentación se usan comúnmente bajo tierra, sin embargo, hay algunos en uso en la superficie en el circuito de preparación de carbón.
  • Rompedores rotativos: El circuito interruptor de una carcasa exterior fija con un tambor giratorio interior equipado con placas perforadas. La velocidad de rotación típica del tambor es de 12 a 18 rpm. Las placas elevadoras recogen el carbón extraído de la mina que luego cae a lo largo del diámetro del tambor. El carbón más blando se rompe y pasa a través de las perforaciones mientras que la roca más dura se transporta a la salida. El rompedor rotativo logra dos funciones, reducción de tamaño y beneficio por remoción de roca.
  • Trituradoras de rodillos: Las trituradoras de rodillos pueden constar de un solo rodillo giratorio y un yunque estacionario (placa), o de dos rodillos que giran a la misma velocidad uno hacia el otro. Las caras de los rodillos suelen ser dentadas o corrugadas. Una forma común de trituradora es la trituradora de dos etapas o de rodillos cuádruples en la que el producto de la primera trituradora de rodillos gemelos cae en la segunda trituradora de rodillos gemelos colocada en una abertura más pequeña, con el resultado de que se puede lograr una reducción a gran escala en una sola máquina. . Una aplicación típica sería la trituración de material extraído de la mina hasta 50 mm.

 

La trituración se usa a veces después del proceso de limpieza del carbón, cuando se tritura carbón de gran tamaño para cumplir con los requisitos del mercado. Normalmente se utilizan trituradoras de rodillos o molinos de martillos. El molino de martillos consta de un conjunto de martillos de movimiento libre que giran sobre un eje que golpean el carbón y lo lanzan contra una placa fija.

Guía de Tallas

El carbón se dimensiona antes y después del proceso de beneficio (limpieza). Se utilizan diferentes procesos de limpieza en diferentes tamaños de carbón, de modo que el carbón crudo al ingresar a la planta de preparación de carbón se cribará (tamizará) en tres o cuatro tamaños que luego pasarán por el proceso de limpieza adecuado. El proceso de cribado se suele realizar mediante cribas vibratorias rectangulares con cubierta de criba de malla o de chapa perforada. En tamaños inferiores a 6 mm, se utiliza un tamizado húmedo para aumentar la eficiencia de la operación de clasificación y en tamaños inferiores a 0.5 mm, se coloca una pantalla curva estática (curva de tamiz) antes de la pantalla vibratoria para mejorar la eficiencia.

Después del proceso de beneficio, el carbón limpio a veces se clasifica en una variedad de productos para los mercados del carbón doméstico e industrial. El dimensionamiento del carbón limpio rara vez se utiliza para el carbón para la generación de electricidad (carbón térmico) o para la fabricación de acero (carbón metalúrgico).

Almacenamiento y Almacenamiento

El carbón generalmente se almacena y almacena en tres puntos de la cadena de preparación y manejo:

  1. almacenamiento y acopio de carbón crudo entre la mina y la planta de preparación
  2. almacenamiento y acopio de carbón limpio entre la planta de preparación y el punto de carga por ferrocarril o carretera
  3. almacenamiento de carbón limpio en puertos que pueden o no estar controlados por la mina.

 

Por lo general, el almacenamiento de carbón crudo ocurre después de la trituración y, por lo general, toma la forma de pilas abiertas (cónicas, alargadas o circulares), silos (cilíndricos) o depósitos. Es común que en esta etapa se realice una mezcla de costura para suministrar un producto homogéneo a la planta de preparación. La mezcla puede ser tan simple como depositar secuencialmente diferentes carbones en una pila cónica hasta operaciones sofisticadas que utilizan transportadores apiladores y recuperadores de rueda de cangilones.

El carbón limpio se puede almacenar de diversas formas, como pilas abiertas o silos. El sistema de almacenamiento de carbón limpio está diseñado para permitir la carga rápida de vagones de ferrocarril o camiones de carretera. Los silos de carbón limpio generalmente se construyen sobre una vía férrea, lo que permite que trenes unitarios de hasta 100 vagones pasen lentamente debajo del silo y se llenen hasta un peso conocido. El pesaje en movimiento generalmente se usa para mantener una operación continua.

Hay peligros inherentes en los carbones almacenados. Las reservas pueden ser inestables. Se debe prohibir caminar sobre las pilas de almacenamiento porque pueden ocurrir colapsos internos y porque la recuperación puede comenzar sin previo aviso. La limpieza física de obstrucciones o atascos en búnkeres o silos debe tratarse con el mayor cuidado, ya que el carbón aparentemente estable puede resbalar repentinamente.

Limpieza de Carbón (Beneficio)

El carbón crudo contiene material desde carbón “puro” hasta roca con una variedad de materiales intermedios, con densidades relativas que van desde 1.30 a 2.5. El carbón se limpia separando el material de baja densidad (producto vendible) del material de alta densidad (basura). La densidad exacta de separación depende de la naturaleza del carbón y de la especificación de calidad del carbón limpio. No es práctico separar el carbón fino en función de la densidad y, como resultado, se separan 0.5 mm de carbón bruto mediante procesos que utilizan la diferencia en las propiedades superficiales del carbón y la roca. El método habitual empleado es la flotación por espuma.

separación de densidad

Se emplean dos métodos básicos, uno es un sistema que usa agua, donde el movimiento del carbón crudo en el agua da como resultado que el carbón más liviano tenga una mayor aceleración que la roca más pesada. El segundo método consiste en sumergir el carbón crudo en un líquido con una densidad entre el carbón y la roca con el resultado de que el carbón flota y la roca se hunde (separación del medio denso).

Los sistemas que utilizan agua son los siguientes:

  • Plantillas: En esta aplicación, el carbón crudo se introduce en un baño de agua pulsante. El carbón crudo se mueve a través de una placa perforada con agua que pulsa a través de ella. Se establece un lecho estratificado de material con la roca más pesada en el fondo y el carbón más liviano en la parte superior. Al final de la descarga, los desechos se eliminan del carbón limpio. Los rangos de tamaño típicos tratados en una plantilla son de 75 mm a 12 mm. Hay plantillas de carbón fino para aplicaciones especiales que utilizan un lecho artificial de roca de feldespato.
  • Mesas concentradoras: Una mesa concentradora consta de una plataforma de goma ondulada que se sostiene sobre un mecanismo de soporte, conectado a un mecanismo principal que imparte un movimiento alternativo rápido en una dirección paralela a los deflectores. La pendiente de deslizamiento de la mesa se puede ajustar. Se proporciona un flujo cruzado de agua por medio de una canaleta montada a lo largo del lado superior de la cubierta. La alimentación ingresa justo antes del suministro de agua y se distribuye en abanico sobre la plataforma de la mesa por el movimiento diferencial y el flujo gravitatorio. Las partículas de carbón crudo se estratifican en zonas (o capas) horizontales. El carbón limpio se desborda por el lado inferior de la mesa y el descarte se retira por el otro lado. Las mesas operan en el rango de tamaño de 5 ´ 0.5 mm.
  • Espirales: El tratamiento de finos de carbón con espirales utiliza un principio por el cual el carbón fino crudo se transporta por un camino en espiral en una corriente de agua y las fuerzas centrífugas dirigen las partículas de carbón más ligeras hacia el exterior de la corriente y las partículas más pesadas hacia el interior. Un dispositivo divisor en el extremo de descarga separa el carbón fino de los desechos finos. Las espirales se utilizan como dispositivo de limpieza en fracciones de tamaño de 2 mm x 0.1 mm.
  • Ciclones solo de agua: El carbón crudo transportado por el agua se introduce tangencialmente bajo presión en un ciclón, lo que genera un efecto de remolino y las fuerzas centrífugas mueven el material más pesado hacia la pared del ciclón y desde allí se transportan al flujo inferior en el vértice (o grifo). Las partículas más ligeras (carbón) permanecen en el centro del vórtice del remolino y se eliminan hacia arriba a través de una tubería (buscador de vórtices) y se comunican con el desbordamiento. La densidad exacta de separación se puede ajustar variando la presión, la longitud y el diámetro del buscador de vórtices y el diámetro del vértice. El ciclón solo de agua generalmente trata material en el rango de tamaño de 0.5 mm x 0.1 mm y se opera en dos etapas para mejorar la eficiencia de separación.

 

El segundo tipo de separación por densidad es el medio denso. En un líquido pesado (medio denso), las partículas que tienen una densidad inferior a la del líquido (carbón) flotarán y las que tengan una densidad superior (roca) se hundirán. La aplicación industrial más práctica de un medio denso es una suspensión finamente molida de magnetita en agua. Esto tiene muchas ventajas, a saber:

  • La mezcla es benigna, en comparación con fluidos inorgánicos u orgánicos.
  • La densidad se puede ajustar rápidamente variando la relación magnetita/agua.
  • La magnetita se puede reciclar fácilmente retirándola de las corrientes de productos con separadores magnéticos.

 

Hay dos clases de separadores de medio denso, el separador tipo baño o recipiente para carbón grueso en el rango de 75 mm a 12 mm y el separador tipo ciclón para limpieza de carbón en el rango de 5 mm x 0.5 mm.

Los separadores tipo baño pueden ser baños profundos o poco profundos donde el material flotante se transporta sobre el borde del baño y el material del fregadero se extrae del fondo del baño mediante una cadena raspadora o una rueda de paletas.

El separador tipo ciclón mejora las fuerzas gravitatorias con fuerzas centrífugas. La aceleración centrífuga es aproximadamente 20 veces mayor que la aceleración de la gravedad que actúa sobre las partículas en el separador de baño (esta aceleración se aproxima a 200 veces mayor que la aceleración de la gravedad en el vértice del ciclón). Estas grandes fuerzas explican el alto rendimiento del ciclón y su capacidad para tratar carbón pequeño.

Los productos de los separadores de medio denso, a saber, carbón limpio y desechos, pasan por pantallas de drenaje y enjuague donde se elimina el medio de magnetita y se devuelve a los separadores. La magnetita diluida de las pantallas de enjuague pasa a través de separadores magnéticos para recuperar la magnetita para su reutilización. Los separadores magnéticos consisten en cilindros giratorios de acero inoxidable que contienen imanes cerámicos fijos montados en el eje del tambor estacionario. El tambor se sumerge en un tanque de acero inoxidable que contiene la suspensión de magnetita diluida. A medida que gira el tambor, la magnetita se adhiere al área cercana a los imanes internos fijos. La magnetita sale del baño y del campo magnético y cae desde la superficie del tambor a través de un raspador hasta un tanque de almacenamiento.

Tanto los densímetros nucleares como los analizadores nucleares en curso se utilizan en plantas de preparación de carbón. Deben observarse las precauciones de seguridad relacionadas con los instrumentos de fuente de radiación.

Flotación por espuma

La flotación por espuma es un proceso fisicoquímico que depende de la unión selectiva de burbujas de aire a las superficies de partículas de carbón y la no unión de partículas de desecho. Este proceso implica el uso de reactivos adecuados para establecer una superficie hidrófoba (repelente al agua) sobre los sólidos que se van a flotar. Las burbujas de aire se generan dentro de un tanque (o celda) y, a medida que suben a la superficie, las partículas finas de carbón recubiertas de reactivo se adhieren a la burbuja, los desechos que no son de carbón permanecen en el fondo de la celda. La espuma que contiene carbón se elimina de la superficie mediante paletas y luego se deshidrata mediante filtración o centrífuga. Los desechos (o relaves) pasan a una caja de descarga y generalmente se espesan antes de ser bombeados a un embalse de relaves.

Los reactivos utilizados en la flotación por espuma del carbón son generalmente espumantes y colectores. Los espumadores se utilizan para facilitar la producción de una espuma estable (es decir, espumas que no se disuelven). Son sustancias químicas que reducen la tensión superficial del agua. El espumante más utilizado en la flotación de carbón es el metil isobutil carbinol (MIBC). La función de un colector es promover el contacto entre las partículas de carbón y las burbujas de aire formando una fina capa sobre las partículas que flotan, lo que hace que las partículas sean repelentes al agua. Al mismo tiempo, el colector debe ser selectivo, es decir, no debe cubrir las partículas que no se van a flotar (es decir, los relaves). El colector más utilizado en la flotación de carbón es el fuel oil.

Briquetas

La fabricación de briquetas de carbón tiene una larga historia. A fines del siglo XIX, se comprimía carbón fino o hollín relativamente inútil para formar un “combustible patentado” o briquetas. Este producto era aceptable tanto para el mercado doméstico como para el industrial. Para formar una briqueta estable, era necesario un aglutinante. Por lo general, se usaban alquitranes de hulla y breas. La industria de fabricación de briquetas de carbón para el mercado interno ha estado en declive durante algunos años. Sin embargo, ha habido algunos avances en tecnología y aplicaciones.

Los carbones de rango bajo con alto contenido de humedad pueden mejorarse mediante secado térmico y la posterior eliminación de una parte de la humedad inherente o "bloqueada". Sin embargo, el producto de este proceso es friable y propenso a la reabsorción de humedad y la combustión espontánea. La fabricación de briquetas de carbón de baja graduación permite fabricar un producto estable y transportable. La fabricación de briquetas también se usa en la industria de la antracita, donde los productos de gran tamaño tienen un precio de venta significativamente más alto.

La fabricación de briquetas de carbón también se ha utilizado en economías emergentes donde las briquetas se utilizan como combustible para cocinar en áreas rurales. El proceso de fabricación generalmente involucra un paso de desgasificación mediante el cual el exceso de gas o materia volátil se elimina antes de formar briquetas para producir un combustible doméstico "sin humo".

El proceso de fabricación de briquetas, por lo tanto, suele tener los siguientes pasos:

  • Secado de carbón: El contenido de humedad es crítico porque tiene un impacto en la resistencia de la briqueta. Los métodos utilizados son el secado directo (un secador instantáneo que usa gas caliente) y el secado indirecto (un secador de disco que usa calor de vapor).
  • desvolatilizante: Esto solo se aplica a los carbones de alta volatilidad de rango bajo. El equipo utilizado es una retorta o un horno de coque tipo colmena.
  • Aplastante: El carbón a menudo se tritura porque un tamaño de partícula más pequeño da como resultado una briqueta más fuerte.
  • Aglutinantes: Se requieren aglutinantes para garantizar que la briqueta tenga la resistencia adecuada para resistir el manejo normal. Los tipos de ligantes que se han utilizado son brea de horno de coque, asfalto de petróleo, lignosulfurato de amonio y almidón. La tasa de adición típica es del 5 al 15% en peso. El carbón fino y el aglutinante se mezclan en un molino pug o mezclador de paletas a temperatura elevada.
  • Fabricación de briquetas: La mezcla de carbón y aglomerante se alimenta a una prensa de doble rodillo con superficies dentadas. Se puede hacer una variedad de formas de briquetas dependiendo del tipo de muesca del rodillo. La forma más común de briquetas es la forma de almohada. La presión aumenta la densidad aparente de la mezcla de carbón y aglomerante entre 1.5 y 3 veces.
  • Rebozado y horneado: Con algunos aglomerantes (lignosulforato de amonio y asfalto de petróleo) es necesario un tratamiento térmico en el rango de 300°C para endurecer las briquetas. El horno de tratamiento térmico es un transportador cerrado y se calienta con gases calientes.
  • Enfriamiento/apagado: El horno de enfriamiento es un transportador cerrado con aire recirculante que pasa para reducir la temperatura de las briquetas a una condición ambiental. Los gases de escape se recogen, se depuran y se descargan a la atmósfera. A veces se usa el enfriamiento con agua para enfriar las briquetas.

 

La formación de briquetas de lignito pardo con un alto contenido de humedad de 60 a 70% es un proceso algo diferente al descrito anteriormente. Los lignitos se mejoran con frecuencia mediante la fabricación de briquetas, lo que implica triturar, tamizar y secar el carbón hasta aproximadamente un 15 % de humedad, y prensar por extrusión sin aglutinante en compactos. Grandes cantidades de carbón son tratadas de esta manera en Alemania, India, Polonia y Australia. El secador utilizado es un secador de tubo rotativo calentado por vapor. Después del prensado por extrusión, el carbón compactado se corta y se enfría antes de transferirlo a cintas transportadoras a vagones, camiones de carretera o almacenamiento.

Las plantas de fabricación de briquetas manejan grandes cantidades de material altamente combustible asociado con mezclas potencialmente explosivas de polvo de carbón y aire. El control, la recolección y el manejo del polvo, así como una buena limpieza, son de gran importancia para una operación segura.

Eliminación de desperdicios y relaves

La eliminación de desechos es una parte integral de una planta moderna de preparación de carbón. Tanto los desechos gruesos como los relaves finos en forma de lodos deben transportarse y eliminarse de manera ambientalmente responsable.

Residuos gruesos

Los residuos gruesos se transportan por camión, cinta transportadora o teleférico hasta el área de disposición de sólidos, que generalmente forma las paredes del depósito de relaves. Los desechos también se pueden devolver al tajo abierto.

Ahora se están utilizando formas innovadoras y rentables de transporte de desechos gruesos, a saber, trituración y transporte mediante bombeo en forma de lodo a un estanque de embalse y también mediante un sistema neumático al almacenamiento subterráneo.

Es necesario seleccionar un sitio de eliminación que tenga una cantidad mínima de superficie expuesta y al mismo tiempo proporcione una buena estabilidad. Una estructura expuesta por todos sus lados permite un mayor drenaje superficial, con una mayor tendencia a la formación de sedimentos en los cursos de agua cercanos, y también una mayor probabilidad de combustión espontánea. Para minimizar estos dos efectos, se requieren mayores cantidades de material de cobertura, compactación y sellado. La construcción de eliminación ideal es el tipo de operación de relleno de valle.

Los terraplenes de desechos de plantas de preparación pueden fallar por varias razones:

  • bases débiles
  • pendientes excesivamente empinadas de alturas excesivas
  • mal control de filtraciones de agua y finos por el vertedero
  • control inadecuado del agua durante eventos de lluvias extremas.

 

Las principales categorías de técnicas de diseño y construcción que pueden reducir en gran medida los peligros ambientales asociados con la eliminación de desechos de carbón son:

  • drenaje desde dentro de la pila de basura
  • desviación del drenaje superficial
  • compactación de residuos para minimizar la combustión espontánea
  • estabilidad de la pila de desechos.

 

Relaves

Los relaves (residuos sólidos finos en agua) generalmente se transportan por tubería a un área de embalse. Sin embargo, en algunos casos, el embalse de relaves no es aceptable desde el punto de vista ambiental y es necesario un tratamiento alternativo, a saber, deshidratación de los relaves mediante prensa de banda o centrífuga de alta velocidad y luego disposición del producto deshidratado mediante banda o camión en el área de desechos gruesos.

Los embalses de relaves (estanques) funcionan según el principio de que los relaves se depositan en el fondo y el agua clarificada resultante se bombea de regreso a la planta para su reutilización. La elevación de la piscina en el estanque se mantiene de tal manera que los flujos de entrada de tormentas se almacenan y luego se extraen mediante sistemas de bombeo o de decantación pequeños. Puede ser necesario eliminar periódicamente los sedimentos de los embalses más pequeños para prolongar su vida útil. El terraplén de contención del embalse generalmente se construye con basura gruesa. Un diseño deficiente del muro de contención y la licuefacción de los relaves debido a un mal drenaje pueden generar situaciones peligrosas. Se han utilizado agentes estabilizadores, generalmente productos químicos a base de calcio, para producir un efecto de cementación.

Los embalses de relaves normalmente se desarrollan durante un período prolongado de la vida útil de la mina, con condiciones que cambian continuamente. Por lo tanto, la estabilidad de la estructura del embalse debe monitorearse cuidadosa y continuamente.

 

Atrás

Leer 10436 veces Ultima modificacion el Martes, junio 28 2011 12: 19

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de minería y explotación de canteras

Agricola, G. 1950. De Re Metallica, traducido por HC Hoover y LH Hoover. Nueva York: Publicaciones de Dover.

Bickel, KL. 1987. Análisis de equipos mineros a diesel. En Actas del Seminario de Transferencia de Tecnología de la Oficina de Minas: Diésel en Minas Subterráneas. Circular de Información 9141. Washington, DC: Oficina de Minas.

Oficina de Minas. 1978. Prevención de incendios y explosiones en minas de carbón. Circular de Información 8768. Washington, DC: Oficina de Minas.

—. 1988. Desarrollos recientes en protección contra incendios de metales y no metales. Circular de Información 9206. Washington, DC: Oficina de Minas.

Chamberlain, EAC. 1970. La oxidación a temperatura ambiente del carbón en relación con la detección temprana del calentamiento espontáneo. Ingeniero de Minas (octubre) 130(121):1-6.

Ellicott, CW. 1981. Evaluación de la explosibilidad de mezclas de gases y monitoreo de tendencias de tiempo de muestra. Actas del Simposio sobre Igniciones, Explosiones e Incendios. Illawara: Instituto Australiano de Minería y Metalurgia.

Agencia de Protección Ambiental (Australia). 1996. Mejores Prácticas de Gestión Ambiental en Minería. Canberra: Agencia de Protección Ambiental.

Funkemeyer, M y FJ Kock. 1989. Prevención de incendios en costuras de trabajo propensas a la combustión espontánea. Gluckauf 9-12.

Graham, JI. 1921. La producción normal de monóxido de carbono en las minas de carbón. Transacciones del Instituto de Ingenieros de Minas 60:222-234.

Grannes, SG, MA Ackerson y GR Green. 1990. Prevención de fallas en los sistemas automáticos de supresión de incendios en cintas transportadoras de minería subterránea. Circular de Información 9264. Washington, DC: Oficina de Minas.

Greuer, RE. 1974. Estudio de Combate de Incendios en Minas con Gases Inertes. Informe de Contrato USBM No. S0231075. Washington, DC: Oficina de Minas.

Grifo, RE. 1979. Evaluación de detectores de humo en la mina. Circular de Información 8808. Washington, DC: Oficina de Minas.

Hartman, HL (ed.). 1992. Manual de Ingeniería Minera SME, 2da edición. Baltimore, MD: Sociedad de Minería, Metalurgia y Exploración.

Hertzberg, M. 1982. Inhibición y extinción de explosiones de polvo de carbón y metano. Informe de Investigaciones 8708. Washington, DC: Oficina de Minas.

Hoek, E, PK Kaiser y WF Bawden. 1995. Diseño de Soporte para Minas Subterráneas de Roca Dura. Róterdam: AA Balkema.

Hughes, AJ y WE Raybold. 1960. La determinación rápida de la explosibilidad de los gases de incendios de minas. Ingeniero de Minas 29:37-53.

Consejo Internacional de Metales y Medio Ambiente (ICME). 1996. Estudios de casos que ilustran prácticas ambientales en procesos mineros y metalúrgicos. Ottawa: ICME.

Organización Internacional del Trabajo (OIT). 1994. Desarrollos recientes en la industria de la minería del carbón. Ginebra: OIT.

Jones, JE y JC Trickett. 1955. Algunas observaciones sobre el examen de gases resultantes de explosiones en minas de carbón. Transacciones del Instituto de Ingenieros de Minas 114: 768-790.

Mackenzie-Wood P y J Strang. 1990. Gases de fuego y su interpretación. Ingeniero de Minas 149(345):470-478.

Asociación para la Prevención de Accidentes en las Minas de Ontario. nd Pautas de preparación para emergencias. Informe del Comité Técnico Permanente. North Bay: Asociación de Prevención de Accidentes de Minas de Ontario.

Mitchell, D y F Burns. 1979. Interpretación del estado de un incendio en una mina. Washington, DC: Departamento de Trabajo de los Estados Unidos.

Morris, RM. 1988. Una nueva relación de fuego para determinar las condiciones en áreas selladas. Ingeniero de Minas 147(317):369-375.

Morrow, GS y CD Litton. 1992. Evaluación en la mina de detectores de humo. Circular de Información 9311. Washington, DC: Oficina de Minas.

Asociación Nacional de Protección contra Incendios (NFPA). 1992a. Código de Prevención de Incendios. NFPA 1. Quincy, MA: NFPA.

—. 1992b. Estándar en sistemas de combustible pulverizado. NFPA 8503. Quincy, MA: NFPA.

—. 1994a. Norma para la Prevención de Incendios en el Uso de Procesos de Corte y Soldadura. NFPA 51B. Quincy, MA: NFPA.

—. 1994b. Norma para extintores de incendios portátiles. NFPA 10. Quincy, MA: NFPA.

—. 1994c. Estándar para Sistemas de Espuma de Media y Alta Expansión. NFPA 11A. Quncy, MA: NFPA.

—. 1994d. Norma para Sistemas de Extinción de Químicos Secos. NFPA 17. Quincy, MA: NFPA.

—. 1994e. Norma para Plantas de Preparación de Carbón. NFPA 120. Quincy, MA: NFPA.

—. 1995a. Norma para la Prevención y Control de Incendios en Minas Subterráneas Metálicas y No Metálicas. NFPA 122. Quincy, MA: NFPA.

—. 1995b. Norma para la Prevención y Control de Incendios en Minas Subterráneas de Carbón Bituminoso. NFPA 123. Quincy, MA: NFPA.

—. 1996a. Norma sobre Protección contra Incendios para Equipos de Minería de Superficie Móviles y Autopropulsados. NFPA 121. Quincy, MA: NFPA.

—. 1996b. Código de Líquidos Inflamables y Combustibles. NFPA 30. Quincy, MA: NFPA.

—. 1996c. Código Eléctrico Nacional. NFPA 70. Quincy, MA: NFPA.

—. 1996d. Código Nacional de Alarmas contra Incendios. NFPA 72. Quincy, MA: NFPA.

—. 1996e. Norma para la Instalación de Sistemas de Rociadores. NFPA 13. Quincy, MA: NFPA.

—. 1996f. Norma para la Instalación de Sistemas de Rociado de Agua. NFPA 15. Quincy, MA: NFPA.

—. 1996g. Norma sobre sistemas de extinción de incendios con agentes limpios. NFPA 2001. Quincy, MA: NFPA.

—. 1996 h. Práctica recomendada para la protección contra incendios en plantas de generación eléctrica y estaciones convertidoras de CC de alto voltaje. NFPA 850. Quincy, MA: NFPA.

Ng, D y CP Lazzara. 1990. Comportamiento de tapones de bloques de hormigón y paneles de acero en un incendio simulado en una mina. Tecnología contra incendios 26(1):51-76.

Ninteman, DJ. 1978. Oxidación espontánea y combustión de minerales de sulfuro en minas subterráneas. Circular de Información 8775. Washington, DC: Oficina de Minas.

Pomroy, WH y TL Muldoon. 1983. Un nuevo sistema de advertencia de incendios por gases hediondos. En Actas de la Asamblea General Anual y Sesiones Técnicas de MAPAO de 1983. North Bay: Asociación de Prevención de Accidentes de Minas de Ontario.

Ramaswatny, A y PS Katiyar. 1988. Experiencias con nitrógeno líquido en el combate de incendios subterráneos de carbón. Revista de Minas, Metales y Combustibles 36(9):415-424.

Smith, AC y CN Thompson. 1991. Desarrollo y aplicación de un método para predecir el potencial de combustión espontánea de carbones bituminosos. Presentado en la 24ª Conferencia Internacional de Seguridad en Institutos de Investigación Minera, Instituto Estatal de Investigación de Makeevka para la Seguridad en la Industria del Carbón, Makeevka, Federación Rusa.

Timmons, ED, RP Vinson y FN Kissel. 1979. Pronóstico de peligros de metano en minas metálicas y no metálicas. Informe de Investigaciones 8392. Washington, DC: Oficina de Minas.

Departamento de Cooperación Técnica para el Desarrollo de las Naciones Unidas (ONU) y la Fundación Alemana para el Desarrollo Internacional. 1992. Minería y Medio Ambiente: Las Directrices de Berlín. Londres: Mining Journal Books.

Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). 1991. Aspectos ambientales de metales no ferrosos seleccionados (Cu, Ni, Pb, Zn, Au) en la minería de minerales. París: PNUMA.