Outils de bannièreApproche

Catégories Enfants

27. Surveillance biologique

27. Surveillance biologique (6)

4 bannière

 

27. Surveillance biologique

Éditeur de chapitre : Robert Lauwerys


 

Table des matières  

Tableaux et figures

Principes généraux
Vito Foà et Lorenzo Alessio

Assurance qualité
D. Gompertz

Métaux et composés organométalliques
P. Hoet et Robert Lauwerys

Solvants organiques
Masayuki Ikeda

Produits chimiques génotoxiques
Marja Sorsa

Pesticides
Marco Maroni et Adalberto Ferioli 

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. ACGIH, DFG et autres valeurs limites pour les métaux

2. Exemples de produits chimiques et de surveillance biologique

3. Surveillance biologique des solvants organiques

4. Génotoxicité des produits chimiques évaluée par le CIRC

5. Biomarqueurs et certains échantillons de cellules/tissus et génotoxicité

6. Agents cancérigènes pour l'homme, exposition professionnelle et paramètres cytogénétiques

7. Principes éthiques

8. Exposition due à la production et à l'utilisation de pesticides

9. Toxicité aiguë de l'OP à différents niveaux d'inhibition de l'ACHE

10. Variations de ACHE & PCHE et conditions de santé sélectionnées

11. Activités de la cholinestérase chez des personnes en bonne santé non exposées

12. Phosphates d'alkyle urinaires et pesticides OP

13. Dosage des alkylphosphates urinaires & OP

14. Métabolites urinaires des carbamates

15. Métabolites urinaires du dithiocarbamate

16. Indices proposés pour la surveillance biologique des pesticides

17. Valeurs limites biologiques recommandées (à partir de 1996)

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

BMO010F1BMO020F1BMO050F1BMO050T1BMO050F2BMO050F3BMO050T5BMO060F1BMO060F2BMO060F3

 


Cliquez pour revenir en haut de la page

Voir les articles ...
28. Épidémiologie et statistiques

28. Épidémiologie et statistiques (12)

4 bannière

 

28. Épidémiologie et statistiques

Éditeurs de chapitre :  Franco Merletti, Colin L. Soskolne et Paolo Vineis


Table des matières

Tableaux et figures

Méthode épidémiologique appliquée à la santé et à la sécurité au travail
Franco Merletti, Colin L. Soskolne et Paolo Vineis

Évaluation de l'exposition
M. Gérald Ott

Résumé des mesures d'exposition au travail
Colin L. Soskolné

Mesurer les effets des expositions
Shelia Hoar Zahm

     Étude de cas : Mesures
     Franco Merletti, Colin L. Soskolne et Paola Vineis

Options dans la conception de l'étude
Sven Hernberg

Problèmes de validité dans la conception de l'étude
Annie J.Sasco

Impact de l'erreur de mesure aléatoire
Paolo Vineis et Colin L. Soskolne

Méthodes statistiques
Annibale Biggeri et Mario Braga

Évaluation de la causalité et éthique dans la recherche épidémiologique
Paolo Vineis

Études de cas illustrant les enjeux méthodologiques de la surveillance des maladies professionnelles
Jung-Der Wang

Questionnaires en recherche épidémiologique
Steven D. Stellman et Colin L. Soskolne

Perspective historique de l'amiante
Laurent Garfinkel

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Cinq mesures sommaires sélectionnées de l'exposition au travail

2. Mesures de l'apparition de la maladie

3. Mesures d'association pour une étude de cohorte

4. Mesures d'association pour les études cas-témoins

5. Disposition générale du tableau de fréquence pour les données de cohorte

6. Exemple de mise en page des données cas-témoins

7. Mise en page des données cas-témoin - un contrôle par cas

8. Cohorte hypothétique de 1950 individus à T2

9. Indices de tendance centrale & dispersion

10. Une expérience binomiale & probabilités

11. Résultats possibles d'une expérience binomiale

12. Distribution binomiale, 15 succès/30 essais

13. Distribution binomiale, p = 0.25 ; 30 essais

14. Erreur de type II et alimentation ; x = 12, n = 30, a = 0.05

15. Erreur de type II et alimentation ; x = 12, n = 40, a = 0.05

16. 632 travailleurs exposés à l'amiante 20 ans ou plus

17. O/E nombre de décès parmi 632 travailleurs de l'amiante

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

EPI110F1EPI110F2


Cliquez pour revenir en haut de la page

Voir les articles ...
29. Ergonomie

29. Ergonomie (27)

4 bannière

 

29. Ergonomie

Éditeurs de chapitre :  Wolfgang Laurig et Joachim Vedder

 


 

Table des matières 

Tableaux et figures

Vue d’ensemble
Wolfgang Laurig et Joachim Vedder

Objectifs, principes et méthodes

La nature et les objectifs de l'ergonomie
William T.Singleton

Analyse des activités, des tâches et des systèmes de travail
Véronique De Keyser

Ergonomie et standardisation
Friedhelm Nachreiner

Listes de contrôle
Pranab Kumar Nag

Aspects physiques et physiologiques

Anthropométrie
Melchiorre Masali

Travail musculaire
Juhani Smolander et Veikko Louhevaara

Postures au travail
Ilkka Kuorinka

Biomécanique
Franck Darby

Fatigue générale
Étienne Grandjean

Fatigue et récupération
Rolf Helbig et Walter Rohmert

Aspects psychologiques

Charge de travail mentale
Winfried Hacker

Vigilance
Herbert Heuer

Fatigue mentale
Pierre Richter

Aspects organisationnels du travail

Organisation du travail
Eberhard Ulich et Gudela Grote

Privation de sommeil
Kazutaka Kogi

Conception de systèmes de travail

Stations de travail
Roland Kadefors

Outils
TM Fraser

Commandes, indicateurs et panneaux
Karl HE Kroemer

Traitement de l'information et conception
Andries F. Sanders

Concevoir pour tout le monde

Concevoir pour des groupes spécifiques
Blague H. Grady-van den Nieuwboer

     Étude de cas : La classification internationale des limitations fonctionnelles chez les personnes

Les différences culturelles
Houshang Shahnavaz

Travailleurs âgés
Antoine Laville et Serge Volkoff

Travailleurs ayant des besoins spéciaux
Blague H. Grady-van den Nieuwboer

Diversité et importance de l'ergonomie - Deux exemples

Conception de systèmes dans la fabrication de diamants
Issacar Guilad

Ne pas tenir compte des principes de conception ergonomique : Tchernobyl
Vladimir M. Munipov 

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Liste de base anthropométrique de base

2. Fatigue et récupération en fonction des niveaux d'activité

3. Règles de combinaison des effets de deux facteurs de stress sur la déformation

4. Faire la différence entre plusieurs conséquences négatives de la tension mentale

5. Principes axés sur le travail pour la structuration de la production

6. Participation au contexte organisationnel

7. Participation des utilisateurs au processus technologique

8. Horaires de travail irréguliers et privation de sommeil

9. Aspects des sommeils avancés, ancrés et retardés

10. Contrôler les mouvements et les effets attendus

11. Relations contrôle-effet des commandes manuelles courantes

12. Règles de disposition des commandes

13. Lignes directrices pour les étiquettes

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

ERG040T1ERG040F1ERG040F2ERG040F3ERG040T2ERG040F5ERG070F1ERG070F2ERG070F3ERG060F2ERG060F1ERG060F3ERG080F1ERG080F4ERG090F1ERG090F2ERG090F3ERG090F4ERG225F1ERG225F2ERG150F1ERG150F2ERG150F4ERG150F5ERG150F6ERG120F1ERG130F1ERG290F1ERG160T1ERG160F1ERG185F1ERG185F2ERG185F3ERG185F4ERG190F1ERG190F2ERG190F3ERG210F1ERG210F2ERG210F3ERG210F4ERG210T4ERG210T5ERG210T6ERG220F1ERG240F1ERG240F2ERG240F3ERG240F4ERG260F1ERG300F1ERG255F1

Voir les articles ...
31. Protection personnelle

31. Protection personnelle (7)

4 bannière

 

31. Protection personnelle

Éditeur de chapitre :  Robert F. Herrick 


 

Table des matières 

Tableaux et figures

Présentation et philosophie de la protection personnelle
Robert F. Herrick

Protecteurs des yeux et du visage
Kikuzi Kimura

Protection des pieds et des jambes
Toyohiko Miura

Protection de la tête
Isabelle Balty et Alain Mayer

Protection auditive
John R. Franks et Elliott H. Berger

Vêtements de protection
S.Zack Mansdorf

Protection respiratoire
Thomas J. Nelson

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Exigences de transmission (ISO 4850-1979)

2. Balances de protection - soudage au gaz et soudo-brasage

3. Echelles de protection - oxycoupage

4. Échelles de protection - coupage plasma

5. Échelles de protection - soudage à l'arc électrique ou gougeage

6. Échelles de protection - soudage plasma à l'arc direct

7. Casque de sécurité : Norme ISO 3873-1977

8. Taux de réduction du bruit d'un protecteur auditif

9. Calcul de la réduction de bruit pondérée A

10. Exemples de catégories de danger cutané

11. Exigences de performances physiques, chimiques et biologiques

12. Dangers matériels associés à des activités particulières

13. Facteurs de protection attribués selon ANSI Z88 2 (1992)

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

PPE020F1PPE020F2PPE020F3PPE020F4PPE030F1PPE030F2PPE030F3PPE050F1PPE050F2PPE060F1PPE060F2PPE060F3PPE060F4PPE060F5PPE070F3PPE070F5PPE070F7PPE080F3PPE080F1PPE080F2


Cliquez pour revenir en haut de la page

Voir les articles ...
32. Systèmes d'enregistrement et surveillance

32. Systèmes d'enregistrement et surveillance (9)

4 bannière

 

32. Systèmes d'enregistrement et surveillance

Éditeur de chapitre :  Steven D.Stellman

 


 

Table des matières 

Tableaux et figures

Systèmes de surveillance et de notification des maladies professionnelles
Steven B. Markowitz

Surveillance des risques professionnels
David H. Wegman et Steven D. Stellman

Surveillance dans les pays en développement
David Koh et Kee-Seng Chia

Élaboration et application d'un système de classification des lésions et maladies professionnelles
Élyce Biddle

Analyse des risques des blessures et maladies professionnelles non mortelles
John W.Ruser

Étude de cas : Protection des travailleurs et statistiques sur les accidents et les maladies professionnelles - HVBG, Allemagne
Martin Butz et Burkhard Hoffmann

Étude de cas : Wismut - Une exposition à l'uranium revisitée
Heinz Otten et Horst Schulz

Stratégies et techniques de mesure pour l'évaluation de l'exposition professionnelle en épidémiologie
Frank Bochmann et Helmut Blome

Étude de cas : Enquêtes sur la santé au travail en Chine

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Angiosarcome du foie - registre mondial

2. Maladie professionnelle, États-Unis, 1986 par rapport à 1992

3. États-Unis Décès dus à la pneumoconiose et au mésothéliome pleural

4. Exemple de liste de maladies professionnelles à déclaration obligatoire

5. Structure du code de déclaration des maladies et des blessures, États-Unis

6. Blessures et maladies professionnelles non mortelles, États-Unis 1993

7. Risque d'accidents du travail et de maladies professionnelles

8. Risque relatif pour les conditions de mouvement répétitif

9. Accidents du travail, Allemagne, 1981-93

10. Rectifieuses dans les accidents de la métallurgie, Allemagne, 1984-93

11. Maladie professionnelle, Allemagne, 1980-93

12. Maladies infectieuses, Allemagne, 1980-93

13. Exposition aux radiations dans les mines de Wismut

14. Maladies professionnelles dans les mines d'uranium de Wismut 1952-90

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

REC60F1AREC060F2REC100F1REC100T1REC100T2


Cliquez pour revenir en haut de la page

Voir les articles ...
33. Toxicologie

33. Toxicologie (21)

4 bannière

 

33. Toxicologie

Rédactrice de chapitre : Ellen K. Silbergeld


Table des matières

Tableaux et figures

Introduction
Ellen K. Silbergeld, rédactrice en chef

Principes généraux de toxicologie

Définitions et concepts
Bo Holmberg, Johan Hogberg et Gunnar Johanson

Toxicocinétique
Dušan Djuric

Organe cible et effets critiques
Marek Jakubowski

Effets de l'âge, du sexe et d'autres facteurs
Spomenka Telishman

Déterminants génétiques de la réponse toxique
Daniel W. Nebert et Ross A. McKinnon

Mécanismes de toxicité

Introduction et notions
Philip G. Watanabe

Lésion cellulaire et mort cellulaire
Benjamin F. Trump et Irene K. Berezesky

Toxicologie génétique
R. Rita Misra et Michael P. Waalkes

Immunotoxicologie
Joseph G. Vos et Henk van Loveren

Toxicologie des organes cibles
Ellen K.Silbergeld

Méthodes d'essais toxicologiques

Biomarqueurs
Philippe Grandjean

Évaluation de la toxicité génétique
David M. DeMarini et James Huff

Tests de toxicité in vitro
Joanne Zurlo

Structurer les relations d'activité
Ellen K.Silbergeld

Toxicologie réglementaire

Toxicologie dans la réglementation de la santé et de la sécurité
Ellen K.Silbergeld

Principes d'identification des dangers - L'approche japonaise
Masayuki Ikeda

L'approche des États-Unis en matière d'évaluation des risques des toxiques pour la reproduction et des agents neurotoxiques
Ellen K.Silbergeld

Approches d'identification des dangers - IARC
Harri Vainio et Julian Wilbourn

Annexe - Évaluations globales de la cancérogénicité pour l'homme : monographies du CIRC Volumes 1-69 (836)

Évaluation du risque cancérigène : autres approches
Cees A. van der Heijden

Tables 

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

  1. Exemples d'organes critiques et d'effets critiques
  2. Effets de base des interactions multiples possibles des métaux
  3. Adduits à l'hémoglobine chez les travailleurs exposés à l'aniline et à l'acétanilide
  4. Troubles héréditaires prédisposés au cancer et défauts de réparation de l'ADN
  5. Exemples de produits chimiques qui présentent une génotoxicité dans les cellules humaines
  6. Classification des tests pour les marqueurs immunitaires
  7. Exemples de biomarqueurs d'exposition
  8. Avantages et inconvénients des méthodes d'identification des risques de cancer chez l'homme
  9. Comparaison des systèmes in vitro pour les études d'hépatotoxicité
  10. Comparaison des données SAR et des tests : analyses OCDE/NTP
  11. Réglementation des substances chimiques par des lois, Japon
  12. Éléments de test en vertu de la loi sur le contrôle des substances chimiques, Japon
  13. Substances chimiques et loi sur le contrôle des substances chimiques
  14. Incidents majeurs de neurotoxicité sélectionnés
  15. Exemples de tests spécialisés pour mesurer la neurotoxicité
  16. Critères d'évaluation en toxicologie de la reproduction
  17. Comparaison des procédures d'extrapolation à faible dose
  18. Modèles fréquemment cités dans la caractérisation des risques cancérigènes

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

testerTOX050F1TOX050F2TOX050F4TOX050T1TOX050F6TOX210F1TOX210F2TOX060F1TOX090F1TOX090F2TOX090F3TOX090F4TOX110F1TOX260F1TOX260T4


Cliquez pour revenir en haut de la page

Voir les articles ...
Lundi, Février 28 2011 20: 35

Pesticides

Introduction

L'exposition humaine aux pesticides présente des caractéristiques différentes selon qu'elle se produit lors de la production ou de l'utilisation industrielle (tableau 1). La formulation de produits commerciaux (en mélangeant des ingrédients actifs avec d'autres coformulants) présente certaines caractéristiques d'exposition en commun avec l'utilisation de pesticides en agriculture. En fait, comme la formulation est généralement effectuée par de petites industries qui fabriquent de nombreux produits différents au cours d'opérations successives, les travailleurs sont exposés à chacun de plusieurs pesticides pendant une courte période. En santé publique et en agriculture, l'utilisation d'une variété de composés est généralement la règle, bien que dans certaines applications spécifiques (par exemple, les programmes de défoliation du coton ou de lutte contre le paludisme), un seul produit puisse être utilisé.

Tableau 1. Comparaison des caractéristiques d'exposition lors de la production et de l'utilisation des pesticides

 

Exposition sur la production

Exposition à l'usage

Durée d'exposition

Continu et prolongé

Variable et intermittente

Degré d'exposition

Assez constante

Extrêmement variable

Type d'exposition

À un ou quelques composés

A de nombreux composés soit en séquence soit en concomitance

Absorption cutanée

Facile à contrôler

Variable selon les procédures de travail

Surveillance ambiante

Information

Rarement informatif

Surveillance biologique

Complémentaire à la surveillance ambiante

Très utile lorsqu'il est disponible

Source : OMS 1982a, modifié.

La mesure d'indicateurs biologiques d'exposition est particulièrement utile pour les utilisateurs de pesticides où les techniques conventionnelles d'évaluation de l'exposition par surveillance de l'air ambiant sont peu applicables. La plupart des pesticides sont des substances liposolubles qui pénètrent dans la peau. La survenue d'une absorption percutanée (cutanée) rend l'utilisation d'indicateurs biologiques très importante pour évaluer le niveau d'exposition dans ces circonstances.

Insecticides organophosphorés

Indicateurs biologiques d'effet :

Les cholinestérases sont les enzymes cibles responsables de la toxicité des organophosphates (OP) pour les espèces d'insectes et de mammifères. Il existe deux principaux types de cholinestérases dans l'organisme humain : l'acétylcholinestérase (ACHE) et la cholinestérase plasmatique (PCHE). L'OP provoque des effets toxiques chez l'homme par l'inhibition de l'acétylcholinestérase synaptique dans le système nerveux. L'acétylcholinestérase est également présente dans les globules rouges, où sa fonction est inconnue. La cholinestérase plasmatique est un terme générique couvrant un groupe inhomogène d'enzymes présentes dans les cellules gliales, le plasma, le foie et certains autres organes. La PCHE est inhibée par les OP, mais son inhibition ne produit pas de dérangements fonctionnels connus.

L'inhibition de l'activité ACHE et PCHE sanguine est fortement corrélée à l'intensité et à la durée de l'exposition à l'OP. L'ACHE sanguine, étant la même cible moléculaire que celle responsable de la toxicité aiguë des OP dans le système nerveux, est un indicateur plus spécifique que la PCHE. Cependant, la sensibilité de l'ACHE et de la PCHE sanguines à l'inhibition de l'OP varie selon les composés OP individuels : à la même concentration sanguine, certains inhibent plus l'ACHE et d'autres plus la PCHE.

Une corrélation raisonnable existe entre l'activité ACHE sanguine et les signes cliniques de toxicité aiguë (tableau 2). La corrélation tend à être meilleure lorsque le taux d'inhibition est plus rapide. Lorsque l'inhibition se produit lentement, comme dans le cas d'expositions chroniques de faible intensité, la corrélation avec la maladie peut être faible ou totalement inexistante. Il convient de noter que l'inhibition de l'ACHE sanguine n'est pas prédictive d'effets chroniques ou différés.

Tableau 2. Gravité et pronostic de la toxicité aiguë des OP à différents niveaux d'inhibition de l'ACHE

MAL

inhibition (%)

Niveau de

empoisonnement

Symptômes cliniques

Pronostic

50-60

Mild

Faiblesse, maux de tête, étourdissements, nausées, salivation, larmoiement, myosis, spasmes bronchiques modérés

Convalescence en 1-3 jours

60-90

Modérés

Faiblesse soudaine, troubles visuels, salivation excessive, transpiration, vomissements, diarrhée, bradycardie, hypertonie, tremblements des mains et de la tête, démarche perturbée, myosis, douleur thoracique, cyanose des muqueuses

Convalescence dans 1-2 semaines

90-100

Sévère

Tremblements brusques, convulsions généralisées, troubles psychiques, cyanose intense, œdème pulmonaire, coma

Décès par insuffisance respiratoire ou cardiaque

 

Des variations des activités ACHE et PCHE ont été observées chez des personnes en bonne santé et dans des conditions physiopathologiques spécifiques (tableau 3). Ainsi, la sensibilité de ces tests dans la surveillance de l'exposition aux OP peut être augmentée en adoptant des valeurs individuelles de pré-exposition comme référence. Les activités de la cholinestérase après exposition sont ensuite comparées aux valeurs de référence individuelles. Il convient d'utiliser les valeurs de référence de l'activité de la cholinestérase dans la population uniquement lorsque les niveaux de cholinestérase avant l'exposition ne sont pas connus (tableau 4).

Tableau 3. Variations des activités ACHE et PCHE chez les personnes en bonne santé et dans certaines conditions physiopathologiques

État

Activité ACHE

Activité PCHE

 

Personnes en bonne santé

Variation interindividuelle1

10 à 18%

15 à 25%

Variation intra-individuelle1

3 à 7%

6%

Différences de sexe

Non

10 à 15 % plus élevé chez les hommes

Âge

Réduit jusqu'à 6 mois

 

Masse corporelle

 

Correlation positive

Cholestérol sérique

 

Correlation positive

Variation saisonnière

Non

Non

Variation circadienne

Non

Non

Menstruation

 

Diminution

Grossesse

 

Diminution

 

Conditions pathologiques

Activité réduite

Leucémie, néoplasme

Maladie du foie; urémie; un cancer; arrêt cardiaque; réactions allergiques

Activité accrue

polyglobulie ; thalassémie; autres dyscrasies sanguines congénitales

hyperthyroïdie ; autres conditions de taux métabolique élevé

1 Source : Augustinsson 1955 et Gage 1967.

Tableau 4. Activités de cholinestérase de personnes en bonne santé sans exposition à l'OP mesurées avec des méthodes sélectionnées

Method

Relations sexuelles

MAL*

PCH*

Michel1 (Dph/h)

mâle

femelle

0.77 0.08 ±

0.75 0.08 ±

0.95 0.19 ±

0.82 0.19 ±

Titrimétrique1 (mmol/min ml)

homme Femme

13.2 0.31 ±

4.90 0.02 ±

Ellman modifié2 (UI/ml)

mâle

femelle

4.01 0.65 ±

3.45 0.61 ±

3.03 0.66 ±

3.03 0.68 ±

* résultat moyen, ± écart type.
La source: 1 Lois 1991.    2 Alcini et coll. 1988.

Le sang doit de préférence être prélevé dans les deux heures suivant l'exposition. La ponction veineuse est préférable à l'extraction de sang capillaire d'un doigt ou du lobe de l'oreille car le point de prélèvement peut être contaminé par des pesticides résidant sur la peau des sujets exposés. Trois échantillons séquentiels sont recommandés pour établir une ligne de base normale pour chaque travailleur avant l'exposition (OMS 1982b).

Plusieurs méthodes analytiques sont disponibles pour la détermination de l'ACHE et de la PCHE sanguines. Selon l'OMS, la méthode spectrophotométrique d'Ellman (Ellman et al. 1961) devrait servir de méthode de référence.

Indicateurs biologiques d'exposition.

Le dosage dans les urines des métabolites dérivés du groupement phosphate d'alkyle de la molécule OP ou des résidus générés par l'hydrolyse de la liaison P–X (figure 1) a été utilisé pour surveiller l'exposition à l'OP.

Figure 1. Hydrolyse des insecticides OP

BMO060F1

Métabolites du phosphate d'alkyle.

Les métabolites des alkylphosphates détectables dans les urines et le principal composé parent dont ils peuvent provenir sont listés dans le tableau 5. Les alkylphosphates urinaires sont des indicateurs sensibles de l'exposition aux composés OP : l'excrétion de ces métabolites dans les urines est généralement détectable à un niveau d'exposition à laquelle inhibition de la cholinestérase plasmatique ou érythrocytaire ne peut être détectée. L'excrétion urinaire des alkylphosphates a été mesurée pour différentes conditions d'exposition et pour différents composés OP (tableau 6). L'existence d'une relation entre les doses externes d'OP et les concentrations urinaires de phosphate d'alkyle a été établie dans quelques études. Dans certaines études, une relation significative entre l'activité de la cholinestérase et les niveaux de phosphates d'alkyle dans l'urine a également été démontrée.

Tableau 5. Phosphates d'alkyle détectables dans l'urine en tant que métabolites des pesticides OP

Métabolite

Abréviation

Principaux composés parents

Phosphate de monométhyle

MMP

Malathion, parathion

Phosphate de diméthyle

DMP

Dichlorvos, trichlorfon, mévinphos, malaoxon, diméthoate, fenchlorphos

Phosphate de diéthyle

DEP

Paraoxon, déméton-oxon, diazinon-oxon, dichlorfenthion

Diméthylthiophosphate

DMTP

Fénitrothion, fenchlorphos, malathion, diméthoate

Diéthylthiophosphate

DETP

Diazinon, déméthon, parathion, fenchlorphos

Diméthyldithiophosphate

DMDTP

Malathion, diméthoate, azinphos-méthyl

Diéthyldithiophosphate

DEDTP

Disulfoton, phorate

Acide phénylphosphorique

 

Leptophos, EPN

Tableau 6. Exemples de taux d'alkylphosphates urinaires mesurés dans diverses conditions d'exposition aux OP

Composé

Condition d'exposition

Voie d'exposition

Concentrations de métabolites1 (mg/litre)

Parathion2

Intoxication non mortelle

Oraux

DEP = 0.5

DETP = 3.9

Disulfoton2

Formulateurs

Voie cutanée/inhalation

DEP = 0.01-4.40

DETP = 0.01-1.57

DEDTP = <0.01-05

Phorate2

Formulateurs

Voie cutanée/inhalation

DEP = 0.02-5.14

DETP = 0.08-4.08

DEDTP = <0.01-0.43

Malathion3

Pulvérisateurs

Dermique

DMDTP = <0.01

Fénitrothion3

Pulvérisateurs

Dermique

DMP = 0.01-0.42

DMTP = 0.02-0.49

Monocrotophos4

Pulvérisateurs

Voie cutanée/inhalation

DMP = <0.04-6.3/24h

1 Pour les abréviations, voir le tableau 27.12 [BMO12TE].
2 Dillon et Ho 1987.
3 Richter 1993.
4 van Sittert et Dumas 1990.

 Les phosphates d'alkyle sont généralement excrétés dans l'urine en peu de temps. Les échantillons prélevés peu après la fin de la journée de travail conviennent à la détermination des métabolites.

La mesure des phosphates d'alkyle dans l'urine nécessite une méthode analytique assez sophistiquée, basée sur la dérivation des composés et la détection par chromatographie gaz-liquide (Shafik et al. 1973a; Reid et Watts 1981).

Résidus hydrolytiques.

p-Le nitrophénol (PNP) est le métabolite phénolique du parathion, du méthylparathion et de l'éthylparathion, EPN. La mesure du PNP dans l'urine (Cranmer 1970) a été largement utilisée et s'est avérée efficace pour évaluer l'exposition au parathion. Le PNP urinaire est bien corrélé à la dose absorbée de parathion. Avec des taux urinaires de PNP allant jusqu'à 2 mg/l, l'absorption du parathion ne provoque pas de symptômes, et peu ou pas de réduction des activités de la cholinestérase est observée. L'excrétion de PNP se produit rapidement et les niveaux urinaires de PNP deviennent insignifiants 48 heures après l'exposition. Ainsi, les échantillons d'urine doivent être prélevés peu de temps après l'exposition.

Les carbamates

Indicateurs biologiques d'effet.

Les pesticides carbamates comprennent les insecticides, les fongicides et les herbicides. La toxicité des carbamates insecticides est due à l'inhibition de l'ACHE synaptique, tandis que d'autres mécanismes de toxicité sont impliqués pour les carbamates herbicides et fongicides. Ainsi, seule l'exposition aux insecticides carbamates peut être surveillée par le dosage de l'activité de la cholinestérase dans les globules rouges (ACHE) ou le plasma (PCHE). L'ACHE est généralement plus sensible aux inhibiteurs de carbamate que la PCHE. Des symptômes cholinergiques ont généralement été observés chez des travailleurs exposés aux carbamates avec une activité sanguine ACHE inférieure à 70 % du niveau de base individuel (OMS 1982a).

L'inhibition des cholinestérases par les carbamates est rapidement réversible. Par conséquent, des résultats faussement négatifs peuvent être obtenus si trop de temps s'écoule entre l'exposition et l'échantillonnage biologique ou entre l'échantillonnage et l'analyse. Afin d'éviter de tels problèmes, il est recommandé de prélever et d'analyser des échantillons de sang dans les quatre heures suivant l'exposition. La préférence devrait être donnée aux méthodes analytiques qui permettent la détermination de l'activité de la cholinestérase immédiatement après le prélèvement sanguin, comme discuté pour les organophosphorés.

Indicateurs biologiques d'exposition.

La mesure de l'excrétion urinaire des métabolites des carbamates comme méthode de surveillance de l'exposition humaine n'a jusqu'à présent été appliquée qu'à quelques composés et dans des études limitées. Le tableau 7 résume les données pertinentes. Étant donné que les carbamates sont rapidement excrétés dans l'urine, les échantillons prélevés peu après la fin de l'exposition conviennent à la détermination des métabolites. Des méthodes analytiques pour les mesures des métabolites de carbamate dans l'urine ont été rapportées par Dawson et al. (1964); DeBernardinis et Wargin (1982) et Verberk et al. (1990).

Tableau 7. Niveaux de métabolites urinaires des carbamates mesurés dans les études de terrain

Composé

Indice biologique

Condition d'exposition

Concentrations environnementales

Résultats

Bibliographie

Carbaryl

a-naphtol

a-naphtol

a-naphtol

formulateurs

mélangeurs/applicateurs

population non exposée

0.23–0.31 mg/m3

x=18.5mg/l1 , max. taux d'excrétion = 80 mg/jour

x=8.9 mg/l, plage = 0.2–65 mg/l

plage = 1.5–4 mg/l

OMS 1982a

Pirimicarbe

métabolites je2 Et V3

applicateurs

 

plage = 1–100 mg/l

Verberk et coll. 1990

1 Des empoisonnements systémiques ont été occasionnellement signalés.
2 2-diméthylamino-4-hydroxy-5,6-diméthylpyrimidine.
3 2-méthylamino-4-hydroxy-5,6-diméthylpyrimidine.
x = écart type.

Dithiocarbamates

Indicateurs biologiques d'exposition.

Les dithiocarbamates (DTC) sont des fongicides largement utilisés, regroupés chimiquement en trois classes : les thiurames, les diméthyldithiocarbamates et les éthylène-bis-dithiocarbamates.

Disulfure de carbone (CS2) et son principal métabolite, l'acide 2-thiothiazolidine-4-carboxylique (TTCA), sont des métabolites communs à presque tous les DTC. Une augmentation significative des concentrations urinaires de ces composés a été observée pour différentes conditions d'exposition et pour divers pesticides DTC. L'éthylène thiourée (ETU) est un important métabolite urinaire des éthylène-bis-dithiocarbamates. Il peut également être présent sous forme d'impureté dans les formulations du marché. Étant donné que l'ETU a été déterminée comme étant tératogène et cancérigène chez les rats et chez d'autres espèces et qu'elle a été associée à une toxicité thyroïdienne, elle a été largement appliquée pour surveiller l'exposition à l'éthylène-bis-dithiocarbamate. L'ETU n'est pas spécifique à un composé, car il peut être dérivé du manèbe, du mancozèbe ou du zinèbe.

La mesure des métaux présents dans le DTC a été proposée comme approche alternative dans la surveillance de l'exposition au DTC. Une augmentation de l'excrétion urinaire de manganèse a été observée chez des travailleurs exposés au mancozèbe (tableau 8).

Tableau 8. Niveaux des métabolites urinaires du dithiocarbamate mesurés dans les études de terrain

Composé

Indice biologique

Condition de

exposition

Concentrations environnementales*

± écart type

Résultats ± écart type

Bibliographie

Zirame

Disulfure de carbone (CS2)

TTCA1

formulateurs

formulateurs

1.03 ± 0.62 mg/m3

3.80 ± 3.70 mg/l

0.45 ± 0.37 mg/l

Maroni et coll. 1992

Manèbe/Mancozèbe

ETU2

applicateurs

 

plage = < 0.2–11.8 mg/l

Kurtcio et al. 1990

Mancozeb

Manganèse

applicateurs

57.2 mg/m3

pré-exposition : 0.32 ± 0.23 mg/g de créatinine ;

post-exposition : 0.53 ± 0.34 mg/g de créatinine

Canosa et al. 1993

* Résultat moyen selon Maroni et al. 1992.
1 TTCA = acide 2-thiothiazolidine-4-carbonylique.
2 ETU = éthylène thiourée.

 CS2, TTCA et manganèse sont couramment retrouvés dans l'urine de sujets non exposés. Ainsi, la mesure des niveaux urinaires de ces composés avant l'exposition est recommandée. Les échantillons d'urine doivent être prélevés le matin suivant la fin de l'exposition. Méthodes analytiques pour les mesures de CS2, TTCA et ETU ont été rapportés par Maroni et al. (1992).

Pyréthroïdes synthétiques

Indicateurs biologiques d'exposition.

Les pyréthrinoïdes synthétiques sont des insecticides similaires aux pyréthrines naturelles. Des métabolites urinaires adaptés à une application dans la surveillance biologique de l'exposition ont été identifiés par des études sur des volontaires humains. Le métabolite acide acide 3-(2,2'-dichloro-vinyl)-2,2'-diméthyl-cyclopropane carboxylique (Cl2CA) est excrété à la fois par les sujets recevant par voie orale de la perméthrine et de la cyperméthrine et le bromo-analogue (Br2CA) par des sujets traités à la deltaméthrine. Chez les volontaires traités à la cyperméthrine, un métabolite phénoxy, l'acide 4-hydroxy-phénoxy benzoïque (4-HPBA), a également été identifié. Cependant, ces tests n'ont pas souvent été appliqués pour surveiller les expositions professionnelles en raison des techniques analytiques complexes requises (Eadsforth, Bragt et van Sittert 1988; Kolmodin-Hedman, Swensson et Akerblom 1982). Chez les applicateurs exposés à la cyperméthrine, les taux urinaires de Cl2Les AC se situent entre 0.05 et 0.18 mg/l, tandis que chez les formulateurs exposés à l'a-cyperméthrine, les taux urinaires de 4-HPBA sont inférieurs à 0.02 mg/l.

Une période de collecte d'urine de 24 heures commencée après la fin de l'exposition est recommandée pour les déterminations des métabolites.

Organochlorés

Indicateurs biologiques d'exposition.

Les insecticides organochlorés (OC) étaient largement utilisés dans les années 1950 et 1960. Par la suite, l'utilisation d'un grand nombre de ces composés a été interrompue dans de nombreux pays en raison de leur persistance et de la contamination conséquente de l'environnement.

La surveillance biologique de l'exposition au CO peut être effectuée par la détermination des pesticides intacts ou de leurs métabolites dans le sang ou le sérum (Dale, Curley et Cueto 1966 ; Barquet, Morgade et Pfaffenberger 1981). Après absorption, l'aldrine est rapidement métabolisée en dieldrine et peut être mesurée sous forme de dieldrine dans le sang. L'endrine a une demi-vie très courte dans le sang. Par conséquent, la concentration sanguine d'endrine n'est utile que pour déterminer les niveaux d'exposition récents. Le dosage du métabolite urinaire anti-12-hydroxy-endrine s'est également révélé utile dans le suivi de l'exposition à l'endrine (van Sittert et Tordoir 1987) .

Des corrélations significatives entre la concentration d'indicateurs biologiques et l'apparition d'effets toxiques ont été démontrées pour certains composés OC. Des cas de toxicité dus à l'exposition à l'aldrine et à la dieldrine ont été associés à des niveaux de dieldrine dans le sang supérieurs à 200 μg/l. Une concentration sanguine de lindane de 20 μg/l a été indiquée comme niveau critique supérieur en ce qui concerne les signes et symptômes neurologiques. Aucun effet indésirable aigu n'a été signalé chez les travailleurs présentant des concentrations sanguines d'endrine inférieures à 50 μg/l. L'absence d'effets indésirables précoces (induction d'enzymes microsomales hépatiques) a été démontrée lors d'expositions répétées à l'endrine à des concentrations urinaires d'anti-12-hydroxy-endrine inférieures à 130 μg/g de créatinine et lors d'expositions répétées au DDT à des concentrations sériques de DDT ou de DDE inférieures à 250 μg/l.

Le CO peut être présent à de faibles concentrations dans le sang ou l'urine de la population générale. Exemples de valeurs observées : concentrations sanguines de lindane jusqu'à 1 μg/l, dieldrine jusqu'à 10 μg/l, DDT ou DDE jusqu'à 100 μg/l et anti-12-hydroxy-endrine jusqu'à 1 μg/g créatinine. Ainsi, une évaluation de base avant l'exposition est recommandée.

Pour les sujets exposés, des échantillons de sang doivent être prélevés immédiatement après la fin d'une exposition unique. Pour les conditions d'exposition à long terme, le moment du prélèvement de l'échantillon de sang n'est pas critique. Des échantillons d'urine pour la détermination des métabolites urinaires doivent être prélevés à la fin de l'exposition.

triazines

Indicateurs biologiques d'exposition.

La mesure de l'excrétion urinaire des métabolites triaziniques et du composé d'origine non modifié a été appliquée à des sujets exposés à l'atrazine dans des études limitées. La figure 2 montre les profils d'excrétion urinaire des métabolites de l'atrazine d'un travailleur de la fabrication avec une exposition cutanée à l'atrazine allant de 174 à 275 μmol/poste de travail (Catenacci et al. 1993). Étant donné que d'autres chlorotriazines (simazine, propazine, terbuthylazine) suivent la même voie de biotransformation que l'atrazine, les concentrations de métabolites triaziniques désalkylés peuvent être déterminées pour surveiller l'exposition à tous les herbicides à base de chlorotriazine. 

Figure 2. Profils d'excrétion urinaire des métabolites de l'atrazine

BMO060F2

La détermination des composés non modifiés dans l'urine peut être utile comme confirmation qualitative de la nature du composé qui a généré l'exposition. Une période de collecte d'urine de 24 heures commencée au début de l'exposition est recommandée pour la détermination des métabolites.

Récemment, en utilisant un dosage immuno-enzymatique (test ELISA), un conjugué d'acide mercapturique d'atrazine a été identifié comme son principal métabolite urinaire chez les travailleurs exposés. Ce composé a été trouvé à des concentrations au moins 10 fois supérieures à celles de tous les produits désalkylés. Une relation entre l'exposition cumulative par voie cutanée et par inhalation et la quantité totale de conjugué d'acide mercapturique excrété sur une période de 10 jours a été observée (Lucas et al., 1993).

 

 

 

 

Dérivés de coumarine

Indicateurs biologiques d'effet.

Les rodenticides coumariniques inhibent l'activité des enzymes du cycle de la vitamine K dans le foie des mammifères, y compris l'homme (figure 3), entraînant ainsi une réduction dose-dépendante de la synthèse des facteurs de coagulation vitamine K-dépendants, à savoir le facteur II (prothrombine) , VII, IX et X. Les effets anticoagulants apparaissent lorsque les taux plasmatiques de facteurs de coagulation sont tombés en dessous d'environ 20 % de la normale.

Figure 3. Cycle de la vitamine K

BMO060F3

Ces antagonistes de la vitamine K ont été regroupés en composés dits de « première génération » (ex : warfarine) et de « seconde génération » (ex : brodifacoum, difénacoum), ces derniers se caractérisant par une très longue demi-vie biologique (100 à 200 jours ).

La détermination du temps de prothrombine est largement utilisée dans le suivi de l'exposition aux coumarines. Cependant, ce test n'est sensible qu'à une diminution du facteur de coagulation d'environ 20 % des taux plasmatiques normaux. Le test n'est pas adapté à la détection des effets précoces de l'exposition. À cette fin, la détermination de la concentration de prothrombine dans le plasma est recommandée.

A l'avenir, ces tests pourraient être remplacés par le dosage des précurseurs des facteurs de coagulation (PIVKA), substances détectables dans le sang uniquement en cas de blocage du cycle de la vitamine K par les coumarines.

Dans des conditions d'exposition prolongée, le moment du prélèvement sanguin n'est pas critique. En cas de surexposition aiguë, une surveillance biologique doit être effectuée pendant au moins cinq jours après l'événement, compte tenu de la latence de l'effet anticoagulant. Pour augmenter la sensibilité de ces tests, la mesure des valeurs de base avant l'exposition est recommandée.

Indicateurs biologiques d'exposition.

La mesure des coumarines non modifiées dans le sang a été proposée comme test pour surveiller l'exposition humaine. Cependant, l'expérience dans l'application de ces indices est très limitée, principalement parce que les techniques analytiques sont beaucoup plus complexes (et moins standardisées) par rapport à celles requises pour surveiller les effets sur le système de coagulation (Chalermchaikit, Felice et Murphy 1993).

Herbicides phénoxy

Indicateurs biologiques d'exposition.

Les herbicides phénoxy sont à peine biotransformés chez les mammifères. Chez l'homme, plus de 95 % d'une dose d'acide 2,4-dichlorophénoxyacétique (2,4-D) est excrétée sous forme inchangée dans l'urine en cinq jours, et l'acide 2,4,5-trichlorophénoxyacétique (2,4,5-T) et l'acide 4-chloro-2-méthylphénoxyacétique (MCPA) sont également excrétés principalement sous forme inchangée dans l'urine quelques jours après l'absorption orale. La mesure des composés inchangés dans l'urine a été appliquée dans le suivi de l'exposition professionnelle à ces herbicides. Dans les études de terrain, les concentrations urinaires des travailleurs exposés se situent entre 0.10 et 8 μg/l pour le 2,4-D, entre 0.05 et 4.5 μg/l pour le 2,4,5-T et en dessous de 0.1 μg/l à 15 μg/l pour le MCPA. Une période de 24 heures de collecte d'urine commençant à la fin de l'exposition est recommandée pour la détermination des composés inchangés. Des méthodes analytiques pour les mesures des herbicides phénoxy dans l'urine ont été rapportées par Draper (1982).

Composés d'ammonium quaternaire

Indicateurs biologiques d'exposition.

Le diquat et le paraquat sont des herbicides peu biotransformés par l'organisme humain. En raison de leur solubilité élevée dans l'eau, ils sont facilement excrétés sous forme inchangée dans l'urine. Des concentrations urinaires inférieures à la limite de détection analytique (0.01 μg/l) ont souvent été observées chez des travailleurs exposés au paraquat ; tandis que dans les pays tropicaux, des concentrations allant jusqu'à 0.73 μg/l ont été mesurées après une mauvaise manipulation du paraquat. Des concentrations urinaires de diquat inférieures à la limite de détection analytique (0.047 μg/l) ont été rapportées chez des sujets ayant des expositions cutanées de 0.17 à 1.82 μg/h et des expositions par inhalation inférieures à 0.01 μg/h. Idéalement, un échantillon d'urine de 24 heures prélevé à la fin de l'exposition devrait être utilisé pour l'analyse. Lorsque cela n'est pas pratique, un échantillon ponctuel à la fin de la journée de travail peut être utilisé.

La détermination des taux de paraquat dans le sérum est utile à des fins pronostiques en cas d'intoxication aiguë : les patients ayant des taux sériques de paraquat jusqu'à 0.1 μg/l vingt-quatre heures après l'ingestion sont susceptibles de survivre.

Les méthodes d'analyse pour la détermination du paraquat et du diquat ont été passées en revue par Summers (1980).

Pesticides divers

4,6-dinitro-o-crésol (DNOC).

Le DNOC est un herbicide introduit en 1925, mais l'utilisation de ce composé a été progressivement réduite en raison de sa forte toxicité pour les plantes et pour l'homme. Étant donné que les concentrations sanguines de DNOC sont corrélées dans une certaine mesure avec la gravité des effets néfastes sur la santé, la mesure du DNOC inchangé dans le sang a été proposée pour surveiller les expositions professionnelles et pour évaluer l'évolution clinique des intoxications.

Pentachlorophénol.

Le pentachlorophénol (PCP) est un biocide à large spectre avec une action pesticide contre les mauvaises herbes, les insectes et les champignons. Les mesures du PCP sanguin ou urinaire inchangé ont été recommandées comme indices appropriés dans la surveillance des expositions professionnelles (Colosio et al. 1993), car ces paramètres sont significativement corrélés avec la charge corporelle en PCP. Chez les travailleurs exposés de manière prolongée au PCP, le moment du prélèvement sanguin n'est pas critique, tandis que les échantillons d'urine doivent être prélevés le matin suivant l'exposition.

Une méthode multirésidus pour la mesure des pesticides halogénés et nitrophénoliques a été décrite par Shafik et al. (1973b).

D'autres tests proposés pour le suivi biologique de l'exposition aux pesticides sont listés dans le tableau 9.

Tableau 9. Autres indices proposés dans la littérature pour le suivi biologique de l'exposition aux pesticides

Composé

Indice biologique

 

Urine

sanguins

Bromophos

Bromophos

Bromophos

Captan

Tétrahydrophtalimide

 

Carbofuran

3-Hydroxycarbofurane

 

Chlordiméforme

4-chloro-o-dérivés de la toluidine

 

Chlorobenzilate

p,p-1-Dichlorobenzophénone

 

Dichloropropène

Métabolites de l'acide mercapturique

 

Fénitrothion

p-Nitrocrésol

 

ferbame

 

Thirami

Fluazifop-butyl

Fluazifop

 

Flufénoxuron

 

Flufénoxuron

Le glyphosate

Le glyphosate

 

Malathion

Malathion

Malathion

Composés organostanniques

Étain

Étain

Trifénomorphe

Morpholine, triphénylcarbinol

 

Zirame

 

Thirami

 

Conclusions

Des indicateurs biologiques pour surveiller l'exposition aux pesticides ont été appliqués dans un certain nombre d'études expérimentales et de terrain.

Certains tests, comme ceux de la cholinestérase dans le sang ou de certains pesticides non modifiés dans l'urine ou le sang, ont été validés par une vaste expérience. Des limites d'exposition biologique ont été proposées pour ces tests (tableau 10). D'autres tests, notamment ceux des métabolites sanguins ou urinaires, souffrent de limitations plus importantes en raison de difficultés analytiques ou de limitations dans l'interprétation des résultats.

Tableau 10. Valeurs limites biologiques recommandées (à partir de 1996)

Composé

Indice biologique

IRE1

MTD2

HBBL3

BLV4

Inhibiteurs de l'ACHE

ACHE dans le sang

70%

70%

% 70,

 

DNOC

DNOC dans le sang

   

20mg/l,

 

Lindane

Lindane dans le sang

 

0.02mg / l

0.02mg / l

 

Parathion

PNP dans les urines

0.5mg / l

0.5mg / l

   

Pentachlorophénol (PCP)

PCP dans les urines

PCP dans le plasma

2 mg / l

5 mg / l

0.3mg / l

1 mg / l

   

Dieldrine/Aldrine

Dieldrine dans le sang

     

100 mg / l

Endrine

Anti-12-hydroxy-endrine dans l'urine

     

130 mg / l

DDT

DDT et DDE dans le sérum

     

250 mg / l

Les coumarines

Temps de Quick dans le plasma

Concentration de prothrombine dans le plasma

     

10 % au-dessus de la ligne de base

60 % de la ligne de base

MCPA

MCPA dans les urines

     

0.5 mg / l

2,4-D

2,4-D dans les urines

     

0.5 mg / l

1 Les indices d'exposition biologique (IBE) sont recommandés par l'American Conference of Governmental Industrial Hygienists (ACGIH 1995).
2 Les valeurs de tolérance biologique (MTD) sont recommandées par la Commission allemande pour l'étude des risques pour la santé des composés chimiques dans la zone de travail (DFG 1992).
3 Les limites biologiques fondées sur la santé (HBBL) sont recommandées par un groupe d'étude de l'OMS (OMS 1982a).
4 Les valeurs limites biologiques (BLV) sont proposées par un groupe d'étude du Comité scientifique sur les pesticides de la Commission internationale de la santé au travail (Tordoir et al. 1994). Une évaluation des conditions de travail s'impose si cette valeur est dépassée.

Ce domaine est en développement rapide et, compte tenu de l'énorme importance de l'utilisation d'indicateurs biologiques pour évaluer l'exposition à ces substances, de nouveaux tests seront continuellement développés et validés.

 

Retour

Épidémiologie

L'épidémiologie est reconnue à la fois comme la science fondamentale de la médecine préventive et celle qui éclaire le processus d'élaboration des politiques de santé publique. Plusieurs définitions opérationnelles de l'épidémiologie ont été proposées. La plus simple est que l'épidémiologie est l'étude de l'apparition de maladies ou d'autres caractéristiques liées à la santé chez les populations humaines et animales. Les épidémiologistes étudient non seulement la fréquence de la maladie, mais aussi si la fréquence diffère selon les groupes de personnes ; c'est-à-dire qu'ils étudient la relation de cause à effet entre l'exposition et la maladie. Les maladies ne surviennent pas au hasard; ils ont des causes, souvent d'origine humaine, qui sont évitables. Ainsi, de nombreuses maladies pourraient être évitées si les causes étaient connues. Les méthodes d'épidémiologie ont joué un rôle crucial dans l'identification de nombreux facteurs causaux qui, à leur tour, ont conduit à des politiques de santé conçues pour prévenir les maladies, les blessures et les décès prématurés.

Quelle est la tâche de l'épidémiologie et quelles sont ses forces et ses faiblesses lorsque les définitions et les concepts de l'épidémiologie sont appliqués à la santé au travail ? Ce chapitre traite de ces questions et de la manière dont les risques professionnels pour la santé peuvent être étudiés à l'aide de techniques épidémiologiques. Cet article introduit les idées trouvées dans les articles successifs de ce chapitre.

Épidémiologie professionnelle

L'épidémiologie professionnelle a été définie comme l'étude des effets des expositions professionnelles sur la fréquence et la distribution des maladies et des blessures dans la population. Il s'agit donc d'une discipline axée sur l'exposition et liée à la fois à l'épidémiologie et à la santé au travail (Checkoway et al. 1989). A ce titre, elle utilise des méthodes similaires à celles employées par l'épidémiologie en général.

L'objectif principal de l'épidémiologie professionnelle est la prévention par l'identification des conséquences des expositions professionnelles sur la santé. Cela souligne l'orientation préventive de l'épidémiologie professionnelle. En effet, toute recherche dans le domaine de la santé et de la sécurité au travail doit servir à des fins préventives. Par conséquent, les connaissances épidémiologiques peuvent et doivent être facilement applicables. Alors que l'intérêt de la santé publique devrait toujours être la principale préoccupation de la recherche épidémiologique, les intérêts acquis peuvent exercer une influence, et il faut veiller à minimiser cette influence dans la formulation, la conduite et/ou l'interprétation des études (Soskolne 1985 ; Soskolne 1989).

Un deuxième objectif de l'épidémiologie professionnelle est d'utiliser les résultats de contextes spécifiques pour réduire ou éliminer les risques dans l'ensemble de la population. Ainsi, en plus de fournir des informations sur les effets sur la santé des expositions en milieu de travail, les résultats des études d'épidémiologie professionnelle jouent également un rôle dans l'estimation du risque associé aux mêmes expositions mais à des niveaux inférieurs généralement subis par la population générale. La contamination de l'environnement par les processus et les produits industriels entraînerait généralement des niveaux d'exposition inférieurs à ceux rencontrés sur le lieu de travail.

Les niveaux d'application de l'épidémiologie professionnelle sont :

  • surveillance pour décrire l'apparition de maladies dans différentes catégories de travailleurs et ainsi fournir des signaux d'alerte précoce de risques professionnels non reconnus
  • génération et test d'une hypothèse selon laquelle une exposition donnée peut être nocive, et la quantification d'un effet
  • évaluation d'une intervention (par exemple, une action préventive telle que la réduction des niveaux d'exposition) en mesurant l'évolution de l'état de santé d'une population au fil du temps.

 

Le rôle causal que les expositions professionnelles peuvent jouer dans le développement de maladies, de blessures et de décès prématurés est identifié depuis longtemps et fait partie de l'histoire de l'épidémiologie. Il faut faire référence à Bernardino Ramazzini, fondateur de la médecine du travail et l'un des premiers à faire revivre et à compléter la tradition hippocratique de la dépendance de la santé à des facteurs externes naturels identifiables. En 1700, il écrit dans son « De Morbis Artificum Diatriba » (Ramazzini 1705 ; Saracci 1995) :

Le médecin doit poser de nombreuses questions aux patients. Hippocrate déclare dans De l'Affectionibus: "Lorsque vous faites face à une personne malade, vous devez lui demander de quoi il souffre, pour quelle raison, depuis combien de jours, ce qu'il mange, et quelles sont ses selles. A toutes ces questions il faut ajouter : 'Quel travail fait-il ?'.

Ce réveil de l'observation clinique et de l'attention portée aux circonstances entourant la survenue de la maladie, amena Ramazzini à identifier et décrire de nombreuses maladies professionnelles qui furent ensuite étudiées par les médecins du travail et les épidémiologistes.

En utilisant cette approche, Pott a été le premier à signaler en 1775 (Pott 1775) le lien possible entre le cancer et la profession (Clayson 1962). Ses observations sur le cancer du scrotum chez les ramoneurs commençaient par une description de la maladie et se poursuivaient :

Le sort de ces gens semble singulièrement dur : dans leur petite enfance, ils sont le plus souvent traités avec une grande brutalité, et presque affamés de froid et de faim ; ils sont poussés dans des cheminées étroites et parfois chaudes, où ils sont meurtris, brûlés et presque étouffés ; et quand ils arrivent à la puberté, ils deviennent particulièrement sujets à une maladie des plus nocives, douloureuses et mortelles.

De cette dernière circonstance il n'y a pas le moindre doute, quoique peut-être on n'y ait pas suffisamment prêté attention, pour la faire connaître à tous. D'autres personnes ont un cancer des mêmes parties; et ainsi ont d'autres, sans compter que des plomb-ouvriers, la colique de Poitou, et la paralysie conséquente ; mais c'est néanmoins une maladie à laquelle ils sont particulièrement exposés ; et ainsi sont les ramoneurs au cancer du scrotum et des testicules.

La maladie, chez ces personnes, semble tirer son origine d'un dépôt de suie dans les rugae du scrotum, et d'abord ne pas être une maladie de l'habitude... mais ici les sujets sont jeunes, en bonne santé générale, du moins d'abord; la maladie que leur apporte leur occupation, et selon toute vraisemblance locale ; laquelle dernière circonstance peut, je pense, être assez présumée du fait qu'elle saisit toujours les mêmes parties; tout cela en fait (au début) un cas très différent d'un cancer qui apparaît chez un homme âgé.

Ce premier récit d'un cancer professionnel reste encore un modèle de lucidité. La nature de la maladie, la profession concernée et l'agent causal probable sont clairement définis. Une augmentation de l'incidence du cancer du scrotum chez les ramoneurs est notée bien qu'aucune donnée quantitative ne soit donnée pour étayer l'allégation.

Cinquante autres années se sont écoulées avant qu'Ayrton-Paris ne remarque en 1822 (Ayrton-Paris 1822) le développement fréquent de cancers du scrotum parmi les fonderies de cuivre et d'étain de Cornouailles, et suppose que les vapeurs d'arsenic pourraient en être l'agent causal. Von Volkmann rapporta en 1874 des tumeurs cutanées chez des travailleurs de la paraffine en Saxe, et peu de temps après, Bell suggéra en 1876 que l'huile de schiste était responsable de cancers cutanés (Von Volkmann 1874 ; Bell 1876). Les déclarations d'origine professionnelle des cancers sont alors devenues relativement plus fréquentes (Clayson 1962).

Parmi les premières observations de maladies professionnelles figurait la fréquence accrue du cancer du poumon chez les mineurs de Schneeberg (Harting et Hesse 1879). Il est remarquable (et tragique) qu'une étude de cas récente montre que l'épidémie de cancer du poumon à Schneeberg est toujours un énorme problème de santé publique, plus d'un siècle après la première observation en 1879. Une approche pour identifier une "augmentation" de la maladie et même de le quantifier était présent dans l'histoire de la médecine du travail. Par exemple, comme Axelson (1994) l'a souligné, WA Guy en 1843 a étudié la « consommation pulmonaire » chez les imprimeurs typographiques et a trouvé un risque plus élevé chez les compositeurs que chez les pressiers ; cela a été fait en appliquant une conception similaire à l'approche cas-témoins (Lilienfeld et Lilienfeld 1979). Néanmoins, ce n'est peut-être qu'au début des années 1950 que l'épidémiologie professionnelle moderne et sa méthodologie ont commencé à se développer. Les principales contributions marquant ce développement ont été les études sur le cancer de la vessie chez les travailleurs de la teinture (Case et Hosker 1954) et le cancer du poumon chez les travailleurs du gaz (Doll 1952).

Problèmes d'épidémiologie professionnelle

Les articles de ce chapitre présentent à la fois la philosophie et les outils de l'investigation épidémiologique. Ils se concentrent sur l'évaluation de l'expérience d'exposition des travailleurs et sur les maladies qui surviennent dans ces populations. Les problèmes liés à l'élaboration de conclusions valables sur les liens de causalité possibles entre les expositions à des substances dangereuses et le développement de maladies sont abordés dans ce chapitre.

La détermination de l'expérience d'exposition d'un individu au travail constitue le cœur de l'épidémiologie professionnelle. Le caractère informatif d'une étude épidémiologique dépend, en premier lieu, de la qualité et de l'étendue des données d'exposition disponibles. Deuxièmement, les effets sur la santé (ou les maladies) qui préoccupent l'épidémiologiste du travail doivent pouvoir être déterminés avec précision parmi un groupe de travailleurs bien défini et accessible. Enfin, les données sur d'autres influences potentielles sur la maladie d'intérêt doivent être mises à la disposition de l'épidémiologiste afin que tout effet d'exposition professionnelle établi à partir de l'étude puisse être attribué à l'exposition professionnelle. per se plutôt qu'à d'autres causes connues de la maladie en question. Par exemple, dans un groupe de travailleurs susceptibles de travailler avec un produit chimique suspecté de provoquer le cancer du poumon, certains travailleurs peuvent également avoir des antécédents de tabagisme, une autre cause de cancer du poumon. Dans cette dernière situation, les épidémiologistes du travail doivent déterminer quelle exposition (ou quel facteur de risque - le produit chimique ou le tabac, voire les deux en combinaison) est responsable de toute augmentation du risque de cancer du poumon dans le groupe de travailleurs étudié.

Évaluation de l'exposition

Si une étude n'a accès qu'au fait qu'un travailleur était employé dans une industrie particulière, alors les résultats d'une telle étude ne peuvent lier les effets sur la santé qu'à cette industrie. De même, si des connaissances sur l'exposition existent pour les professions des travailleurs, des conclusions ne peuvent être directement tirées qu'en ce qui concerne les professions. Des inférences indirectes sur les expositions chimiques peuvent être faites, mais leur fiabilité doit être évaluée situation par situation. Si une étude a accès, cependant, à des informations sur le département et/ou le titre du poste de chaque travailleur, alors des conclusions pourront être tirées à ce niveau plus fin d'expérience en milieu de travail. Lorsque les informations sur les substances réelles avec lesquelles une personne travaille sont connues de l'épidémiologiste (en collaboration avec un hygiéniste industriel), il s'agirait alors du niveau le plus fin d'informations disponibles sur l'exposition en l'absence d'une dosimétrie rarement disponible. En outre, les résultats de ces études peuvent fournir des informations plus utiles à l'industrie pour créer des lieux de travail plus sûrs.

L'épidémiologie était jusqu'à présent une sorte de discipline « boîte noire », car elle étudiait la relation entre l'exposition et la maladie (les deux extrêmes de la chaîne causale), sans tenir compte des étapes mécanistes intermédiaires. Cette approche, malgré son manque apparent de raffinement, a été extrêmement utile : en fait, toutes les causes connues de cancer chez l'homme, par exemple, ont été découvertes avec les outils de l'épidémiologie.

La méthode épidémiologique s'appuie sur les dossiers disponibles — questionnaires, intitulés de poste ou autres « proxys » d'exposition ; cela rend la conduite des études épidémiologiques et l'interprétation de leurs résultats relativement simples.

Les limites de l'approche plus grossière de l'évaluation de l'exposition sont toutefois devenues évidentes ces dernières années, les épidémiologistes étant confrontés à des problèmes plus complexes. En limitant notre examen à l'épidémiologie du cancer professionnel, la plupart des facteurs de risque bien connus ont été découverts en raison de niveaux élevés d'exposition dans le passé; un nombre limité d'expositions pour chaque travail ; grandes populations de travailleurs exposés; et une correspondance claire entre les informations « proxy » et les expositions chimiques (par exemple, les cordonniers et le benzène, les chantiers navals et l'amiante, etc.). Aujourd'hui, la situation est sensiblement différente : les niveaux d'exposition sont considérablement plus faibles dans les pays occidentaux (cette réserve doit toujours être soulignée) ; les travailleurs sont exposés à de nombreux produits chimiques et mélanges différents dans le même titre d'emploi (par exemple, les travailleurs agricoles); les populations homogènes de travailleurs exposés sont plus difficiles à trouver et sont généralement peu nombreuses ; et la correspondance entre les informations « indirectes » et l'exposition réelle s'affaiblit progressivement. Dans ce contexte, les outils de l'épidémiologie ont une sensibilité réduite du fait d'une mauvaise classification des expositions.

De plus, l'épidémiologie s'est appuyée sur des paramètres « durs », comme le décès dans la plupart des études de cohorte. Cependant, les travailleurs pourraient préférer voir quelque chose de différent du « comptage des corps » lorsque les effets potentiels sur la santé des expositions professionnelles sont étudiés. Par conséquent, l'utilisation d'indicateurs plus directs de l'exposition et de la réponse précoce présenterait certains avantages. Les marqueurs biologiques peuvent ne fournir qu'un outil.

Marqueurs biologiques

L'utilisation de marqueurs biologiques, tels que les niveaux de plomb dans le sang ou les tests de la fonction hépatique, n'est pas nouvelle en épidémiologie professionnelle. Cependant, l'utilisation de techniques moléculaires dans les études épidémiologiques a rendu possible l'utilisation de biomarqueurs pour évaluer les expositions des organes cibles, pour déterminer la sensibilité et pour établir la maladie précoce.

Les utilisations potentielles des biomarqueurs dans le cadre de l'épidémiologie professionnelle sont :

  • évaluation de l'exposition dans les cas où les outils épidémiologiques traditionnels sont insuffisants (notamment pour les faibles doses et les faibles risques)
  • pour démêler le rôle causal d'agents ou de substances chimiques uniques dans des expositions multiples ou des mélanges
  • estimation de la charge totale d'exposition aux produits chimiques ayant la même cible mécaniste
  • étude des mécanismes pathogéniques
  • étude de la susceptibilité individuelle (p. ex. polymorphismes métaboliques, réparation de l'ADN) (Vineis 1992)
  • pour classer plus précisément l'exposition et/ou la maladie, augmentant ainsi la puissance statistique.

 

Un grand enthousiasme s'est manifesté dans la communauté scientifique à propos de ces utilisations, mais, comme indiqué ci-dessus, la complexité méthodologique de l'utilisation de ces nouveaux « outils moléculaires » doit servir à mettre en garde contre un optimisme excessif. Les biomarqueurs des expositions chimiques (tels que les adduits à l'ADN) présentent plusieurs lacunes :

  1. Ils reflètent généralement des expositions récentes et, par conséquent, sont d'une utilité limitée dans les études cas-témoins, alors qu'ils nécessitent des échantillonnages répétés sur des périodes prolongées pour être utilisés dans des enquêtes de cohorte.
  2. Bien qu'ils puissent être très spécifiques et ainsi améliorer la classification erronée de l'exposition, les résultats restent souvent difficiles à interpréter.
  3. Lorsque des expositions chimiques complexes sont étudiées (par exemple, la pollution de l'air ou la fumée de tabac ambiante), il est possible que le biomarqueur reflète un composant particulier du mélange, tandis que l'effet biologique pourrait être dû à un autre.
  4. Dans de nombreuses situations, il n'est pas clair si un biomarqueur reflète une exposition pertinente, un corrélat de l'exposition pertinente, une susceptibilité individuelle ou un stade précoce de la maladie, limitant ainsi l'inférence causale.
  5. La détermination de la plupart des biomarqueurs nécessite un test coûteux ou une procédure invasive ou les deux, créant ainsi des contraintes pour une taille d'étude et une puissance statistique adéquates.
  6. Un biomarqueur d'exposition n'est rien de plus qu'une approximation de l'objectif réel d'une enquête épidémiologique, qui, en règle générale, se concentre sur une exposition environnementale évitable (Trichopoulos 1995; Pearce et al. 1995).

 

Encore plus important que les lacunes méthodologiques est la considération que les techniques moléculaires pourraient nous amener à réorienter notre attention de l'identification des risques dans l'environnement exogène, à l'identification des individus à haut risque, puis à la réalisation d'évaluations personnalisées des risques en mesurant le phénotype, la charge des adduits et les mutations acquises. Cela orienterait notre attention, comme l'a noté McMichael, vers une forme d'évaluation clinique plutôt qu'une épidémiologie de la santé publique. Mettre l'accent sur les individus pourrait nous détourner de l'important objectif de santé publique de créer un environnement moins dangereux (McMichael 1994).

Deux autres questions importantes émergent concernant l'utilisation des biomarqueurs :

  1. L'utilisation des biomarqueurs en épidémiologie professionnelle doit s'accompagner d'une politique claire en matière de consentement éclairé. Le travailleur peut avoir plusieurs raisons de refuser de coopérer. Une raison très pratique est que l'identification, par exemple, d'une altération d'un marqueur de réponse précoce tel que l'échange de chromatides sœurs implique la possibilité d'une discrimination par les assureurs maladie et vie et par les employeurs qui pourraient éviter le travailleur parce qu'il ou elle peut être plus enclin à la maladie. Une seconde raison concerne le dépistage génétique : les distributions de génotypes et de phénotypes variant selon les groupes ethniques, les opportunités professionnelles des minorités pourraient être entravées par le dépistage génétique. Troisièmement, des doutes peuvent être émis quant à la prévisibilité des tests génétiques : puisque la valeur prédictive dépend de la prévalence de la condition que le test vise à identifier, si celle-ci est rare, la valeur prédictive sera faible et l'utilisation pratique du dépistage le test sera douteux. Jusqu'à présent, aucun des tests de dépistage génétique n'a été jugé applicable sur le terrain (Ashford et al. 1990).
  2. Des principes éthiques doivent être appliqués avant l'utilisation de biomarqueurs. Ces principes ont été évalués pour les biomarqueurs utilisés pour identifier la susceptibilité individuelle à la maladie par un groupe de travail interdisciplinaire de l'Office technique des syndicats européens, avec le soutien de la Commission des Communautés européennes (Van Damme et al. 1995) ; leur rapport a renforcé l'opinion selon laquelle les tests ne peuvent être effectués que dans le but de prévenir les maladies au sein d'une main-d'œuvre. Entre autres considérations, l'utilisation de tests doit n'allons jamais .

 

  • servir de moyen de "sélection du plus apte"
  • être utilisé pour éviter la mise en œuvre de mesures préventives efficaces, telles que l'identification et la substitution des facteurs de risque ou l'amélioration des conditions de travail
  • créer, confirmer ou renforcer les inégalités sociales
  • créer un fossé entre les principes éthiques suivis sur le lieu de travail et les principes éthiques qui doivent être respectés dans une société démocratique
  • obliger une personne à la recherche d'un emploi à divulguer des données personnelles autres que celles strictement nécessaires à l'obtention de l'emploi.

 

Enfin, les preuves s'accumulent que l'activation ou l'inactivation métabolique des substances dangereuses (et des cancérigènes en particulier) varie considérablement dans les populations humaines, et est en partie génétiquement déterminée. De plus, la variabilité interindividuelle de la sensibilité aux agents cancérigènes peut être particulièrement importante à de faibles niveaux d'exposition professionnelle et environnementale (Vineis et al. 1994). De tels résultats peuvent fortement affecter les décisions réglementaires qui concentrent le processus d'évaluation des risques sur les plus sensibles (Vineis et Martone 1995).

Conception et validité de l'étude

L'article d'Hernberg sur les plans d'études épidémiologiques et leurs applications en médecine du travail se concentre sur le concept de « base d'étude », défini comme l'expérience morbide (relative à une certaine exposition) d'une population alors qu'elle est suivie dans le temps. Ainsi, la base d'étude n'est pas seulement une population (c'est-à-dire un groupe de personnes), mais l'expérience d'apparition de la maladie de cette population pendant une certaine période de temps (Miettinen 1985, Hernberg 1992). Si ce concept unificateur de base d'étude est adopté, il est alors important de reconnaître que les différentes conceptions d'étude (par exemple, les conceptions de cas-témoins et de cohorte) sont simplement des façons différentes de « récolter » des informations sur l'exposition et la maladie à partir de la même étude. base; ce ne sont pas des approches diamétralement différentes.

L'article sur la validité dans la conception de l'étude par Sasco traite des définitions et de l'importance de la confusion. Les enquêteurs de l'étude doivent toujours tenir compte de la possibilité de confusion dans les études professionnelles, et on ne soulignera jamais suffisamment que l'identification des variables potentiellement confusionnelles fait partie intégrante de toute conception et analyse d'étude. Deux aspects de la confusion doivent être abordés en épidémiologie professionnelle :

  1. La confusion négative devrait être explorée : par exemple, certaines populations industrielles sont peu exposées aux facteurs de risque liés au mode de vie en raison d'un lieu de travail sans fumée ; les souffleurs de verre ont tendance à moins fumer que la population générale.
  2. Lorsque la confusion est envisagée, une estimation de sa direction et de son impact potentiel doit être évaluée. Cela est particulièrement vrai lorsque les données permettant de contrôler la confusion sont rares. Par exemple, le tabagisme est un important facteur de confusion en épidémiologie professionnelle et il faut toujours en tenir compte. Néanmoins, lorsque les données sur le tabagisme ne sont pas disponibles (comme c'est souvent le cas dans les études de cohorte), il est peu probable que le tabagisme puisse expliquer un excès de risque important constaté dans un groupe professionnel. Ceci est bien décrit dans un article d'Axelson (1978) et discuté plus en détail par Greenland (1987). Lorsque des données détaillées sur la profession et le tabagisme sont disponibles dans la littérature, la confusion ne semble pas fausser fortement les estimations concernant l'association entre le cancer du poumon et la profession (Vineis et Simonato 1991). De plus, la suspicion de confusion n'introduit pas toujours des associations non valides. Étant donné que les enquêteurs risquent également d'être induits en erreur par d'autres biais d'observation et de sélection non détectés, ceux-ci devraient recevoir autant d'attention que la question de la confusion lors de la conception d'une étude (Stellman 1987).

 

Le temps et les variables temporelles telles que l'âge à risque, la période calendaire, le temps depuis l'embauche, le temps depuis la première exposition, la durée de l'exposition et leur traitement au stade de l'analyse, font partie des questions méthodologiques les plus complexes en épidémiologie professionnelle. Ils ne sont pas abordés dans ce chapitre, mais deux références méthodologiques pertinentes et récentes sont signalées (Pearce 1992 ; Robins et al. 1992).

Statistique

L'article sur les statistiques de Biggeri et Braga, ainsi que le titre de ce chapitre, indiquent que les méthodes statistiques sont indissociables de la recherche épidémiologique. En effet : (a) une bonne compréhension des statistiques peut fournir des informations précieuses sur la conception appropriée d'une enquête et (b) les statistiques et l'épidémiologie partagent un héritage commun, et toute la base quantitative de l'épidémiologie est fondée sur la notion de probabilité ( Clayton 1992 ; Clayton et Hills 1993). Dans de nombreux articles qui suivent, les preuves empiriques et la preuve des relations causales hypothétiques sont évaluées à l'aide d'arguments probabilistes et de plans d'étude appropriés. Par exemple, l'accent est mis sur l'estimation de la mesure du risque d'intérêt, comme les taux ou les risques relatifs, et sur la construction d'intervalles de confiance autour de ces estimations au lieu de l'exécution de tests statistiques de probabilité (Poole 1987 ; Gardner et Altman 1989 ; Greenland 1990 ). Une brève introduction au raisonnement statistique utilisant la distribution binomiale est fournie. Les statistiques doivent accompagner le raisonnement scientifique. Mais cela ne vaut rien en l'absence de recherches correctement conçues et menées. Les statisticiens et les épidémiologistes sont conscients que le choix des méthodes détermine ce que nous faisons et dans quelle mesure nous faisons des observations. Le choix réfléchi des options de conception est donc d'une importance fondamentale pour garantir la validité des observations.

Ethique

Le dernier article, signé Vineis, aborde les enjeux éthiques de la recherche épidémiologique. Les points à mentionner dans cette introduction se réfèrent à l'épidémiologie comme une discipline qui implique par définition une action préventive. Les aspects éthiques spécifiques concernant la protection des travailleurs et de la population en général exigent la reconnaissance que :

  • Les études épidémiologiques en milieu professionnel ne doivent en aucun cas retarder les mesures de prévention en milieu de travail.
  • L'épidémiologie professionnelle ne fait pas référence à des facteurs liés au mode de vie, mais à des situations où généralement peu ou pas de rôle personnel est joué dans le choix de l'exposition. Cela implique un engagement particulier envers une prévention efficace et la transmission immédiate d'informations aux travailleurs et au public.
  • La recherche révèle les risques pour la santé et fournit les connaissances nécessaires à l'action préventive. Les problèmes éthiques liés à l'absence de recherche, lorsque c'est faisable, doivent être pris en compte.
  • La communication aux travailleurs des résultats des études épidémiologiques est à la fois un enjeu éthique et méthodologique dans la communication des risques. La recherche sur l'évaluation de l'impact potentiel et de l'efficacité de la notification devrait être hautement prioritaire (Schulte et al. 1993).

 

Formation en épidémiologie professionnelle

Des personnes d'horizons divers peuvent trouver leur chemin vers la spécialisation en épidémiologie professionnelle. La médecine, les soins infirmiers et les statistiques sont quelques-unes des formations les plus susceptibles d'être observées parmi les personnes spécialisées dans ce domaine. En Amérique du Nord, environ la moitié de tous les épidémiologistes formés ont une formation scientifique, tandis que l'autre moitié aura suivi la voie du doctorat en médecine. Dans les pays à l'extérieur de l'Amérique du Nord, la plupart des spécialistes en épidémiologie professionnelle auront gravi les échelons jusqu'au grade de docteur en médecine. En Amérique du Nord, ceux qui ont une formation médicale ont tendance à être considérés comme des « experts du contenu », tandis que ceux qui ont suivi une formation scientifique sont considérés comme des « experts en méthodologie ». Il est souvent avantageux pour un expert de contenu de s'associer à un expert méthodologique afin de concevoir et de mener la meilleure étude possible.

Non seulement la connaissance des méthodes épidémiologiques, des statistiques et des ordinateurs est nécessaire pour la spécialité épidémiologie professionnelle, mais aussi la connaissance de la toxicologie, de l'hygiène industrielle et des registres de maladies (Merletti et Comba 1992). Étant donné que les grandes études peuvent nécessiter un lien avec les registres de maladies, la connaissance des sources de données démographiques est utile. La connaissance de l'organisation du travail et de l'entreprise est également importante. Les thèses au niveau de la maîtrise et les mémoires au niveau de la formation doctorale dotent les étudiants des connaissances nécessaires pour mener de vastes études sur dossiers et sur entrevues auprès des travailleurs.

Proportion de maladies attribuables à la profession

La proportion de maladies attribuables à des expositions professionnelles, soit dans un groupe de travailleurs exposés, soit dans la population générale, est couverte au moins en ce qui concerne le cancer dans une autre partie de ce Encyclopédie. Ici, nous devons nous rappeler que si une estimation est calculée, elle doit être pour une maladie spécifique (et un site spécifique dans le cas du cancer), une période de temps spécifique et une zone géographique spécifique. En outre, elle doit être basée sur des mesures précises de la proportion de personnes exposées et du degré d'exposition. Cela implique que la proportion de maladies attribuables au travail peut varier de très faible ou nulle dans certaines populations à très élevée dans d'autres situées dans des zones industrielles où, par exemple, jusqu'à 40 % des cancers du poumon peuvent être attribuables à des expositions professionnelles (Vineis et Simonato 1991). Les estimations qui ne sont pas fondées sur un examen détaillé d'études épidémiologiques bien conçues peuvent, au mieux, être considérées comme des suppositions éclairées et ont une valeur limitée.

Transfert des industries dangereuses

La plupart des recherches épidémiologiques sont menées dans le monde développé, où la réglementation et le contrôle des risques professionnels connus ont réduit le risque de maladie au cours des dernières décennies. En même temps, cependant, il y a eu un transfert important d'industries dangereuses vers le monde en développement (Jeyaratnam 1994). Des produits chimiques auparavant interdits aux États-Unis ou en Europe sont maintenant produits dans les pays en développement. Par exemple, l'usinage de l'amiante a été transféré des États-Unis au Mexique et la production de benzidine des pays européens à l'ex-Yougoslavie et à la Corée (Simonato 1986 ; LaDou 1991 ; Pearce et al. 1994).

Un signe indirect du niveau de risque professionnel et des conditions de travail dans le monde en développement est l'épidémie d'intoxications aiguës qui sévit dans certains de ces pays. Selon une évaluation, il y a environ 20,000 1994 décès chaque année dans le monde dus à une intoxication aiguë aux pesticides, mais il s'agit probablement d'une sous-estimation substantielle (Kogevinas et al. 99). Il a été estimé que 20% de tous les décès dus à une intoxication aiguë aux pesticides surviennent dans les pays en développement, où seuls 1994% des produits agrochimiques mondiaux sont utilisés (Kogevinas et al. 1995). C'est-à-dire que même si la recherche épidémiologique semble indiquer une réduction des risques professionnels, cela pourrait simplement être dû au fait que la plupart de ces recherches sont menées dans le monde développé. Les risques professionnels peuvent simplement avoir été transférés au monde en développement et la charge mondiale totale d'exposition professionnelle peut avoir augmenté (Vineis et al. XNUMX).

Épidémiologie vétérinaire

Pour des raisons évidentes, l'épidémiologie vétérinaire n'est pas directement pertinente à la santé au travail et à l'épidémiologie du travail. Néanmoins, des indices sur les causes environnementales et professionnelles des maladies peuvent provenir des études épidémiologiques sur les animaux pour plusieurs raisons :

  1. La durée de vie des animaux est relativement courte par rapport à celle des humains, et la période de latence des maladies (par exemple, la plupart des cancers) est plus courte chez les animaux que chez les humains. Cela implique qu'une maladie qui survient chez un animal sauvage ou de compagnie peut servir d'événement sentinelle pour nous alerter de la présence d'un potentiel toxique environnemental ou cancérogène pour l'homme avant qu'il ne soit identifié par d'autres moyens (Glickman 1993).
  2. Les marqueurs d'exposition, comme les adduits à l'hémoglobine ou les niveaux d'absorption et d'excrétion de toxines, peuvent être mesurés chez les animaux sauvages et de compagnie pour évaluer la contamination environnementale par des sources industrielles (Blondin et Viau 1992; Reynolds et al. 1994; Hungerford et al. 1995) .
  3. Les animaux ne sont pas exposés à certains facteurs qui peuvent agir comme facteurs de confusion dans les études humaines, et les enquêtes sur les populations animales peuvent donc être menées sans tenir compte de ces facteurs de confusion potentiels. Par exemple, une étude sur le cancer du poumon chez les chiens de compagnie pourrait détecter des associations significatives entre la maladie et l'exposition à l'amiante (par exemple, via les professions liées à l'amiante des propriétaires et la proximité de sources industrielles d'amiante). De toute évidence, une telle étude éliminerait l'effet du tabagisme actif en tant que facteur de confusion.

 

Les vétérinaires parlent d'une révolution épidémiologique en médecine vétérinaire (Schwabe 1993) et des manuels sur la discipline sont apparus (Thrusfield 1986; Martin et al. 1987). Certes, des indices sur les risques environnementaux et professionnels sont venus des efforts conjoints des épidémiologistes humains et animaux. Entre autres, l'effet des phénoxyherbicides chez les moutons et les chiens (Newell et al. 1984; Hayes et al. 1990), des champs magnétiques (Reif et al. 1995) et des pesticides (notamment les préparations contre les puces) contaminés par des composés de type amiante chez les chiens (Glickman et al. 1983) sont des contributions notables.

Recherche participative, communication des résultats et prévention

Il est important de reconnaître que de nombreuses études épidémiologiques dans le domaine de la santé au travail sont initiées par l'expérience et les préoccupations des travailleurs eux-mêmes (Olsen et al. 1991). Souvent, les travailleurs – ceux historiquement et/ou actuellement exposés – croyaient que quelque chose n'allait pas bien avant que cela ne soit confirmé par la recherche. L'épidémiologie professionnelle peut être considérée comme un moyen de «donner du sens» à l'expérience des travailleurs, de collecter et de regrouper les données de manière systématique et de tirer des conclusions sur les causes professionnelles de leur mauvaise santé. De plus, les travailleurs eux-mêmes, leurs représentants et les personnes en charge de la santé des travailleurs sont les personnes les plus aptes à interpréter les données recueillies. Ils doivent donc toujours participer activement à toute enquête menée sur le lieu de travail. Seule leur implication directe garantira la sécurité du lieu de travail après le départ des chercheurs. Le but de toute étude est l'utilisation des résultats dans la prévention des maladies et des incapacités, et le succès de celle-ci dépend dans une large mesure de la participation des personnes exposées à l'obtention et à l'interprétation des résultats de l'étude. Le rôle et l'utilisation des résultats de la recherche dans le processus de litige alors que les travailleurs demandent une indemnisation pour les dommages causés par l'exposition sur le lieu de travail dépassent la portée de ce chapitre. Pour un aperçu à ce sujet, le lecteur est renvoyé ailleurs (Soskolne, Lilienfeld et Black 1994).

Les approches participatives visant à assurer la conduite de la recherche en épidémiologie professionnelle sont devenues, dans certains endroits, une pratique courante sous la forme de comités directeurs créés pour superviser l'initiative de recherche depuis son lancement jusqu'à son achèvement. Ces comités sont multipartites dans leur structure, y compris les syndicats, les scientifiques, la direction et/ou le gouvernement. Avec des représentants de tous les groupes d'intervenants dans le processus de recherche, la communication des résultats sera rendue plus efficace en raison de leur crédibilité accrue, car «l'un des leurs» aurait supervisé la recherche et aurait communiqué les résultats à ses collègues respectifs. circonscription électorale. De cette façon, le plus haut niveau de prévention efficace est probable.

Ces approches participatives et d'autres dans la recherche sur la santé au travail sont entreprises avec la participation de ceux qui éprouvent ou sont autrement touchés par le problème préoccupant lié à l'exposition. Cela devrait être observé plus fréquemment dans toutes les recherches épidémiologiques (Laurell et al. 1992). Il est pertinent de rappeler que si, dans le travail épidémiologique, l'objectif de l'analyse est l'estimation de l'ampleur et de la distribution du risque, dans la recherche participative, l'évitabilité du risque est également un objectif (Loewenson et Biocca 1995). Cette complémentarité de l'épidémiologie et de l'efficacité de la prévention fait partie du message de ce Encyclopédie et de ce chapitre.

Maintenir la pertinence en matière de santé publique

Bien que les nouveaux développements dans la méthodologie épidémiologique, dans l'analyse des données et dans l'évaluation et la mesure de l'exposition (comme les nouvelles techniques de biologie moléculaire) soient bienvenus et importants, ils peuvent également contribuer à une approche réductionniste axée sur les individus plutôt que sur les populations. Il a été dit que :

… l'épidémiologie a en grande partie cessé de fonctionner dans le cadre d'une approche multidisciplinaire pour comprendre la causalité des maladies dans les populations et est devenue un ensemble de méthodes génériques pour mesurer les associations d'exposition et de maladie chez les individus.… Il y a une négligence actuelle des facteurs sociaux, économiques, culturels , historiques, politiques et autres facteurs démographiques comme principales causes de maladies.… L'épidémiologie doit se réintégrer dans la santé publique et doit redécouvrir la perspective de la population (Pearce 1996).

Les épidémiologistes du travail et de l'environnement ont un rôle important à jouer, non seulement pour développer de nouvelles méthodes épidémiologiques et leurs applications, mais aussi pour s'assurer que ces méthodes sont toujours intégrées dans la bonne perspective populationnelle.

 

Retour

Mardi 08 Mars 2011 20: 55

Anthropométrie

 

Cet article est adapté de la 3e édition de l'Encyclopaedia of Occupational Health and Safety.

L'anthropométrie est une branche fondamentale de l'anthropologie physique. Il représente l'aspect quantitatif. Un vaste système de théories et de pratiques est consacré à la définition de méthodes et de variables pour relier les objectifs dans les différents domaines d'application. Dans les domaines de la santé, de la sécurité et de l'ergonomie au travail, les systèmes anthropométriques concernent principalement la corpulence, la composition et la constitution du corps, ainsi que les dimensions de l'interrelation du corps humain avec les dimensions du lieu de travail, les machines, l'environnement industriel et les vêtements.

Variables anthropométriques

Une variable anthropométrique est une caractéristique mesurable du corps qui peut être définie, normalisée et rapportée à une unité de mesure. Les variables linéaires sont généralement définies par des points de repère qui peuvent être tracés avec précision jusqu'au corps. Les repères sont généralement de deux types : squelettiques-anatomiques, qui peuvent être trouvés et tracés en sentant des proéminences osseuses à travers la peau, et des repères virtuels qui sont simplement trouvés en tant que distances maximales ou minimales à l'aide des branches d'un pied à coulisse.

Les variables anthropométriques ont à la fois des composantes génétiques et environnementales et peuvent être utilisées pour définir la variabilité individuelle et de population. Le choix des variables doit être lié à l'objectif spécifique de la recherche et standardisé avec d'autres recherches dans le même domaine, car le nombre de variables décrites dans la littérature est extrêmement important, jusqu'à 2,200 XNUMX ayant été décrites pour le corps humain.

Les variables anthropométriques sont principalement linéaire mesures, telles que les hauteurs, les distances par rapport aux points de repère avec le sujet debout ou assis dans une posture standard ; diamètres, telles que les distances entre les points de repère bilatéraux ; longueurs, comme les distances entre deux points de repère différents ; mesures courbes, à savoir les arcs, tels que les distances sur la surface du corps entre deux points de repère ; et sangles, telles que des mesures circulaires fermées sur des surfaces corporelles, généralement positionnées à au moins un point de repère ou à une hauteur définie.

D'autres variables peuvent nécessiter des méthodes et des instruments spéciaux. Par exemple, l'épaisseur du pli cutané est mesurée au moyen d'un pied à coulisse spécial à pression constante. Les volumes sont mesurés par calcul ou par immersion dans l'eau. Pour obtenir des informations complètes sur les caractéristiques de la surface corporelle, une matrice informatique de points de surface peut être tracée à l'aide de techniques biostéréométriques.

Instruments

Bien que des instruments anthropométriques sophistiqués aient été décrits et utilisés en vue de la collecte automatisée de données, les instruments anthropométriques de base sont assez simples et faciles à utiliser. Il faut faire très attention pour éviter les erreurs courantes résultant d'une mauvaise interprétation des points de repère et des postures incorrectes des sujets.

L'instrument anthropométrique standard est l'anthropomètre - une tige rigide de 2 mètres de long, avec deux échelles de contre-lecture, avec laquelle les dimensions verticales du corps, telles que les hauteurs des points de repère depuis le sol ou le siège, et les dimensions transversales, telles que les diamètres, peuvent être prises.

Généralement, la tige peut être divisée en 3 ou 4 sections qui s'emboîtent les unes dans les autres. Une branche coulissante à griffe droite ou courbée permet de mesurer les distances au sol pour les hauteurs, ou à partir d'une branche fixe pour les diamètres. Les anthropomètres plus élaborés ont une échelle unique pour les hauteurs et les diamètres afin d'éviter les erreurs d'échelle, ou sont équipés de dispositifs de lecture numériques mécaniques ou électroniques (figure 1).

Figure 1. Un anthropomètre

ERG070F1

Un stadiomètre est un anthropomètre fixe, généralement utilisé uniquement pour la stature et fréquemment associé à une balance à poids.

Pour les diamètres transversaux, une série de pieds à coulisse peut être utilisée : le pelvimètre pour les mesures jusqu'à 600 mm et le céphalomètre jusqu'à 300 mm. Ce dernier est particulièrement adapté aux mesures de tête lorsqu'il est utilisé avec un compas à glissière (figure 2).

Figure 2. Un céphalomètre avec un compas à glissement

ERG070F2

Le pied de lit est utilisé pour mesurer les pieds et la tête de lit fournit les coordonnées cartésiennes de la tête lorsqu'elle est orientée dans le "plan de Francfort" (un plan horizontal passant par portion ainsi que orbital points de repère de la tête). La main peut être mesurée avec un pied à coulisse ou avec un appareil spécial composé de cinq règles coulissantes.

L'épaisseur du pli cutané est mesurée avec un pied à coulisse à pression constante généralement avec une pression de 9.81 x 104 Pa (la pression imposée par un poids de 10 g sur une surface de 1 mm2).

Pour les arcs et les sangles, un ruban d'acier étroit et flexible à section plate est utilisé. Les bandes d'acier auto-dressantes doivent être évitées.

Systèmes de variables

Un système de variables anthropométriques est un ensemble cohérent de mesures corporelles permettant de résoudre certains problèmes spécifiques.

Dans le domaine de l'ergonomie et de la sécurité, le principal problème est l'adaptation des équipements et de l'espace de travail à l'homme et l'adaptation des vêtements à la bonne taille.

L'équipement et l'espace de travail nécessitent principalement des mesures linéaires des membres et des segments du corps qui peuvent être facilement calculées à partir des hauteurs et des diamètres de repère, tandis que les tailles sur mesure sont principalement basées sur les arcs, les circonférences et les longueurs de ruban flexibles. Les deux systèmes peuvent être combinés selon les besoins.

Dans tous les cas, il est absolument nécessaire d'avoir une référence spatiale précise pour chaque mesure. Les amers doivent donc être liés par des hauteurs et des diamètres et chaque arc ou circonférence doit avoir une référence d'amer définie. Les hauteurs et les pentes doivent être indiquées.

Dans une enquête particulière, le nombre de variables doit être limité au minimum afin d'éviter un stress excessif sur le sujet et l'opérateur.

Un ensemble de base de variables pour l'espace de travail a été réduit à 33 variables mesurées (figure 3) plus 20 dérivées par un calcul simple. Pour une enquête militaire à usage général, Hertzberg et ses collègues utilisent 146 variables. Pour les vêtements et à des fins biologiques générales, le Conseil italien de la mode (Ente Italiano della Moda) utilise un ensemble de 32 variables à usage général et 28 variables techniques. La norme allemande (DIN 61 516) des dimensions corporelles de contrôle pour les vêtements comprend 12 variables. La recommandation de l'Organisation internationale de normalisation (ISO) pour l'anthropométrie comprend une liste de base de 36 variables (voir tableau 1). Les tables International Data on Anthropometry publiées par l'OIT répertorient 19 dimensions corporelles pour les populations de 20 régions différentes du monde (Jürgens, Aune et Pieper 1990).

Figure 3. Ensemble de base de variables anthropométriques

ERG070F3


Tableau 1. Liste de base anthropométrique de base

 

1.1 Atteindre vers l'avant (pour saisir la main avec le sujet debout contre un mur)

1.2 Stature (distance verticale du sol au sommet de la tête)

1.3 Hauteur des yeux (du sol au coin interne de l'œil)

1.4 Hauteur des épaules (du sol à l'acromion)

1.5 Hauteur du coude (du sol à la dépression radiale du coude)

1.6 Hauteur d'entrejambe (du sol à l'os pubien)

1.7 Hauteur du bout des doigts (du sol à l'axe de préhension du poing)

1.8 Largeur d'épaule (diamètre biacromial)

1.9 Largeur des hanches, debout (la distance maximale entre les hanches)

2.1 Hauteur d'assise (du siège au sommet de la tête)

2.2 Hauteur des yeux, assis (du siège au coin interne de l'œil)

2.3 Hauteur des épaules, assise (du siège à l'acromion)

2.4 Hauteur du coude, assis (du siège au point le plus bas du coude plié)

2.5 Hauteur du genou (du repose-pied à la surface supérieure de la cuisse)

2.6 Longueur du bas de la jambe (hauteur de la surface d'assise)

2.7 Longueur avant-bras-main (de l'arrière du coude plié à l'axe de préhension)

2.8 Profondeur du corps, assis (profondeur du siège)

2.9 Longueur fesse-genou (de la rotule au point le plus en arrière de la fesse)

2.10 Largeur coude à coude (distance entre les surfaces latérales des coudes)

2.11 Largeur aux hanches, assis (largeur d'assise)

3.1 Largeur de l'index, proximal (à l'articulation entre les phalanges médiale et proximale)

3.2 Largeur de l'index, distal (à l'articulation entre les phalanges distale et médiale)

3.3 Longueur de l'index

3.4 Longueur de la main (du bout du majeur à la styloïde)

3.5 Largeur de la main (aux métacarpiens)

3.6 Circonférence du poignet

4.1 Largeur du pied

4.2 Longueur du pied

5.1 Circonférence de la chaleur (au niveau de la glabelle)

5.2 Arc sagittal (de la glabelle à l'inion)

5.3 Longueur de la tête (de la glabelle à l'opisthocranion)

5.4 Largeur de tête (maximum au-dessus de l'oreille)

5.5 Arc Bitragion (au-dessus de la tête entre les oreilles)

6.1 Tour de taille (au niveau du nombril)

6.2 Hauteur tibiale (du sol au point le plus haut du bord antéro-médial de la glène du tibia)

6.3 Hauteur cervicale assise (jusqu'à la pointe de l'apophyse épineuse de la 7ème vertèbre cervicale).

Source : Adapté de ISO/DP 7250 1980).


 

 Précision et erreurs

La précision des dimensions du corps vivant doit être considérée de manière stochastique car le corps humain est hautement imprévisible, tant en tant que structure statique que dynamique.

Un seul individu peut croître ou changer de musculature et de graisse ; subir des modifications squelettiques en raison du vieillissement, d'une maladie ou d'accidents ; ou modifier le comportement ou la posture. Différents sujets diffèrent par des proportions, pas seulement par des dimensions générales. Les sujets de grande stature ne sont pas de simples agrandissements de sujets de petite taille ; les types constitutionnels et les somatotypes varient probablement plus que les dimensions générales.

L'utilisation de mannequins, en particulier ceux représentant les 5e, 50e et 95e centiles standard pour les essais d'ajustement, peut être très trompeuse si les variations corporelles dans les proportions corporelles ne sont pas prises en compte.

Les erreurs résultent d'une mauvaise interprétation des repères et d'une utilisation incorrecte des instruments (erreur personnelle), d'instruments imprécis ou inexacts (erreur instrumentale) ou de changements dans la posture du sujet (erreur du sujet - cette dernière peut être due à des difficultés de communication si le contexte culturel ou linguistique de le sujet diffère de celui de l'opérateur).

Traitement statistique

Les données anthropométriques doivent être traitées par des procédures statistiques, principalement dans le domaine des méthodes d'inférence appliquant des méthodes univariées (moyenne, mode, centiles, histogrammes, analyse de variance, etc.), bivariées (corrélation, régression) et multivariées (corrélation et régression multiples, analyse factorielle , etc.) méthodes. Diverses méthodes graphiques basées sur des applications statistiques ont été conçues pour classer les types humains (anthropométrogrammes, morphosomatogrammes).

Échantillonnage et enquête

Les données anthropométriques ne pouvant être collectées pour l'ensemble de la population (sauf dans le cas rare d'une population particulièrement réduite), un échantillonnage est généralement nécessaire. Un échantillon essentiellement aléatoire devrait être le point de départ de toute enquête anthropométrique. Pour maintenir le nombre de sujets mesurés à un niveau raisonnable, il est généralement nécessaire de recourir à un échantillonnage stratifié à plusieurs degrés. Cela permet la subdivision la plus homogène de la population en plusieurs classes ou strates.

La population peut être subdivisée selon le sexe, le groupe d'âge, la zone géographique, les variables sociales, l'activité physique, etc.

Les formulaires d'enquête doivent être conçus en tenant compte à la fois de la procédure de mesure et du traitement des données. Une étude ergonomique précise de la procédure de mesure doit être réalisée afin de réduire la fatigue de l'opérateur et les erreurs éventuelles. Pour cette raison, les variables doivent être regroupées en fonction de l'instrument utilisé et ordonnées en séquence afin de réduire le nombre de flexions du corps que l'opérateur doit effectuer.

Pour réduire l'effet de l'erreur personnelle, l'enquête doit être effectuée par un seul opérateur. Si plus d'un opérateur doit être utilisé, une formation est nécessaire pour assurer la reproductibilité des mesures.

Anthropométrie des populations

Au-delà de la notion très critiquée de « race », les populations humaines sont néanmoins très variables en taille des individus et en distribution par taille. Généralement, les populations humaines ne sont pas strictement mendéliennes ; ils sont généralement le résultat d'un mélange. Parfois, deux ou plusieurs populations, d'origines et d'adaptations différentes, cohabitent dans la même zone sans se croiser. Cela complique la distribution théorique des traits. Du point de vue anthropométrique, les sexes sont des populations différentes. Les populations d'employés peuvent ne pas correspondre exactement à la population biologique de la même zone en raison d'une éventuelle sélection aptitudinal ou auto-sélection due au choix de l'emploi.

Les populations de différentes zones peuvent différer en raison de conditions d'adaptation ou de structures biologiques et génétiques différentes.

Lorsqu'un ajustement serré est important, une enquête sur un échantillon aléatoire est nécessaire.

Essais de montage et régulation

L'adaptation de l'espace de travail ou de l'équipement à l'utilisateur peut dépendre non seulement des dimensions corporelles, mais aussi de variables telles que la tolérance à l'inconfort et la nature des activités, les vêtements, les outils et les conditions environnementales. Une combinaison d'une liste de contrôle des facteurs pertinents, d'un simulateur et d'une série d'essais d'ajustement utilisant un échantillon de sujets choisis pour représenter la gamme de tailles corporelles de la population d'utilisateurs prévue peut être utilisée.

L'objectif est de trouver des plages de tolérance pour tous les sujets. Si les plages se chevauchent, il est possible de sélectionner une plage finale plus étroite qui n'est pas en dehors des limites de tolérance de n'importe quel sujet. S'il n'y a pas de chevauchement, il sera nécessaire de rendre la structure réglable ou de la fournir en différentes tailles. Si plus de deux dimensions sont ajustables, un sujet peut ne pas être en mesure de décider lequel des ajustements possibles lui conviendra le mieux.

L'ajustement peut être une question compliquée, en particulier lorsque des postures inconfortables entraînent de la fatigue. Des indications précises doivent donc être données à l'utilisateur qui connaît souvent peu ou pas ses propres caractéristiques anthropométriques. En général, une conception précise devrait réduire le besoin d'ajustement au minimum. Dans tous les cas, il faut constamment garder à l'esprit qu'il s'agit d'anthropométrie, pas seulement d'ingénierie.

Anthropométrique dynamique

L'anthropométrie statique peut donner de larges informations sur le mouvement si un ensemble adéquat de variables a été choisi. Néanmoins, lorsque les mouvements sont compliqués et qu'une adéquation étroite avec l'environnement industriel est souhaitée, comme dans la plupart des interfaces utilisateur-machine et homme-véhicule, un relevé précis des postures et des mouvements est nécessaire. Cela peut être fait avec des maquettes appropriées qui permettent de tracer des lignes de portée ou par photographie. Dans ce cas, une caméra munie d'un téléobjectif et d'une tige anthropométrique, placée dans le plan sagittal du sujet, permet des prises de vue standardisées avec peu de déformation de l'image. De petites étiquettes sur les articulations des sujets permettent le traçage exact des mouvements.

Une autre manière d'étudier les mouvements consiste à formaliser les changements posturaux selon une série de plans horizontaux et verticaux passant par les articulations. Encore une fois, l'utilisation de modèles humains informatisés avec des systèmes de conception assistée par ordinateur (CAO) est un moyen réalisable d'inclure l'anthropométrie dynamique dans la conception ergonomique du lieu de travail.

 

Retour

Dimanche, Janvier 16 2011 16: 18

Introduction et notions

La toxicologie mécaniste est l'étude de la façon dont les agents chimiques ou physiques interagissent avec les organismes vivants pour provoquer une toxicité. La connaissance du mécanisme de toxicité d'une substance améliore la capacité à prévenir la toxicité et à concevoir des produits chimiques plus souhaitables ; elle constitue la base de la thérapie en cas de surexposition et permet souvent une meilleure compréhension des processus biologiques fondamentaux. Aux fins de ce Encyclopédie l'accent sera mis sur les animaux pour prédire la toxicité humaine. Les différents domaines de la toxicologie comprennent la toxicologie mécaniste, descriptive, réglementaire, médico-légale et environnementale (Klaassen, Amdur et Doull 1991). Tous ces éléments bénéficient de la compréhension des mécanismes fondamentaux de la toxicité.

Pourquoi comprendre les mécanismes de toxicité ?

Comprendre le mécanisme par lequel une substance provoque une toxicité améliore différents domaines de la toxicologie de différentes manières. La compréhension mécaniste aide le régulateur gouvernemental à établir des limites de sécurité juridiquement contraignantes pour l'exposition humaine. Il aide les toxicologues à recommander des plans d'action concernant le nettoyage ou l'assainissement des sites contaminés et, avec les propriétés physiques et chimiques de la substance ou du mélange, peut être utilisé pour sélectionner le degré d'équipement de protection requis. Les connaissances mécanistes sont également utiles pour former la base de la thérapie et de la conception de nouveaux médicaments pour le traitement des maladies humaines. Pour le toxicologue médico-légal, le mécanisme de la toxicité donne souvent un aperçu de la façon dont un agent chimique ou physique peut causer la mort ou une incapacité.

Si le mécanisme de la toxicité est compris, la toxicologie descriptive devient utile pour prédire les effets toxiques des produits chimiques apparentés. Il est important de comprendre, cependant, qu'un manque d'informations mécanistes ne dissuade pas les professionnels de la santé de protéger la santé humaine. Des décisions prudentes basées sur des études animales et l'expérience humaine sont utilisées pour établir des niveaux d'exposition sûrs. Traditionnellement, une marge de sécurité était établie en utilisant le « niveau sans effet nocif » ou le « niveau le plus faible avec effet nocif » provenant d'études sur des animaux (en utilisant des modèles d'exposition répétée) et en divisant ce niveau par un facteur de 100 pour l'exposition professionnelle ou de 1,000 XNUMX pour l'exposition professionnelle. autre exposition environnementale humaine. Le succès de ce processus est évident d'après les quelques incidents d'effets néfastes sur la santé attribués à l'exposition chimique chez les travailleurs pour lesquels des limites d'exposition appropriées avaient été fixées et respectées dans le passé. De plus, la durée de vie humaine continue d'augmenter, tout comme la qualité de vie. Dans l'ensemble, l'utilisation des données de toxicité a conduit à un contrôle réglementaire et volontaire efficace. Une connaissance détaillée des mécanismes toxiques améliorera la prévisibilité des nouveaux modèles de risque en cours d'élaboration et se traduira par une amélioration continue.

La compréhension des mécanismes environnementaux est complexe et suppose une connaissance des perturbations et de l'homéostasie (équilibre) des écosystèmes. Bien que cela ne soit pas abordé dans cet article, une meilleure compréhension des mécanismes toxiques et de leurs conséquences ultimes dans un écosystème aiderait les scientifiques à prendre des décisions prudentes concernant la manipulation des déchets municipaux et industriels. La gestion des déchets est un domaine de recherche en plein essor et continuera d'être très importante à l'avenir.

Techniques d'étude des mécanismes de toxicité

La majorité des études mécanistes débutent par une étude toxicologique descriptive chez l'animal ou des observations cliniques chez l'homme. Idéalement, les études animales comprennent des observations comportementales et cliniques minutieuses, un examen biochimique minutieux des éléments du sang et de l'urine à la recherche de signes de fonctionnement indésirable des principaux systèmes biologiques de l'organisme, et une évaluation post-mortem de tous les systèmes d'organes par examen microscopique pour vérifier blessure (voir les directives d'essai de l'OCDE ; les directives de la CE sur l'évaluation des produits chimiques ; les règles d'essai de l'EPA des États-Unis ; la réglementation japonaise sur les produits chimiques). Ceci est analogue à un examen physique humain approfondi qui aurait lieu dans un hôpital sur une période de deux à trois jours, à l'exception de l'autopsie.

Comprendre les mécanismes de la toxicité est l'art et la science de l'observation, la créativité dans la sélection de techniques pour tester diverses hypothèses et l'intégration innovante des signes et des symptômes dans une relation causale. Les études mécanistes commencent par l'exposition, suivent la distribution temporelle et le devenir dans le corps (pharmacocinétique) et mesurent l'effet toxique résultant à un certain niveau du système et à un certain niveau de dose. Différentes substances peuvent agir à différents niveaux du système biologique en provoquant une toxicité.

Exposition

La voie d'exposition dans les études mécanistes est généralement la même que pour l'exposition humaine. La voie est importante parce qu'il peut y avoir des effets qui se produisent localement au site d'exposition en plus des effets systémiques après que le produit chimique a été absorbé dans le sang et distribué dans tout le corps. Un exemple simple mais convaincant d'un effet local serait l'irritation et la corrosion éventuelle de la peau suite à l'application de solutions acides ou alcalines fortes conçues pour nettoyer les surfaces dures. De même, une irritation et une mort cellulaire peuvent survenir dans les cellules tapissant le nez et/ou les poumons suite à une exposition à des vapeurs ou des gaz irritants tels que les oxydes d'azote ou l'ozone. (Les deux sont des constituants de la pollution de l'air, ou smog). Suite à l'absorption d'un produit chimique dans le sang par la peau, les poumons ou le tractus gastro-intestinal, la concentration dans tout organe ou tissu est contrôlée par de nombreux facteurs qui déterminent la pharmacocinétique du produit chimique dans le corps. Le corps a la capacité d'activer et de détoxifier divers produits chimiques, comme indiqué ci-dessous.

Rôle de la pharmacocinétique dans la toxicité

La pharmacocinétique décrit les relations temporelles pour l'absorption chimique, la distribution, le métabolisme (altérations biochimiques dans le corps) et l'élimination ou l'excrétion du corps. Par rapport aux mécanismes de toxicité, ces variables pharmacocinétiques peuvent être très importantes et, dans certains cas, déterminer si la toxicité se produira ou non. Par exemple, si un matériau n'est pas absorbé en quantité suffisante, la toxicité systémique (à l'intérieur du corps) ne se produira pas. À l'inverse, un produit chimique hautement réactif qui est détoxifié rapidement (en quelques secondes ou minutes) par des enzymes digestives ou hépatiques peut ne pas avoir le temps de provoquer une toxicité. Certaines substances et mélanges halogénés polycycliques ainsi que certains métaux comme le plomb n'entraîneraient pas de toxicité significative si l'excrétion était rapide; mais l'accumulation à des niveaux suffisamment élevés détermine leur toxicité puisque l'excrétion n'est pas rapide (parfois mesurée en années). Heureusement, la plupart des produits chimiques n'ont pas une rétention aussi longue dans le corps. L'accumulation d'un matériau inoffensif n'induirait toujours pas de toxicité. Le taux d'élimination du corps et de détoxication est souvent appelé la demi-vie du produit chimique, qui est le temps nécessaire pour que 50 % du produit chimique soit excrété ou transformé en une forme non toxique.

Cependant, si un produit chimique s'accumule dans une cellule ou un organe particulier, cela peut signaler une raison d'examiner plus avant sa toxicité potentielle dans cet organe. Plus récemment, des modèles mathématiques ont été développés pour extrapoler des variables pharmacocinétiques de l'animal à l'homme. Ces modèles pharmacocinétiques sont extrêmement utiles pour générer des hypothèses et tester si l'animal expérimental peut être une bonne représentation pour l'homme. De nombreux chapitres et textes ont été écrits sur ce sujet (Gehring et al. 1976 ; Reitz et al. 1987 ; Nolan et al. 1995). Un exemple simplifié d'un modèle physiologique est illustré à la figure 1.

Figure 1. Un modèle pharmacocinétique simplifié

TOX210F1

Différents niveaux et systèmes peuvent être affectés négativement

La toxicité peut être décrite à différents niveaux biologiques. La lésion peut être évaluée sur l'ensemble de la personne (ou de l'animal), du système organique, de la cellule ou de la molécule. Les systèmes organiques comprennent les systèmes immunitaire, respiratoire, cardiovasculaire, rénal, endocrinien, digestif, musculo-squelettique, sanguin, reproducteur et nerveux central. Certains organes clés comprennent le foie, les reins, les poumons, le cerveau, la peau, les yeux, le cœur, les testicules ou les ovaires et d'autres organes majeurs. Au niveau cellulaire/biochimique, les effets indésirables comprennent l'interférence avec la fonction normale des protéines, la fonction des récepteurs endocriniens, l'inhibition de l'énergie métabolique ou l'inhibition ou l'induction d'enzymes xénobiotiques (substances étrangères). Les effets indésirables au niveau moléculaire comprennent l'altération de la fonction normale de la transcription ADN-ARN, de la liaison spécifique aux récepteurs cytoplasmiques et nucléaires, et des gènes ou des produits géniques. En fin de compte, le dysfonctionnement d'un système d'organe majeur est probablement causé par une altération moléculaire dans une cellule cible particulière au sein de cet organe. Cependant, il n'est pas toujours possible de retracer un mécanisme jusqu'à une origine moléculaire de causalité, et ce n'est pas non plus nécessaire. L'intervention et la thérapie peuvent être conçues sans une compréhension complète de la cible moléculaire. Cependant, la connaissance du mécanisme spécifique de la toxicité augmente la valeur prédictive et la précision de l'extrapolation à d'autres produits chimiques. La figure 2 est une représentation schématique des différents niveaux où l'interférence des processus physiologiques normaux peut être détectée. Les flèches indiquent que les conséquences pour un individu peuvent être déterminées de haut en bas (exposition, pharmacocinétique à la toxicité du système/organe) ou de bas en haut (modification moléculaire, effet cellulaire/biochimique à la toxicité du système/organe).

Figure 2. Représentation des mécanismes de toxicité

TOX210F2

Exemples de mécanismes de toxicité

Les mécanismes de toxicité peuvent être simples ou très complexes. Souvent, il existe une différence entre le type de toxicité, le mécanisme de toxicité et le niveau d'effet, selon que les effets indésirables sont dus à une seule dose aiguë élevée (comme un empoisonnement accidentel) ou à une dose plus faible. exposition répétée (due à une exposition professionnelle ou environnementale). Classiquement, à des fins de test, une dose élevée unique aiguë est administrée par intubation directe dans l'estomac d'un rongeur ou par exposition à une atmosphère de gaz ou de vapeur pendant deux à quatre heures, selon ce qui ressemble le mieux à l'exposition humaine. Les animaux sont observés pendant une période de deux semaines après l'exposition, puis les principaux organes externes et internes sont examinés pour détecter les blessures. Les tests à doses répétées varient de quelques mois à plusieurs années. Pour les espèces de rongeurs, deux ans sont considérés comme une étude chronique (durée de vie) suffisante pour évaluer la toxicité et la cancérogénicité, tandis que pour les primates non humains, deux ans seraient considérés comme une étude subchronique (moins que la durée de vie) pour évaluer la toxicité à doses répétées. Après l'exposition, un examen complet de tous les tissus, organes et fluides est effectué pour déterminer tout effet indésirable.

Mécanismes de toxicité aiguë

Les exemples suivants sont spécifiques aux effets aigus à forte dose pouvant entraîner la mort ou une incapacité grave. Cependant, dans certains cas, l'intervention entraînera des effets transitoires et entièrement réversibles. La dose ou la gravité de l'exposition déterminera le résultat.

Asphyxiants simples. Le mécanisme de toxicité des gaz inertes et de certaines autres substances non réactives est le manque d'oxygène (anoxie). Ces produits chimiques, qui causent une privation d'oxygène au système nerveux central (SNC), sont appelés asphyxiants simples. Si une personne pénètre dans un espace clos contenant de l'azote sans suffisamment d'oxygène, un appauvrissement immédiat en oxygène se produit dans le cerveau et entraîne une perte de conscience et éventuellement la mort si la personne n'est pas rapidement évacuée. Dans les cas extrêmes (proche de zéro oxygène), l'inconscience peut survenir en quelques secondes. Le sauvetage dépend d'un déplacement rapide vers un environnement oxygéné. La survie avec des lésions cérébrales irréversibles peut survenir à la suite d'un sauvetage retardé, en raison de la mort des neurones, qui ne peuvent pas se régénérer.

Asphyxiants chimiques. Le monoxyde de carbone (CO) entre en compétition avec l'oxygène pour se lier à l'hémoglobine (dans les globules rouges) et prive donc les tissus d'oxygène pour le métabolisme énergétique ; la mort cellulaire peut en résulter. L'intervention comprend l'élimination de la source de CO et le traitement à l'oxygène. L'utilisation directe de l'oxygène est basée sur l'action toxique du CO. Un autre asphyxiant chimique puissant est le cyanure. L'ion cyanure interfère avec le métabolisme cellulaire et l'utilisation de l'oxygène pour l'énergie. Le traitement au nitrite de sodium provoque une modification de l'hémoglobine des globules rouges en méthémoglobine. La méthémoglobine a une plus grande affinité de liaison avec l'ion cyanure que la cible cellulaire du cyanure. Par conséquent, la méthémoglobine lie le cyanure et éloigne le cyanure des cellules cibles. Cela constitue la base du traitement antidote.

Dépresseurs du système nerveux central (SNC). La toxicité aiguë est caractérisée par la sédation ou l'inconscience pour un certain nombre de matériaux comme les solvants qui ne sont pas réactifs ou qui sont transformés en intermédiaires réactifs. On suppose que la sédation/anesthésie est due à une interaction du solvant avec les membranes des cellules du SNC, ce qui altère leur capacité à transmettre des signaux électriques et chimiques. Alors que la sédation peut sembler une forme légère de toxicité et a été à la base du développement des premiers anesthésiques, « la dose fait toujours le poison ». Si une dose suffisante est administrée par ingestion ou inhalation, l'animal peut mourir par arrêt respiratoire. Si la mort anesthésique ne se produit pas, ce type de toxicité est généralement facilement réversible lorsque le sujet est retiré de l'environnement ou que le produit chimique est redistribué ou éliminé du corps.

Effets sur la peau. Les effets indésirables sur la peau peuvent aller de l'irritation à la corrosion, selon la substance rencontrée. Les acides forts et les solutions alcalines sont incompatibles avec les tissus vivants et sont corrosifs, provoquant des brûlures chimiques et d'éventuelles cicatrices. La cicatrisation est due à la mort des cellules cutanées profondes du derme responsables de la régénération. Des concentrations plus faibles peuvent simplement provoquer une irritation de la première couche de peau.

Un autre mécanisme toxique spécifique de la peau est celui de la sensibilisation chimique. Par exemple, la sensibilisation se produit lorsque le 2,4-dinitrochlorobenzène se lie aux protéines naturelles de la peau et que le système immunitaire reconnaît le complexe lié aux protéines altérées comme un corps étranger. En réagissant à ce corps étranger, le système immunitaire active des cellules spéciales pour éliminer le corps étranger en libérant des médiateurs (cytokines) qui provoquent une éruption cutanée ou une dermatite (voir « Immunotoxicologie »). C'est la même réaction du système immunitaire lorsque l'exposition à l'herbe à puce se produit. La sensibilisation immunitaire est très spécifique au produit chimique particulier et nécessite au moins deux expositions avant qu'une réponse ne soit déclenchée. La première exposition sensibilise (prépare les cellules à reconnaître le produit chimique) et les expositions suivantes déclenchent la réponse du système immunitaire. Le retrait du contact et le traitement symptomatique avec des crèmes anti-inflammatoires contenant des stéroïdes sont généralement efficaces pour traiter les personnes sensibilisées. Dans les cas graves ou réfractaires, un immunosuppresseur à action systémique comme la prednisone est utilisé en conjonction avec un traitement topique.

Sensibilisation pulmonaire. Une réponse de sensibilisation immunitaire est provoquée par le diisocyanate de toluène (TDI), mais le site cible est les poumons. La surexposition au TDI chez les personnes sensibles provoque un œdème pulmonaire (accumulation de liquide), une constriction bronchique et une altération de la respiration. Il s'agit d'une affection grave qui nécessite de soustraire l'individu à des expositions ultérieures potentielles. Le traitement est avant tout symptomatique. La sensibilisation de la peau et des poumons suit une dose-réponse. Le dépassement du niveau fixé pour l'exposition professionnelle peut entraîner des effets indésirables.

Effets sur les yeux. Les lésions oculaires vont du rougissement de la couche externe (rougeur de la piscine) à la formation de cataracte de la cornée jusqu'aux lésions de l'iris (partie colorée de l'œil). Des tests d'irritation oculaire sont effectués lorsqu'on pense qu'aucune blessure grave ne se produira. De nombreux mécanismes à l'origine de la corrosion cutanée peuvent également provoquer des lésions oculaires. Les matériaux corrosifs pour la peau, comme les acides forts (pH inférieur à 2) et les alcalis (pH supérieur à 11.5), ne sont pas testés dans les yeux des animaux car la plupart provoqueront la corrosion et la cécité en raison d'un mécanisme similaire à celui qui provoque la corrosion cutanée . De plus, les agents tensioactifs tels que les détergents et les tensioactifs peuvent provoquer des lésions oculaires allant de l'irritation à la corrosion. Un groupe de matériaux qui nécessite de la prudence est celui des tensioactifs chargés positivement (cationiques), qui peuvent provoquer des brûlures, une opacité permanente de la cornée et une vascularisation (formation de vaisseaux sanguins). Un autre produit chimique, le dinitrophénol, a un effet spécifique de formation de cataracte. Cela semble être lié à la concentration de ce produit chimique dans l'œil, qui est un exemple de spécificité de distribution pharmacocinétique.

Bien que la liste ci-dessus soit loin d'être exhaustive, elle est conçue pour donner au lecteur une appréciation des divers mécanismes de toxicité aiguë.

Mécanismes de toxicité subchronique et chronique

Lorsqu'ils sont administrés en une seule dose élevée, certains produits chimiques n'ont pas le même mécanisme de toxicité que lorsqu'ils sont administrés à plusieurs reprises à une dose plus faible mais toujours toxique. Lorsqu'une seule dose élevée est administrée, il y a toujours la possibilité de dépasser la capacité de la personne à détoxifier ou à excréter le produit chimique, ce qui peut entraîner une réponse toxique différente de celle obtenue lorsque des doses répétitives plus faibles sont administrées. L'alcool est un bon exemple. De fortes doses d'alcool entraînent des effets primaires sur le système nerveux central, tandis que des doses répétées plus faibles entraînent des lésions hépatiques.

Inhibition de l'anticholinestérase. La plupart des pesticides organophosphorés, par exemple, ont peu de toxicité pour les mammifères jusqu'à ce qu'ils soient activés métaboliquement, principalement dans le foie. Le principal mécanisme d'action des organophosphorés est l'inhibition de l'acétylcholinestérase (AChE) dans le cerveau et le système nerveux périphérique. L'AChE est l'enzyme normale qui termine la stimulation du neurotransmetteur acétylcholine. Une légère inhibition de l'AChE sur une période prolongée n'a pas été associée à des effets indésirables. À des niveaux d'exposition élevés, l'incapacité à mettre fin à cette stimulation neuronale entraîne une surstimulation du système nerveux cholinergique. La surstimulation cholinergique entraîne finalement une foule de symptômes, y compris un arrêt respiratoire, suivi de la mort si elle n'est pas traitée. Le traitement principal est l'administration d'atropine, qui bloque les effets de l'acétylcholine, et l'administration de chlorure de pralidoxime, qui réactive l'AChE inhibée. Par conséquent, la cause et le traitement de la toxicité des organophosphates sont abordés en comprenant la base biochimique de la toxicité.

Activation métabolique. De nombreux produits chimiques, y compris le tétrachlorure de carbone, le chloroforme, l'acétylaminofluorène, les nitrosamines et le paraquat sont métaboliquement activés en radicaux libres ou autres intermédiaires réactifs qui inhibent et interfèrent avec la fonction cellulaire normale. À des niveaux d'exposition élevés, cela entraîne la mort cellulaire (voir « Lésion cellulaire et mort cellulaire »). Alors que les interactions spécifiques et les cibles cellulaires restent inconnues, les systèmes d'organes qui ont la capacité d'activer ces produits chimiques, comme le foie, les reins et les poumons, sont tous des cibles potentielles de blessures. En effet, des cellules particulières au sein d'un organe ont une capacité plus ou moins grande à activer ou détoxifier ces intermédiaires, et cette capacité détermine la susceptibilité intracellulaire au sein d'un organe. Le métabolisme est l'une des raisons pour lesquelles une compréhension de la pharmacocinétique, qui décrit ces types de transformations ainsi que la distribution et l'élimination de ces intermédiaires, est importante pour reconnaître le mécanisme d'action de ces produits chimiques.

Mécanismes du cancer. Le cancer est une multiplicité de maladies, et bien que la compréhension de certains types de cancer s'améliore rapidement grâce aux nombreuses techniques de biologie moléculaire qui ont été développées depuis 1980, il reste encore beaucoup à apprendre. Cependant, il est clair que le développement du cancer est un processus en plusieurs étapes et que les gènes critiques sont essentiels à différents types de cancer. Des altérations de l'ADN (mutations somatiques) d'un certain nombre de ces gènes critiques peuvent entraîner une susceptibilité accrue ou des lésions cancéreuses (voir « Toxicologie génétique »). L'exposition à des produits chimiques naturels (dans les aliments cuits comme le bœuf et le poisson) ou à des produits chimiques synthétiques (comme la benzidine, utilisée comme colorant) ou à des agents physiques (lumière ultraviolette du soleil, radon du sol, rayonnement gamma provenant de procédures médicales ou d'activités industrielles) sont tous contributeurs aux mutations génétiques somatiques. Cependant, il existe des substances naturelles et synthétiques (comme les antioxydants) et des processus de réparation de l'ADN qui protègent et maintiennent l'homéostasie. Il est clair que la génétique est un facteur important dans le cancer, puisque les syndromes de maladies génétiques telles que le xeroderma pigmentosum, où il y a un manque de réparation normale de l'ADN, augmentent considérablement la susceptibilité au cancer de la peau due à l'exposition à la lumière ultraviolette du soleil.

Mécanismes de reproduction. Comme dans le cas du cancer, de nombreux mécanismes de toxicité pour la reproduction et/ou le développement sont connus, mais il reste encore beaucoup à apprendre. On sait que certains virus (comme la rubéole), des infections bactériennes et des médicaments (comme la thalidomide et la vitamine A) nuiront au développement. Récemment, les travaux de Khera (1991), examinés par Carney (1994), montrent de bonnes preuves que les effets anormaux sur le développement dans les tests sur les animaux avec l'éthylène glycol sont attribuables aux métabolites acides métaboliques maternels. Cela se produit lorsque l'éthylène glycol est métabolisé en métabolites acides, notamment l'acide glycolique et l'acide oxalique. Les effets ultérieurs sur le placenta et le fœtus semblent être dus à ce processus de toxicité métabolique.

Conclusion

Le but de cet article est de donner une perspective sur plusieurs mécanismes connus de toxicité et la nécessité d'études futures. Il est important de comprendre que les connaissances mécanistes ne sont pas absolument nécessaires pour protéger la santé humaine ou environnementale. Cette connaissance améliorera la capacité du professionnel à mieux prévoir et gérer la toxicité. Les techniques réelles utilisées pour élucider un mécanisme particulier dépendent des connaissances collectives des scientifiques et de la pensée de ceux qui prennent les décisions concernant la santé humaine.

 

Retour

Lundi, Février 28 2011 21: 01

Évaluation de l'exposition

L'évaluation des expositions est une étape cruciale dans l'identification des dangers sur le lieu de travail par le biais d'une enquête épidémiologique. Le processus d'évaluation de l'exposition peut être subdivisé en une série d'activités. Ceux-ci inclus:

  1. dresser un inventaire des agents et mélanges potentiellement toxiques présents dans l'environnement de travail visé
  2. déterminer comment les expositions se produisent et quelle est la probabilité qu'elles varient d'un employé à l'autre
  3. sélectionner des mesures ou des indices appropriés pour quantifier les expositions
  4. la collecte de données qui permettront aux participants à l'étude de se voir attribuer des valeurs d'exposition qualitatives ou quantitatives pour chaque mesure. Dans la mesure du possible, ces activités doivent être menées sous la direction d'un hygiéniste industriel qualifié.

 

Les études de santé au travail sont souvent critiquées en raison des insuffisances dans l'évaluation des expositions. Des insuffisances peuvent entraîner une classification erronée différentielle ou non différentielle de l'exposition et un biais ou une perte de précision subséquente dans les analyses exposition-effet. Des efforts pour améliorer la situation sont attestés par plusieurs conférences internationales récentes et des textes consacrés à ce sujet (ACGIH 1991 ; Armstrong et al. 1992 ; Actes de la Conférence sur l'évaluation rétrospective des expositions professionnelles en épidémiologie 1995). De toute évidence, les développements techniques offrent de nouvelles opportunités pour faire progresser l'évaluation de l'exposition. Ces développements comprennent des améliorations dans l'instrumentation analytique, une meilleure compréhension des processus pharmacocinétiques et la découverte de nouveaux biomarqueurs d'exposition. Étant donné que les études de santé au travail dépendent souvent d'informations sur l'exposition historique pour lesquelles aucune surveillance spécifique n'aurait été entreprise, la nécessité d'une évaluation rétrospective de l'exposition ajoute une dimension supplémentaire de complexité à ces études. Cependant, des normes améliorées pour l'évaluation et pour assurer la fiabilité de ces évaluations continuent d'être développées (Siemiatycki et al. 1986). Les évaluations de l'exposition prospective, bien sûr, peuvent être plus facilement validées.

Le terme exposition fait référence à la concentration d'un agent à la frontière entre l'individu et l'environnement. L'exposition est normalement présumée lorsqu'un agent est connu pour être présent dans un environnement de travail et qu'il existe une attente raisonnable de contact de l'employé avec cet agent. Les expositions peuvent être exprimées sous la forme d'une concentration moyenne pondérée dans le temps (TWA) sur 8 heures, qui est une mesure de l'intensité d'exposition dont la moyenne a été calculée sur un quart de travail de 8 heures. Les concentrations maximales sont des intensités moyennées sur des périodes de temps plus courtes telles que 15 minutes. L'exposition cumulative est une mesure du produit de l'intensité et de la durée moyennes (par exemple, une concentration moyenne TWA sur 8 heures multipliée par les années travaillées à cette concentration moyenne). Selon la nature de l'étude et les effets sur la santé qui nous intéressent, l'évaluation des expositions de pointe, d'intensité moyenne, cumulatives ou décalées peut être souhaitable.

Par contraste, dose fait référence au dépôt ou à l'absorption d'un agent par unité de temps. La dose ou l'absorption quotidienne d'un agent peut être estimée en combinant des données de mesures environnementales avec des hypothèses standard concernant, entre autres facteurs, les rythmes respiratoires et la pénétration cutanée. Alternativement, l'apport peut être estimé sur la base des données de biosurveillance. La dose serait idéalement mesurée au niveau de l'organe cible d'intérêt.

Les facteurs importants d'évaluation de l'exposition comprennent :

  1. identification des agents concernés
  2. détermination de leur présence et de leurs concentrations dans les milieux environnementaux appropriés (p. ex. air, surfaces de contact)
  3. évaluation des voies de pénétration probables (inhalation, absorption cutanée, ingestion), de la durée d'exposition (variation quotidienne) et de la durée cumulée d'exposition exprimée en semaines, mois ou années
  4. évaluation de l'efficacité des contrôles techniques et personnels (p. ex., l'utilisation de vêtements de protection et de protection respiratoire peut atténuer les expositions) et, enfin
  5. l'hôte et d'autres considérations susceptibles de moduler les concentrations dans les organes cibles.

 

Il s'agit notamment du niveau physique d'activité professionnelle et de l'état de santé antérieur des individus. Une attention particulière doit être portée à l'évaluation de l'exposition à des agents persistants ou ayant tendance à se bioaccumuler (par exemple, certains métaux, radionucléides ou composés organiques stables). Avec ces matériaux, les charges corporelles internes peuvent augmenter insidieusement même lorsque les concentrations environnementales semblent faibles.

Bien que la situation puisse être assez complexe, elle ne l'est souvent pas. Certes, de nombreuses contributions précieuses à l'identification des risques professionnels sont venues d'études utilisant des approches de bon sens pour l'évaluation de l'exposition. Les sources d'information qui peuvent être utiles pour identifier et catégoriser les expositions comprennent :

  1. entretiens avec les employés
  2. les dossiers du personnel et de la production de l'employeur (ceux-ci comprennent les dossiers de travail, les descriptions de poste, les historiques des installations et des processus et les inventaires de produits chimiques)
  3. jugement d'expert
  4. registres d'hygiène industrielle (surveillance de la zone, des personnes et de la conformité, et échantillons d'essuyage de surface, ainsi que des rapports sur les risques pour la santé ou des rapports d'enquête complets)
  5. entretiens avec des employés de longue date ou retraités et
  6. données de biosurveillance.

 

Il y a plusieurs avantages à catégoriser les expositions individuelles avec autant de détails que possible. De toute évidence, le caractère informatif d'une étude sera amélioré dans la mesure où les expositions pertinentes ont été adéquatement décrites. Deuxièmement, la crédibilité des résultats peut être accrue car le potentiel de confusion peut être traité de manière plus satisfaisante. Par exemple, les référents et les personnes exposées différeront quant au statut d'exposition, mais peuvent également différer par rapport à d'autres facteurs explicatifs mesurés et non mesurés pour la maladie d'intérêt. Cependant, si un gradient d'exposition peut être établi au sein de la population étudiée, il est moins probable que le même degré de confusion persiste au sein des sous-groupes d'exposition, renforçant ainsi les résultats globaux de l'étude.

Matrices d'exposition professionnelle

L'une des approches les plus pratiques et les plus fréquemment utilisées pour l'évaluation de l'exposition consiste à estimer indirectement les expositions sur la base des intitulés de poste. L'utilisation de matrices d'exposition professionnelle peut être efficace lorsque des antécédents professionnels complets sont disponibles et qu'il existe une constance raisonnable dans les tâches et les expositions associées aux emplois à l'étude. À l'échelle la plus large, des regroupements standard d'industries et de titres d'emploi ont été conçus à partir de données de recensement recueillies régulièrement ou de données professionnelles fournies sur les certificats de décès. Malheureusement, les informations conservées dans ces grands systèmes d'enregistrement sont souvent limitées à la profession « actuelle » ou « habituelle ». De plus, étant donné que les regroupements standard ne tiennent pas compte des conditions présentes sur des lieux de travail spécifiques, ils doivent généralement être considérés comme des substituts bruts de l'exposition.

Pour les études cas-témoins basées sur la communauté et les registres, une évaluation plus détaillée de l'exposition a été réalisée en utilisant l'opinion d'experts pour traduire les données sur les antécédents professionnels obtenues par le biais d'entretiens personnels en évaluations semi-quantitatives des expositions probables à des agents spécifiques (Siemiatycki et al. 1986 ). Des experts, tels que des chimistes et des hygiénistes industriels, sont choisis pour participer à l'évaluation de l'exposition en raison de leurs connaissances et de leur familiarité avec divers procédés industriels. En combinant les données détaillées du questionnaire avec la connaissance des processus industriels, cette approche a été utile pour caractériser les différences d'exposition entre les installations de travail.

L'approche de la matrice emploi-exposition a également été utilisée avec succès dans des études spécifiques à l'industrie et à l'entreprise (Gamble et Spirtas 1976). Les historiques de travail individuels (une liste chronologique des anciens départements et des affectations de travail pour chaque employé) sont souvent conservés dans les dossiers du personnel de l'entreprise et, lorsqu'ils sont disponibles, fournissent un historique de travail complet pour les employés pendant qu'ils travaillent dans cette installation. Ces données peuvent être complétées par des entretiens personnels avec les participants à l'étude. L'étape suivante consiste à répertorier tous les titres d'emploi et les désignations de département ou de domaine de travail utilisés pendant la période d'étude. Celles-ci peuvent facilement atteindre des centaines, voire des milliers, dans de grandes installations multi-procédés ou dans des entreprises d'une industrie, lorsque la production, la maintenance, la recherche, l'ingénierie, les services de support d'usine et les emplois administratifs sont tous pris en compte dans le temps (souvent plusieurs décennies), permettre des changements dans les processus industriels. La consolidation des données peut être facilitée en créant un fichier informatique de tous les enregistrements d'historique de travail, puis en utilisant des routines d'édition pour normaliser la terminologie des titres de poste. Ces emplois impliquant des expositions relativement homogènes peuvent être combinés pour simplifier le processus de liaison des expositions à des emplois individuels. Cependant, le regroupement des emplois et des lieux de travail devrait être étayé dans la mesure du possible par des données de mesure recueillies selon une stratégie d'échantillonnage solide.

Même avec des antécédents de travail informatisés, le couplage rétrospectif des données d'exposition aux individus peut être une tâche difficile. Certes, les conditions de travail seront modifiées à mesure que les technologies changent, que la demande de produits évolue et que de nouvelles réglementations sont mises en place. Il peut également y avoir des changements dans les formulations des produits et les modèles de production saisonniers dans de nombreuses industries. Des enregistrements permanents peuvent être conservés concernant certains changements. Cependant, il est moins probable que des dossiers soient conservés concernant les changements saisonniers et autres changements marginaux de processus et de production. Les employés peuvent également être formés pour effectuer plusieurs tâches, puis faire l'objet d'une rotation entre les tâches à mesure que les demandes de production changent. Toutes ces circonstances ajoutent à la complexité des profils d'exposition des employés. Néanmoins, il existe également des cadres de travail qui sont restés relativement inchangés pendant de nombreuses années. En dernière analyse, chaque milieu de travail doit être évalué à part entière.

En fin de compte, il sera nécessaire de résumer les antécédents d'exposition au travail de chaque personne dans une étude. Une influence considérable sur les mesures finales d'exposition et d'effet du risque a été démontrée (Suarez-Almazor et al. 1992), et il faut donc être très prudent dans le choix de la mesure sommaire d'exposition la plus appropriée.

Hygiène industrielle—Mesure environnementale

La surveillance des expositions professionnelles est une activité permanente fondamentale dans la protection de la santé des employés. Ainsi, les dossiers d'hygiène industrielle peuvent déjà exister au moment où une étude épidémiologique est planifiée. Si tel est le cas, ces données doivent être examinées pour déterminer dans quelle mesure la population cible a été couverte, combien d'années de données sont représentées dans les fichiers et avec quelle facilité les mesures peuvent être liées aux emplois, aux zones de travail et aux individus. Ces déterminations seront utiles à la fois pour évaluer la faisabilité de l'étude épidémiologique et pour identifier les lacunes dans les données qui pourraient être comblées par un échantillonnage d'exposition supplémentaire.

La question de savoir comment relier au mieux les données de mesure à des emplois et à des individus spécifiques est particulièrement importante. L'échantillonnage des zones et des zones respiratoires peut être utile aux hygiénistes industriels pour identifier les sources d'émissions pour des mesures correctives, mais pourrait être moins utile pour caractériser les expositions réelles des employés à moins que des études temporelles minutieuses des activités de travail des employés aient été réalisées. Par exemple, la surveillance continue de la zone peut identifier les expositions par excursion à certains moments de la journée, mais la question demeure de savoir si les employés se trouvaient ou non dans la zone de travail à ce moment-là.

Les données d'échantillonnage personnel fournissent généralement des estimations plus précises de l'exposition des employés tant que l'échantillonnage est effectué dans des conditions représentatives, que l'utilisation d'équipements de protection individuelle est correctement prise en compte et que les tâches et les conditions de traitement sont relativement constantes d'un jour à l'autre. Les échantillons personnels peuvent être facilement liés à l'employé individuel grâce à l'utilisation d'identificateurs personnels. Ces données peuvent être généralisées à d'autres employés dans les mêmes emplois et à d'autres périodes de temps, le cas échéant. Cependant, sur la base de leur propre expérience, Rappaport et al. (1993) ont averti que les concentrations d'exposition peuvent être très variables même parmi les employés affectés à ce qui est considéré comme des groupes d'exposition homogènes. Encore une fois, un jugement d'expert est nécessaire pour décider si oui ou non des groupes d'exposition homogènes peuvent être présumés.

Les chercheurs ont réussi à combiner une approche de matrice emploi-exposition avec l'utilisation de données de mesure environnementale pour estimer les expositions dans les cellules de la matrice. Lorsqu'il s'avère que les données de mesure font défaut, il peut être possible de combler les lacunes dans les données en utilisant la modélisation de l'exposition. Généralement, cela implique de développer un modèle pour relier les concentrations environnementales à des déterminants plus facilement évalués des concentrations d'exposition (par exemple, les volumes de production, les caractéristiques physiques de l'installation, y compris l'utilisation de systèmes de ventilation par aspiration, la volatilité de l'agent et la nature de l'activité de travail). Le modèle est construit pour des environnements de travail avec des concentrations environnementales connues, puis utilisé pour estimer les concentrations dans des environnements de travail similaires dépourvus de données de mesure mais disposant d'informations sur des paramètres tels que les ingrédients constitutifs et les volumes de production. Cette approche peut être particulièrement utile pour l'estimation rétrospective des expositions.

Une autre question d'évaluation importante est la gestion de l'exposition aux mélanges. Premièrement, d'un point de vue analytique, la détection séparée de composés chimiquement apparentés et l'élimination des interférences provenant d'autres substances présentes dans l'échantillon peuvent ne pas être dans les limites de la capacité de la procédure analytique. Les diverses limites des procédures analytiques utilisées pour fournir des données de mesure doivent être évaluées et les objectifs de l'étude modifiés en conséquence. Deuxièmement, il se peut que certains agents soient presque toujours utilisés ensemble et donc présents à peu près dans les mêmes proportions relatives dans tout l'environnement de travail étudié. Dans cette situation, les analyses statistiques internes per se ne seront pas utiles pour distinguer si les effets sont dus ou non à l'un ou l'autre des agents ou dus à une combinaison des agents. De tels jugements ne seraient possibles que sur la base de l'examen d'études externes dans lesquelles les mêmes combinaisons d'agents n'avaient pas eu lieu. Enfin, dans les situations où différents matériaux sont utilisés de manière interchangeable selon les spécifications du produit (par exemple, l'utilisation de différents colorants pour obtenir les contrastes de couleurs souhaités), il peut être impossible d'attribuer des effets à un agent spécifique.

Surveillance biologique

Les biomarqueurs sont des altérations moléculaires, biochimiques ou cellulaires qui peuvent être mesurées dans des milieux biologiques tels que des tissus, des cellules ou des fluides humains. L'une des principales raisons de développer des biomarqueurs d'exposition est de fournir une estimation de la dose interne pour un agent particulier. Cette approche est particulièrement utile lorsque plusieurs voies d'exposition sont probables (par exemple, inhalation et absorption cutanée), lorsque l'équipement de protection est porté par intermittence ou lorsque les conditions d'exposition sont imprévisibles. La biosurveillance peut être particulièrement avantageuse lorsque les agents d'intérêt sont connus pour avoir des demi-vies biologiques relativement longues. D'un point de vue statistique, un avantage de la surveillance biologique par rapport à la surveillance de l'air peut être observé avec des agents ayant une demi-vie aussi courte que dix heures, selon le degré de variabilité environnementale (Droz et Wu 1991). Les demi-vies extrêmement longues de matériaux tels que les dioxines chlorées (mesurées en années) font de ces composés des candidats idéaux pour la surveillance biologique. Comme pour les méthodes analytiques de mesure des concentrations dans l'air, il faut être conscient des interférences potentielles. Par exemple, avant d'utiliser un métabolite particulier comme biomarqueur, il convient de déterminer si d'autres substances courantes, telles que celles contenues dans certains médicaments et dans la fumée de cigarette, pourraient être métabolisées vers le même point final. En général, une connaissance de base de la pharmacocinétique d'un agent est nécessaire avant que la surveillance biologique ne soit utilisée comme base pour l'évaluation de l'exposition.

Les points de mesure les plus fréquents sont l'air alvéolaire, l'urine et le sang. Les échantillons d'air alvéolaire peuvent être utiles pour caractériser les fortes expositions à court terme aux solvants qui se sont produites dans les minutes ou les heures suivant le prélèvement de l'échantillon. Des échantillons urinaires sont généralement prélevés pour déterminer les taux d'excrétion des métabolites du composé d'intérêt. Des échantillons de sang peuvent être prélevés pour une mesure directe du composé, pour la mesure de métabolites ou pour la détermination d'adduits de protéines ou d'ADN (par exemple, des adduits d'albumine ou d'hémoglobine et des adduits d'ADN dans les lymphocytes circulants). Les cellules tissulaires accessibles, telles que les cellules épithéliales de la zone buccale de la bouche, peuvent également être échantillonnées pour l'identification des adduits d'ADN.

La détermination de l'activité de la cholinestérase dans les globules rouges et le plasma illustre l'utilisation des altérations biochimiques comme mesure de l'exposition. Les pesticides organophosphorés inhibent l'activité de la cholinestérase et, par conséquent, la mesure de cette activité avant et après une exposition probable à ces composés peut être un indicateur utile de l'intensité de l'exposition. Cependant, à mesure que l'on progresse dans le spectre des altérations biologiques, il devient plus difficile de faire la distinction entre les biomarqueurs d'exposition et ceux d'effet. En général, les mesures d'effet ont tendance à être non spécifiques à la substance d'intérêt et, par conséquent, d'autres explications potentielles de l'effet peuvent devoir être évaluées afin de soutenir l'utilisation de ce paramètre comme mesure d'exposition. Les mesures d'exposition doivent soit être directement liées à l'agent d'intérêt, soit il doit y avoir une base solide pour lier toute mesure indirecte à l'agent. Malgré ces réserves, la surveillance biologique est très prometteuse comme moyen d'améliorer l'évaluation de l'exposition à l'appui des études épidémiologiques.

Conclusions

En faisant des comparaisons dans les études d'épidémiologie professionnelle, il est nécessaire d'avoir un groupe de travailleurs exposés à comparer avec un groupe de travailleurs non exposés. De telles distinctions sont grossières, mais peuvent être utiles pour identifier les zones problématiques. Il est clair cependant que plus la mesure de l'exposition sera fine, plus l'étude sera utile, notamment en termes de capacité à identifier et à développer des programmes d'intervention bien ciblés.

 

Retour

Mardi 08 Mars 2011 21: 01

Travail musculaire

Travail musculaire dans les activités professionnelles

Dans les pays industrialisés, environ 20 % des travailleurs occupent encore des emplois exigeant un effort musculaire (Rutenfranz et al. 1990). Le nombre de travaux physiques lourds conventionnels a diminué, mais, en revanche, de nombreux travaux sont devenus plus statiques, asymétriques et stationnaires. Dans les pays en voie de développement, le travail musculaire sous toutes ses formes est encore très courant.

Le travail musculaire dans les activités professionnelles peut être grossièrement divisé en quatre groupes : le travail musculaire dynamique lourd, la manutention manuelle de matériaux, le travail statique et le travail répétitif. Les tâches lourdes et dynamiques se retrouvent par exemple dans la sylviculture, l'agriculture et l'industrie de la construction. La manutention des matériaux est courante, par exemple, dans les soins infirmiers, le transport et l'entreposage, tandis que les charges statiques existent dans le travail de bureau, l'industrie électronique et les tâches de réparation et d'entretien. Les tâches répétitives se retrouvent par exemple dans les industries agro-alimentaires et de transformation du bois.

Il est important de noter que la manutention manuelle de matériaux et le travail répétitif sont essentiellement des travaux musculaires dynamiques ou statiques, ou une combinaison des deux.

Physiologie du travail musculaire

Travail musculaire dynamique

Dans un travail dynamique, les muscles squelettiques actifs se contractent et se détendent en rythme. Le flux sanguin vers les muscles est augmenté pour répondre aux besoins métaboliques. L'augmentation du flux sanguin est obtenue grâce à un pompage accru du cœur (débit cardiaque), à ​​une diminution du flux sanguin vers les zones inactives, telles que les reins et le foie, et à une augmentation du nombre de vaisseaux sanguins ouverts dans la musculature active. La fréquence cardiaque, la pression artérielle et l'extraction d'oxygène dans les muscles augmentent de manière linéaire en fonction de l'intensité du travail. De plus, la ventilation pulmonaire est accrue en raison d'une respiration plus profonde et d'une fréquence respiratoire accrue. Le but de l'activation de l'ensemble du système cardio-respiratoire est d'améliorer l'apport d'oxygène aux muscles actifs. Le niveau de consommation d'oxygène mesuré lors d'un travail musculaire dynamique intense indique l'intensité du travail. La consommation maximale d'oxygène (VO2max) indique la capacité maximale de la personne pour le travail aérobie. Les valeurs de consommation d'oxygène peuvent être traduites en dépense énergétique (1 litre de consommation d'oxygène par minute correspond à environ 5 kcal/min ou 21 kJ/min).

Dans le cas d'un travail dynamique, lorsque la masse musculaire active est plus petite (comme dans les bras), la capacité de travail maximale et la consommation maximale d'oxygène sont plus faibles que dans le travail dynamique avec de gros muscles. A même rendement de travail externe, le travail dynamique avec de petits muscles induit des réponses cardio-respiratoires (par exemple, fréquence cardiaque, tension artérielle) plus élevées que le travail avec de gros muscles (figure 1).

Figure 1. Travail statique versus travail dynamique    

ERG060F2

Travail musculaire statique

Dans le travail statique, la contraction musculaire ne produit pas de mouvement visible, comme par exemple dans un membre. Le travail statique augmente la pression à l'intérieur du muscle, ce qui, associé à la compression mécanique, obstrue partiellement ou totalement la circulation sanguine. L'apport de nutriments et d'oxygène au muscle et l'élimination des produits métaboliques finaux du muscle sont entravés. Ainsi, dans un travail statique, les muscles se fatiguent plus facilement que dans un travail dynamique.

La caractéristique circulatoire la plus importante du travail statique est une augmentation de la pression artérielle. La fréquence cardiaque et le débit cardiaque ne changent pas beaucoup. Au-delà d'une certaine intensité d'effort, la tension artérielle augmente en relation directe avec l'intensité et la durée de l'effort. De plus, à la même intensité relative d'effort, le travail statique avec de grands groupes musculaires produit une réponse tensionnelle plus importante que le travail avec des muscles plus petits. (Voir figure 2)

Figure 2. Le modèle de contrainte-déformation étendu modifié de Rohmert (1984)

ERG060F1

En principe, la régulation de la ventilation et de la circulation dans le travail statique est similaire à celle du travail dynamique, mais les signaux métaboliques des muscles sont plus forts et induisent un schéma de réponse différent.

Conséquences de la surcharge musculaire dans les activités professionnelles

Le degré d'effort physique subi par un travailleur dans le cadre d'un travail musculaire dépend de la taille de la masse musculaire au travail, du type de contractions musculaires (statiques, dynamiques), de l'intensité des contractions et des caractéristiques individuelles.

Lorsque la charge de travail musculaire ne dépasse pas les capacités physiques du travailleur, le corps s'adapte à la charge et la récupération est rapide à l'arrêt du travail. Si la charge musculaire est trop élevée, la fatigue s'ensuit, la capacité de travail est réduite et la récupération ralentie. Des charges de pointe ou une surcharge prolongée peuvent entraîner des lésions organiques (sous la forme de maladies professionnelles ou liées au travail). D'autre part, un travail musculaire d'une certaine intensité, fréquence et durée peut également entraîner des effets d'entraînement, car, d'autre part, des demandes musculaires excessivement faibles peuvent provoquer des effets de désentraînement. Ces relations sont représentées par ce que l'on appelle concept de contrainte-déformation étendu développé par Rohmert (1984) (figure 3).

Figure 3. Analyse des charges de travail acceptables

ERG060F3

En général, il existe peu de preuves épidémiologiques que la surcharge musculaire soit un facteur de risque de maladies. Cependant, la mauvaise santé, le handicap et la surcharge subjective au travail convergent dans les emplois physiquement exigeants, en particulier chez les travailleurs âgés. De plus, de nombreux facteurs de risque de maladies musculo-squelettiques liées au travail sont liés à différents aspects de la charge de travail musculaire, tels que l'effort de force, les mauvaises postures de travail, le levage et les charges de pointe soudaines.

L'un des objectifs de l'ergonomie a été de déterminer des limites acceptables pour les charges musculaires qui pourraient être appliquées pour la prévention de la fatigue et des troubles. Alors que la prévention des effets chroniques est au centre de l'épidémiologie, la physiologie du travail traite surtout des effets à court terme, c'est-à-dire la fatigue dans les tâches de travail ou au cours d'une journée de travail.

Charge de travail acceptable dans le travail musculaire dynamique lourd

L'évaluation de la charge de travail acceptable dans les tâches de travail dynamiques est traditionnellement basée sur des mesures de la consommation d'oxygène (ou, de manière correspondante, de la dépense énergétique). La consommation d'oxygène peut être mesurée avec une relative facilité sur le terrain avec des appareils portables (par exemple, sac Douglas, respiromètre Max Planck, Oxylog, Cosmed), ou elle peut être estimée à partir d'enregistrements de fréquence cardiaque, qui peuvent être effectués de manière fiable sur le lieu de travail, par exemple. , avec l'appareil SportTester. L'utilisation de la fréquence cardiaque dans l'estimation de la consommation d'oxygène nécessite qu'elle soit calibrée individuellement par rapport à la consommation d'oxygène mesurée dans un mode de travail standard en laboratoire, c'est-à-dire que l'investigateur doit connaître la consommation d'oxygène du sujet individuel à une fréquence cardiaque donnée. Les enregistrements de fréquence cardiaque doivent être traités avec prudence car ils sont également affectés par des facteurs tels que la condition physique, la température ambiante, les facteurs psychologiques et la taille de la masse musculaire active. Ainsi, les mesures de la fréquence cardiaque peuvent conduire à des surestimations de la consommation d'oxygène de la même manière que les valeurs de consommation d'oxygène peuvent donner lieu à des sous-estimations de la contrainte physiologique globale en ne reflétant que les besoins énergétiques.

Effort aérobie relatif (RAS) est défini comme la fraction (exprimée en pourcentage) de la consommation d'oxygène d'un travailleur mesurée au travail par rapport à sa VO2max mesuré en laboratoire. Si seules des mesures de fréquence cardiaque sont disponibles, une approximation proche de RAS peut être faite en calculant une valeur pour la plage de fréquence cardiaque en pourcentage (plage de FC en %) avec la formule dite de Karvonen comme dans la figure 3.

VO2max est généralement mesuré sur un vélo ergomètre ou un tapis roulant, dont le rendement mécanique est élevé (20-25%). Lorsque la masse musculaire active est plus petite ou que la composante statique est plus élevée, VO2max et l'efficacité mécanique sera plus faible que dans le cas d'un exercice avec de grands groupes musculaires. Par exemple, il a été constaté que lors du tri des colis postaux, le VO2max des travailleurs n'était que de 65 % du maximum mesuré sur un vélo ergomètre, et l'efficacité mécanique de la tâche était inférieure à 1 %. Lorsque les directives sont basées sur la consommation d'oxygène, le mode de test dans le test maximal doit être aussi proche que possible de la tâche réelle. Cet objectif est cependant difficile à atteindre.

Selon l'étude classique d'Åstrand (1960), le RAS ne devrait pas dépasser 50 % au cours d'une journée de travail de huit heures. Dans ses expériences, à une charge de travail de 50 %, le poids corporel a diminué, la fréquence cardiaque n'a pas atteint un état stable et l'inconfort subjectif a augmenté pendant la journée. Elle a recommandé une limite RAS de 50% pour les hommes et les femmes. Plus tard, elle a découvert que les travailleurs de la construction choisissaient spontanément un niveau moyen de RAS de 40 % (fourchette de 25 à 55 %) au cours d'une journée de travail. Plusieurs études plus récentes ont indiqué que le RAS acceptable est inférieur à 50 %. La plupart des auteurs recommandent 30 à 35 % comme niveau RAS acceptable pour toute la journée de travail.

À l'origine, les niveaux RAS acceptables ont été développés pour le travail musculaire dynamique pur, ce qui se produit rarement dans la vie professionnelle réelle. Il peut arriver que les niveaux RAS acceptables ne soient pas dépassés, par exemple lors d'une tâche de levage, mais la charge locale sur le dos peut largement dépasser les niveaux acceptables. Malgré ses limites, la détermination RAS a été largement utilisée dans l'évaluation de la contrainte physique dans différents emplois.

En plus de la mesure ou de l'estimation de la consommation d'oxygène, d'autres méthodes de terrain physiologiques utiles sont également disponibles pour la quantification du stress ou de la contrainte physique dans les travaux dynamiques lourds. Des techniques d'observation peuvent être utilisées dans l'estimation de la dépense énergétique (par exemple, à l'aide de la Échelle d'Edholm) (Edholm 1966). Évaluation de l'effort perçu (RPE) indique l'accumulation subjective de la fatigue. De nouveaux systèmes ambulatoires de surveillance de la pression artérielle permettent des analyses plus détaillées des réponses circulatoires.

Charge de travail acceptable dans la manutention manuelle des matériaux

La manutention manuelle des matériaux comprend des tâches telles que le levage, le transport, la poussée et la traction de diverses charges externes. La plupart des recherches dans ce domaine se sont concentrées sur les problèmes de lombalgie dans les tâches de levage, en particulier du point de vue biomécanique.

Un niveau RAS de 20 à 35 % a été recommandé pour les tâches de levage, lorsque la tâche est comparée à une consommation maximale d'oxygène individuelle obtenue à partir d'un test de bicyclette ergométrique.

Les recommandations pour une fréquence cardiaque maximale autorisée sont soit absolues, soit liées à la fréquence cardiaque au repos. Les valeurs absolues pour les hommes et les femmes sont de 90 à 112 battements par minute dans la manutention manuelle continue des matériaux. Ces valeurs sont à peu près les mêmes que les valeurs recommandées pour l'augmentation de la fréquence cardiaque au-dessus des niveaux de repos, c'est-à-dire 30 à 35 battements par minute. Ces recommandations sont également valables pour le travail musculaire dynamique lourd pour les hommes et les femmes jeunes et en bonne santé. Cependant, comme mentionné précédemment, les données de fréquence cardiaque doivent être traitées avec prudence, car elles sont également affectées par d'autres facteurs que le travail musculaire.

Les lignes directrices sur la charge de travail acceptable pour la manutention manuelle de matériaux basées sur des analyses biomécaniques comprennent plusieurs facteurs, tels que le poids de la charge, la fréquence de manutention, la hauteur de levage, la distance de la charge par rapport au corps et les caractéristiques physiques de la personne.

Dans une étude de terrain à grande échelle (Louhevaara, Hakola et Ollila 1990), il a été constaté que des travailleurs masculins en bonne santé pouvaient manipuler des colis postaux pesant de 4 à 5 kilogrammes pendant un quart de travail sans aucun signe de fatigue objective ou subjective. La plupart des manutentions se sont déroulées sous le niveau des épaules, la fréquence moyenne de manutention était inférieure à 8 colis par minute et le nombre total de colis était inférieur à 1,500 101 par quart de travail. La fréquence cardiaque moyenne des travailleurs était de 1.0 battements par minute et leur consommation moyenne d'oxygène de 31 l/min, ce qui correspondait à XNUMX % de RAS par rapport au maximum du vélo.

Les observations des postures de travail et de l'utilisation de la force effectuées par exemple selon la méthode OWAS (Karhu, Kansi et Kuorinka 1977), les évaluations de l'effort perçu et les enregistrements ambulatoires de la pression artérielle sont également des méthodes appropriées pour l'évaluation du stress et de la fatigue dans la manutention manuelle des matériaux. L'électromyographie peut être utilisée pour évaluer les réponses aux contraintes locales, par exemple dans les muscles des bras et du dos.

Charge de travail acceptable pour le travail musculaire statique

Le travail musculaire statique est demandé principalement dans le maintien des postures de travail. Le temps d'endurance de la contraction statique dépend de manière exponentielle de la force relative de contraction. Cela signifie, par exemple, que lorsque la contraction statique nécessite 20 % de la force maximale, le temps d'endurance est de 5 à 7 minutes, et lorsque la force relative est de 50 %, le temps d'endurance est d'environ 1 minute.

Des études plus anciennes ont indiqué qu'aucune fatigue ne se développera lorsque la force relative est inférieure à 15 % de la force maximale. Cependant, des études plus récentes ont indiqué que la force relative acceptable est spécifique au muscle ou au groupe de muscles et est de 2 à 5 % de la force statique maximale. Ces limites d'efforts sont cependant difficilement utilisables dans des situations pratiques de travail car elles nécessitent des enregistrements électromyographiques.

Pour le praticien, moins de méthodes de terrain sont disponibles pour la quantification de la contrainte dans le travail statique. Certaines méthodes d'observation (par exemple, la méthode OWAS) existent pour analyser la proportion de mauvaises postures de travail, c'est-à-dire les postures s'écartant des positions médianes normales des articulations principales. Les mesures de la tension artérielle et les évaluations de l'effort perçu peuvent être utiles, alors que la fréquence cardiaque n'est pas aussi applicable.

Charge de travail acceptable dans le travail répétitif

Le travail répétitif avec de petits groupes musculaires ressemble au travail musculaire statique du point de vue des réponses circulatoires et métaboliques. En règle générale, lors d'un travail répétitif, les muscles se contractent plus de 30 fois par minute. Lorsque la force relative de contraction dépasse 10 % de la force maximale, le temps d'endurance et la force musculaire commencent à diminuer. Cependant, il existe de grandes variations individuelles dans les temps d'endurance. Par exemple, le temps d'endurance varie entre deux et cinquante minutes lorsque le muscle se contracte de 90 à 110 fois par minute à un niveau de force relative de 10 à 20 % (Laurig 1974).

Il est très difficile d'établir des critères définitifs pour le travail répétitif, car même des niveaux de travail très légers (comme avec l'utilisation d'une souris de micro-ordinateur) peuvent provoquer des augmentations de la pression intramusculaire, ce qui peut parfois entraîner un gonflement des fibres musculaires, des douleurs et une réduction dans la force musculaire.

Le travail musculaire répétitif et statique entraînera de la fatigue et une capacité de travail réduite à des niveaux de force relative très faibles. Par conséquent, les interventions ergonomiques doivent viser à minimiser autant que possible le nombre de mouvements répétitifs et de contractions statiques. Très peu de méthodes de terrain sont disponibles pour l'évaluation des contraintes dans le travail répétitif.

Prévention de la surcharge musculaire

Il existe relativement peu de preuves épidémiologiques démontrant que la charge musculaire est nocive pour la santé. Cependant, des études physiologiques et ergonomiques du travail indiquent que la surcharge musculaire entraîne de la fatigue (c'est-à-dire une diminution de la capacité de travail) et peut réduire la productivité et la qualité du travail.

La prévention de la surcharge musculaire peut viser le contenu du travail, l'environnement de travail et le travailleur. La charge peut être ajustée par des moyens techniques, qui portent sur l'environnement de travail, les outils et/ou les méthodes de travail. Le moyen le plus rapide de réguler la charge musculaire est d'augmenter la flexibilité du temps de travail sur une base individuelle. Cela signifie concevoir des régimes travail-repos qui tiennent compte de la charge de travail ainsi que des besoins et des capacités de chaque travailleur.

Le travail musculaire statique et répétitif doit être réduit au minimum. Des phases ponctuelles de travail dynamique lourd peuvent être utiles pour le maintien d'une forme physique de type endurance. La forme d'activité physique la plus utile pouvant être intégrée à une journée de travail est probablement la marche rapide ou la montée d'escaliers.

Cependant, la prévention de la surcharge musculaire est très difficile si la forme physique ou les compétences professionnelles d'un travailleur sont médiocres. Une formation appropriée améliorera les compétences de travail et peut réduire les charges musculaires au travail. Aussi, l'exercice physique régulier pendant le travail ou les loisirs augmentera les capacités musculaires et cardio-respiratoires du travailleur.

 

Retour

Dimanche, Janvier 16 2011 16: 29

Lésion cellulaire et mort cellulaire

Pratiquement toute la médecine est consacrée soit à prévenir la mort cellulaire, dans des maladies telles que l'infarctus du myocarde, les accidents vasculaires cérébraux, les traumatismes et les chocs, soit à la provoquer, comme dans le cas des maladies infectieuses et du cancer. Il est donc essentiel d'en comprendre la nature et les mécanismes impliqués. La mort cellulaire a été classée comme « accidentelle », c'est-à-dire causée par des agents toxiques, l'ischémie, etc., ou « programmée », comme cela se produit au cours du développement embryologique, y compris la formation des doigts et la résorption de la queue du têtard.

Les lésions cellulaires et la mort cellulaire sont donc importantes à la fois en physiologie et en physiopathologie. La mort cellulaire physiologique est extrêmement importante au cours de l'embryogenèse et du développement embryonnaire. L'étude de la mort cellulaire au cours du développement a conduit à des informations importantes et nouvelles sur la génétique moléculaire impliquée, notamment à travers l'étude du développement chez les animaux invertébrés. Chez ces animaux, la localisation précise et la signification des cellules destinées à subir la mort cellulaire ont été soigneusement étudiées et, grâce à l'utilisation des techniques classiques de mutagénèse, plusieurs gènes impliqués ont maintenant été identifiés. Dans les organes adultes, l'équilibre entre la mort cellulaire et la prolifération cellulaire contrôle la taille de l'organe. Dans certains organes, comme la peau et l'intestin, il y a un renouvellement continu des cellules. Dans la peau, par exemple, les cellules se différencient lorsqu'elles atteignent la surface, et subissent finalement une différenciation terminale et la mort cellulaire au fur et à mesure que la kératinisation se poursuit avec la formation d'enveloppes réticulées.

De nombreuses classes de produits chimiques toxiques sont capables d'induire des lésions cellulaires aiguës suivies de la mort. Ceux-ci comprennent l'anoxie et l'ischémie et leurs analogues chimiques tels que le cyanure de potassium ; les cancérigènes chimiques, qui forment des électrophiles qui se lient de manière covalente aux protéines des acides nucléiques ; des produits chimiques oxydants, entraînant la formation de radicaux libres et des lésions oxydantes ; activation du complément ; et une variété d'ionophores de calcium. La mort cellulaire est également une composante importante de la carcinogenèse chimique; de nombreux carcinogènes chimiques complets, à des doses cancérigènes, produisent une nécrose et une inflammation aiguës suivies d'une régénération et d'une prénéoplasie.

Définitions

Lésion cellulaire

Une lésion cellulaire est définie comme un événement ou un stimulus, tel qu'un produit chimique toxique, qui perturbe l'homéostasie normale de la cellule, provoquant ainsi un certain nombre d'événements (figure 1). Les principales cibles des lésions mortelles illustrées sont l'inhibition de la synthèse d'ATP, la perturbation de l'intégrité de la membrane plasmique ou le retrait des facteurs de croissance essentiels.

Figure 1. Lésion cellulaire

TOX060F1

Les blessures mortelles entraînent la mort d'une cellule après une période de temps variable, en fonction de la température, du type de cellule et du stimulus ; ou ils peuvent être sublétaux ou chroniques, c'est-à-dire que la lésion entraîne une altération de l'homéostasie qui, bien qu'anormale, n'entraîne pas la mort cellulaire (Trump et Arstila 1971 ; Trump et Berezesky 1992 ; Trump et Berezesky 1995 ; Trump, Berezesky et Osornio-Vargas 1981). Dans le cas d'une blessure mortelle, il y a une phase avant le moment de la mort cellulaire

pendant ce temps, la cellule récupérera; cependant, après un moment donné (le "point de non-retour" ou le point de mort cellulaire), l'élimination de la blessure n'entraîne pas de récupération, mais la cellule subit une dégradation et une hydrolyse, atteignant finalement un équilibre physico-chimique avec le environnement. C'est la phase dite de nécrose. Au cours de la phase prélétale, plusieurs types principaux de changements se produisent, selon la cellule et le type de blessure. Celles-ci sont connues sous le nom d'apoptose et d'oncose.

 

 

 

 

 

L'apoptose

L'apoptose est dérivé des mots grecs apo, c'est-à-dire loin de, et ptosis, signifiant tomber. Le terme s'éloigner de vient du fait que, lors de ce type de changement prélétal, les cellules se rétractent et subissent un important bourgeonnement en périphérie. Les bulles se détachent alors et flottent. L'apoptose se produit dans une variété de types de cellules suite à divers types de lésions toxiques (Wyllie, Kerr et Currie 1980). Il est particulièrement important dans les lymphocytes, où il est le mécanisme prédominant de renouvellement des clones de lymphocytes. Les fragments résultants donnent les corps basophiles observés dans les macrophages des ganglions lymphatiques. Dans d'autres organes, l'apoptose se produit typiquement dans des cellules individuelles qui sont rapidement éliminées avant et après la mort par phagocytose des fragments par des cellules parenchymateuses adjacentes ou par des macrophages. L'apoptose survenant dans des cellules individuelles avec phagocytose ultérieure n'entraîne généralement pas d'inflammation. Avant la mort, les cellules apoptotiques présentent un cytosol très dense avec des mitochondries normales ou condensées. Le réticulum endoplasmique (RE) est normal ou peu dilaté. La chromatine nucléaire est nettement agglutinée le long de l'enveloppe nucléaire et autour du nucléole. Le contour nucléaire est également irrégulier et une fragmentation nucléaire se produit. La condensation de la chromatine est associée à la fragmentation de l'ADN qui, dans de nombreux cas, se produit entre les nucléosomes, donnant un aspect caractéristique en échelle lors de l'électrophorèse.

En apoptose, augmentation de [Ca2+]i peut stimuler K+ efflux entraînant un rétrécissement cellulaire, ce qui nécessite probablement de l'ATP. Les blessures qui inhibent totalement la synthèse d'ATP sont donc plus susceptibles d'entraîner l'apoptose. Une augmentation soutenue de [Ca2+]i a un certain nombre d'effets délétères, y compris l'activation des protéases, des endonucléases et des phospholipases. L'activation de l'endonucléase entraîne des ruptures de brins d'ADN simples et doubles qui, à leur tour, stimulent des niveaux accrus de p53 et de ribosylation poly-ADP, et de protéines nucléaires essentielles à la réparation de l'ADN. L'activation des protéases modifie un certain nombre de substrats, y compris l'actine et les protéines apparentées, conduisant à la formation de bulles. Un autre substrat important est la poly(ADP-ribose) polymérase (PARP), qui inhibe la réparation de l'ADN. Augmentation de [Ca2+]i est également associée à l'activation d'un certain nombre de protéines kinases, telles que la MAP kinase, la calmoduline kinase et autres. Ces kinases sont impliquées dans l'activation des facteurs de transcription qui initient la transcription des gènes précoces immédiats, par exemple, c-fos, c-jun et c-myc, et dans l'activation de la phospholipase A2 ce qui se traduit par une perméabilisation de la membrane plasmique et des membranes intracellulaires telles que la membrane interne des mitochondries.

Oncose

Oncose, dérivé du mot grec Est-ce que s, gonfler, est ainsi nommé parce que dans ce type de changement prélétal, la cellule commence à gonfler presque immédiatement après la blessure (Majno et Joris 1995). La raison du gonflement est une augmentation des cations dans l'eau à l'intérieur de la cellule. Le principal cation responsable est le sodium, qui est normalement régulé pour maintenir le volume cellulaire. Cependant, en l'absence d'ATP ou si la Na-ATPase du plasmalemme est inhibée, le contrôle du volume est perdu à cause des protéines intracellulaires et le sodium dans l'eau continue d'augmenter. Parmi les événements précoces de l'oncose sont donc augmentés [Na+]i ce qui conduit à un gonflement cellulaire et à une augmentation de [Ca2+]i résultant soit de l'influx de l'espace extracellulaire, soit de la libération des réserves intracellulaires. Il en résulte un gonflement du cytosol, un gonflement du réticulum endoplasmique et de l'appareil de Golgi, et la formation de bulles aqueuses autour de la surface cellulaire. Les mitochondries subissent initialement une condensation, mais plus tard, elles présentent également un gonflement de grande amplitude en raison de dommages à la membrane mitochondriale interne. Dans ce type de changement prélétal, la chromatine subit une condensation et finalement une dégradation ; cependant, le modèle d'échelle caractéristique de l'apoptose n'est pas observé.

Nécrose

La nécrose fait référence à la série de changements qui se produisent après la mort cellulaire lorsque la cellule est convertie en débris qui sont généralement éliminés par la réponse inflammatoire. Deux types peuvent être distingués : la nécrose oncotique et la nécrose apoptotique. La nécrose oncotique survient généralement dans de grandes zones, par exemple, dans un infarctus du myocarde ou régionalement dans un organe après une toxicité chimique, comme le tubule rénal proximal après administration de HgCl2. De larges zones d'un organe sont atteintes et les cellules nécrotiques provoquent rapidement une réaction inflammatoire, d'abord aiguë puis chronique. En cas de survie de l'organisme, dans de nombreux organes, la nécrose est suivie d'une élimination des cellules mortes et d'une régénération, par exemple dans le foie ou les reins suite à une toxicité chimique. En revanche, la nécrose apoptotique se produit généralement sur une seule cellule et les débris nécrotiques se forment dans les phagocytes des macrophages ou des cellules parenchymateuses adjacentes. Les premières caractéristiques des cellules nécrotiques comprennent des interruptions dans la continuité de la membrane plasmique et l'apparition de densités floconneuses, représentant des protéines dénaturées au sein de la matrice mitochondriale. Dans certaines formes de lésions qui n'interfèrent pas initialement avec l'accumulation de calcium mitochondrial, des dépôts de phosphate de calcium peuvent être observés dans les mitochondries. D'autres systèmes membranaires se fragmentent de la même manière, tels que le RE, les lysosomes et l'appareil de Golgi. En fin de compte, la chromatine nucléaire subit une lyse, résultant de l'attaque par les hydrolases lysosomales. Après la mort cellulaire, les hydrolases lysosomales jouent un rôle important dans l'élimination des débris avec les cathepsines, les nucléolases et les lipases, car celles-ci ont un pH acide optimal et peuvent survivre au faible pH des cellules nécrotiques tandis que d'autres enzymes cellulaires sont dénaturées et inactivées.

Mécanismes

Stimulus initial

Dans le cas de lésions mortelles, les interactions initiales les plus courantes entraînant une lésion entraînant la mort cellulaire sont l'interférence avec le métabolisme énergétique, comme l'anoxie, l'ischémie ou les inhibiteurs de la respiration, et la glycolyse comme le cyanure de potassium, le monoxyde de carbone, l'iodo-acétate et bientôt. Comme mentionné ci-dessus, des doses élevées de composés qui inhibent le métabolisme énergétique entraînent généralement une oncose. L'autre type courant de lésion initiale entraînant une mort cellulaire aiguë est la modification de la fonction de la membrane plasmique (Trump et Arstila 1971 ; Trump, Berezesky et Osornio-Vargas 1981). Cela peut être soit des dommages directs et une perméabilisation, comme dans le cas d'un traumatisme ou de l'activation du complexe C5b-C9 du complément, des dommages mécaniques à la membrane cellulaire ou une inhibition du sodium-potassium (Na+-K+) pompe avec des glycosides tels que l'ouabaïne. Les ionophores calciques tels que l'ionomycine ou A23187, qui transportent rapidement [Ca2+] vers le bas du gradient dans la cellule, provoquent également des blessures mortelles aiguës. Dans certains cas, le schéma du changement prélétal est l'apoptose ; dans d'autres, c'est une oncose.

Voies de signalisation

Avec de nombreux types de lésions, la respiration mitochondriale et la phosphorylation oxydative sont rapidement affectées. Dans certaines cellules, cela stimule la glycolyse anaérobie, qui est capable de maintenir l'ATP, mais avec de nombreuses blessures, cela est inhibé. Le manque d'ATP entraîne une incapacité à dynamiser un certain nombre de processus homéostatiques importants, en particulier le contrôle de l'homéostasie des ions intracellulaires (Trump et Berezesky 1992 ; Trump, Berezesky et Osornio-Vargas 1981). Il en résulte une augmentation rapide de [Ca2+]i, et augmenté [Na+] et [Cl-] entraîne un gonflement des cellules. Augmentation de [Ca2+]i entraîner l'activation d'un certain nombre d'autres mécanismes de signalisation discutés ci-dessous, y compris une série de kinases, ce qui peut entraîner une augmentation immédiate de la transcription précoce des gènes. Augmentation de [Ca2+]i modifie également la fonction cytosquelettique, entraînant en partie la formation de bulles et l'activation des endonucléases, des protéases et des phospholipases. Ceux-ci semblent déclencher bon nombre des effets importants discutés ci-dessus, tels que les dommages à la membrane par l'activation de la protéase et de la lipase, la dégradation directe de l'ADN à partir de l'activation de l'endonucléase et l'activation de kinases telles que la MAP kinase et la calmoduline kinase, qui agissent comme facteurs de transcription.

Grâce à un travail approfondi sur le développement chez les invertébrés C. elegans ainsi que Drosophila, ainsi que des cellules humaines et animales, une série de gènes pro-mort ont été identifiés. Certains de ces gènes d'invertébrés se sont avérés avoir des homologues de mammifères. Par exemple, le gène ced-3, essentiel à la mort cellulaire programmée chez C. elegans, a une activité protéase et une forte homologie avec l'enzyme de conversion de l'interleukine de mammifère (ICE). Un gène étroitement apparenté appelé apopain ou prICE a récemment été identifié avec une homologie encore plus étroite (Nicholson et al. 1995). Dans Drosophila, le gène reaper semble être impliqué dans un signal qui conduit à la mort cellulaire programmée. D'autres gènes pro-mort comprennent la protéine membranaire Fas et l'important gène suppresseur de tumeur, p53, qui est largement conservé. p53 est induit au niveau protéique suite à des dommages à l'ADN et, lorsqu'il est phosphorylé, agit comme un facteur de transcription pour d'autres gènes tels que gadd45 et waf-1, qui sont impliqués dans la signalisation de la mort cellulaire. D'autres gènes précoces immédiats tels que c-fos, c-jun et c-myc semblent également être impliqués dans certains systèmes.

En même temps, il existe des gènes anti-mort qui semblent contrecarrer les gènes pro-mort. Le premier d'entre eux à être identifié était ced-9 de C. elegans, qui est homologue à bcl-2 chez l'homme. Ces gènes agissent d'une manière encore inconnue pour empêcher la destruction des cellules par des toxines génétiques ou chimiques. Certaines preuves récentes indiquent que bcl-2 peut agir comme un antioxydant. Actuellement, de nombreux efforts sont en cours pour développer une compréhension des gènes impliqués et pour développer des moyens d'activer ou d'inhiber ces gènes, selon la situation.

 

Retour

Lundi, Février 28 2011 21: 03

Résumé des mesures d'exposition au travail

Les chercheurs ont de la chance lorsqu'ils ont à leur disposition une chronologie détaillée de l'expérience de vie professionnelle des travailleurs qui fournit un aperçu historique des emplois qu'ils ont occupés au fil du temps. Pour ces travailleurs un matrice d'exposition professionnelle peut ensuite être configuré pour permettre à chaque changement d'emploi qu'un travailleur a subi d'être associé à des informations d'exposition spécifiques.

Les antécédents d'exposition détaillés doivent être résumés à des fins d'analyse afin de déterminer s'il existe des tendances évidentes qui pourraient être liées à des problèmes de santé et de sécurité au travail. Nous pouvons visualiser une liste de, disons, 20 changements d'emploi qu'un travailleur a subis au cours de sa vie professionnelle. Il existe alors plusieurs manières alternatives de résumer les détails de l'exposition (pour chacun des 20 changements d'emploi dans cet exemple), en tenant compte de la durée et/ou de la concentration/dose/niveau d'exposition.

Il est important de noter, cependant, que des conclusions différentes d'une étude pourraient être tirées selon la méthode choisie (Suarez-Almazor et al. 1992). Un exemple de cinq mesures récapitulatives de l'exposition au travail est présenté dans le tableau 1.

Tableau 1. Formules et dimensions ou unités des cinq mesures sommaires sélectionnées de l'exposition au travail

Mesure d'exposition

Laits en poudre

Dimensions/Unités

Indice d'exposition cumulée (IEC)

Σ (grade x temps d'exposition)

classe et temps

Note moyenne (MG)

Σ (grade x temps d'exposition)/temps total d'exposition

grade

Note la plus élevée jamais enregistrée (HG)

grade le plus élevé auquel il a été exposé pendant ≥ 7 jours

grade

Note moyenne pondérée dans le temps (TWA)

Σ (grade x temps d'exposition)/temps total employé

grade

Temps total d'exposition (TTE)

Σ temps d'exposition

fiable

Adapté de Suarez-Almazor et al. 1992.

Indice d'exposition cumulée. L'indice d'exposition cumulée (IEC) équivaut à la « dose » dans les études toxicologiques et représente la somme, sur une vie active, des produits du degré d'exposition et de la durée d'exposition pour chaque titre d'emploi successif. Il inclut le temps dans ses unités.

Note moyenne. Le grade moyen (MG) cumule les produits du grade d'exposition et de la durée d'exposition pour chaque titre d'emploi successif (c'est-à-dire le CEI) et divise par le temps total d'exposition à tout grade supérieur à zéro. MG est indépendant du temps dans ses unités ; la mesure sommaire pour une personne exposée pendant une longue période à une concentration élevée sera similaire à celle pour une personne exposée pendant une courte période à une concentration élevée. Dans n'importe quel ensemble apparié dans une étude cas-témoins, MG est un degré moyen d'exposition par unité de temps d'exposition. Il s'agit d'une note moyenne pour le temps effectivement exposé à l'agent considéré.

La note la plus élevée de tous les temps. Le grade le plus élevé de tous les temps (HG) est déterminé à partir de l'analyse des antécédents de travail pour l'affectation au grade le plus élevé au cours de la période d'observation à laquelle le travailleur a été exposé pendant au moins sept jours. Le HG pourrait déformer l'exposition professionnelle d'une personne car, de par sa formulation même, il est basé sur une procédure de maximisation plutôt que sur une moyenne et est donc indépendant de la durée d'exposition dans ses unités.

Note moyenne pondérée dans le temps. La note moyenne pondérée dans le temps (TWA) est l'indice d'exposition cumulée (IEC) divisé par le temps total employé. Dans n'importe quel ensemble apparié dans une étude cas-témoin, la note TWA est moyenne sur le temps total employé. Il diffère de MG, qui calcule la moyenne uniquement sur le temps total réellement exposé. Ainsi, le grade TWA peut être considéré comme une exposition moyenne par unité de temps pendant toute la durée de l'emploi, quelle que soit l'exposition. per se.

Temps total exposé. Le temps total d'exposition (TTE) accumule toutes les périodes de temps associées à l'exposition en unités de temps. TTE séduit par sa simplicité. Cependant, il est bien admis que les effets sur la santé doivent être liés non seulement à la durée de l'exposition chimique, mais aussi à l'intensité de cette exposition (c'est-à-dire la concentration ou la qualité).

De toute évidence, l'utilité d'une mesure d'exposition sommaire est déterminée par le poids respectif qu'elle attribue soit à la durée, soit à la concentration d'exposition, soit aux deux. Ainsi, différentes mesures peuvent produire des résultats différents (Walker et Blettner 1985). Idéalement, la mesure sommaire choisie devrait être basée sur un ensemble d'hypothèses défendables concernant le mécanisme biologique postulé pour l'agent ou l'association de maladies à l'étude (Smith 1987). Cette procédure n'est cependant pas toujours possible. Très souvent, l'effet biologique de la durée d'exposition ou de la concentration de l'agent étudié est inconnu. Dans ce contexte, l'utilisation de différentes mesures d'exposition peut être utile pour suggérer un mécanisme par lequel l'exposition exerce son effet.

Il est recommandé qu'en l'absence de modèles éprouvés d'évaluation de l'exposition, diverses mesures sommaires de l'exposition au travail soient utilisées pour estimer le risque. Cette approche faciliterait la comparaison des résultats entre les études.

 

Retour

Mardi 08 Mars 2011 21: 13

Postures au travail

La posture d'une personne au travail, c'est-à-dire l'organisation mutuelle du tronc, de la tête et des extrémités, peut être analysée et comprise de plusieurs points de vue. Les postures visent à faire avancer le travail ; ainsi, ils ont une finalité qui influence leur nature, leur rapport au temps et leur coût (physiologique ou non) pour la personne en question. Il existe une interaction étroite entre les capacités et caractéristiques physiologiques de l'organisme et l'exigence du travail.

La charge musculo-squelettique est un élément nécessaire aux fonctions de l'organisme et indispensable au bien-être. Du point de vue de la conception de l'œuvre, la question est de trouver l'équilibre optimal entre le nécessaire et l'excessif.

Les postures ont intéressé les chercheurs et les praticiens pour au moins les raisons suivantes :

    1. Une posture est à l'origine d'une charge musculo-squelettique. À l'exception de la position debout, assise et allongée détendue, les muscles doivent créer des forces pour équilibrer la posture et/ou contrôler les mouvements. Dans les tâches lourdes classiques, par exemple dans l'industrie de la construction ou dans la manutention manuelle de matériaux lourds, des forces externes, dynamiques et statiques, s'ajoutent aux forces internes au corps, créant parfois des charges élevées qui peuvent dépasser la capacité des tissus. (Voir figure 1) Même dans des postures détendues, lorsque le travail musculaire approche de zéro, les tendons et les articulations peuvent être sollicités et montrer des signes de fatigue. Un travail à faible charge apparente, par exemple celui d'un microscopiste, peut devenir fastidieux et ardu lorsqu'il est effectué sur une longue période.
    2. La posture est étroitement liée à l'équilibre et à la stabilité. En fait, la posture est contrôlée par plusieurs réflexes neuronaux où l'apport de sensations tactiles et les repères visuels de l'environnement jouent un rôle important. Certaines postures, comme atteindre des objets à distance, sont intrinsèquement instables. La perte d'équilibre est une cause immédiate fréquente d'accidents du travail. Certaines tâches de travail sont effectuées dans un environnement où la stabilité ne peut pas toujours être garantie, par exemple dans l'industrie de la construction.
    3. La posture est la base des mouvements habiles et de l'observation visuelle. De nombreuses tâches nécessitent des mouvements de main fins et habiles et une observation attentive de l'objet du travail. Dans de tels cas, la posture devient la plate-forme de ces actions. L'attention est dirigée vers la tâche, et les éléments posturaux sont mobilisés pour soutenir les tâches : la posture devient immobile, la charge musculaire augmente et devient plus statique. Un groupe de recherche français a montré dans son étude classique que l'immobilité et la charge musculo-squelettique augmentaient lorsque le rythme de travail augmentait (Teiger, Laville et Duraffourg 1974).
    4. La posture est une source d'information sur les événements qui se déroulent au travail. L'observation de la posture peut être intentionnelle ou inconsciente. Les superviseurs et les travailleurs habiles sont connus pour utiliser les observations posturales comme indicateurs du processus de travail. Souvent, l'observation des informations posturales n'est pas consciente. Par exemple, sur un derrick de forage pétrolier, des repères posturaux ont été utilisés pour communiquer des messages entre les membres de l'équipe au cours des différentes phases d'une tâche. Cela se produit dans des conditions où d'autres moyens de communication ne sont pas possibles.

     

    Figure 1. Des positions des mains trop hautes ou une flexion vers l'avant sont parmi les moyens les plus courants de créer une charge « statique »

    ERG080F1

          Sécurité, santé et postures de travail

          Du point de vue de la sécurité et de la santé, tous les aspects de la posture décrits ci-dessus peuvent être importants. Cependant, les postures en tant que source de maladies musculo-squelettiques telles que les maladies du bas du dos ont attiré le plus d'attention. Les problèmes musculo-squelettiques liés au travail répétitif sont également liés aux postures.

          Douleur dans le bas du dos (LBP) est un terme générique pour diverses maladies du bas du dos. Il a de nombreuses causes et la posture est un élément causal possible. Des études épidémiologiques ont montré qu'un travail physiquement pénible est propice aux lombalgies et que les postures sont un élément de ce processus. Il existe plusieurs mécanismes possibles qui expliquent pourquoi certaines postures peuvent provoquer des lombalgies. Les postures de flexion vers l'avant augmentent la charge sur la colonne vertébrale et les ligaments, qui sont particulièrement vulnérables aux charges dans une posture tordue. Les charges externes, en particulier les charges dynamiques, telles que celles imposées par les secousses et les glissades, peuvent augmenter considérablement les charges sur le dos.

          Du point de vue de la sécurité et de la santé, il est important d'identifier les mauvaises postures et autres éléments posturaux dans le cadre de l'analyse de la sécurité et de la santé du travail en général.

          Enregistrement et mesure des postures de travail

          Les postures peuvent être enregistrées et mesurées objectivement par l'utilisation de l'observation visuelle ou de techniques de mesure plus ou moins sophistiquées. Ils peuvent également être enregistrés en utilisant des schémas d'auto-évaluation. La plupart des méthodes considèrent la posture comme l'un des éléments dans un contexte plus large, par exemple, dans le cadre du contenu du travail, comme le font l'AET et l'étude de Renault. Les profils des postes (Landau et Rohmert 1981; RNUR 1976) - ou comme point de départ pour des calculs biomécaniques prenant également en compte d'autres composants.

          Malgré les progrès de la technologie de mesure, l'observation visuelle reste, dans des conditions de terrain, le seul moyen pratique d'enregistrer systématiquement les postures. Cependant, la précision de telles mesures reste faible. Malgré cela, les observations posturales peuvent être une riche source d'informations sur le travail en général.

          La courte liste suivante de méthodes et de techniques de mesure présente des exemples sélectionnés :

            1. Questionnaires et journaux d'auto-déclaration. Les questionnaires d'auto-déclaration et les journaux sont un moyen économique de collecter des informations posturales. L'auto-déclaration est basée sur la perception du sujet et s'écarte généralement beaucoup des postures observées «objectivement», mais peut tout de même véhiculer des informations importantes sur la pénibilité du travail.
            2. Observation des postures. L'observation des postures comprend l'enregistrement purement visuel des postures et de leurs composantes ainsi que des méthodes dans lesquelles un entretien complète l'information. Un support informatique est généralement disponible pour ces méthodes. De nombreuses méthodes sont disponibles pour les observations visuelles. La méthode peut simplement contenir un catalogue d'actions, y compris les postures du tronc et des membres (par exemple, Keyserling 1986 ; Van der Beek, Van Gaalen et Frings-Dresen 1992). La méthode OWAS propose un schéma structuré pour l'analyse, la cotation et l'évaluation de postures du tronc et des membres conçues pour les conditions de terrain (Karhu, Kansi et Kuorinka 1977). La méthode d'enregistrement et d'analyse peut contenir des schémas de notation, certains d'entre eux assez détaillés (comme avec la méthode de ciblage de la posture, par Corlett et Bishop 1976), et ils peuvent fournir une notation pour la position de nombreux éléments anatomiques pour chaque élément de la tâche ( Drry 1987).
            3. Analyses posturales assistées par ordinateur. Les ordinateurs ont facilité les analyses posturales de plusieurs façons. Des ordinateurs portables et des programmes spéciaux permettent un enregistrement facile et une analyse rapide des postures. Persson et Kilbom (1983) ont développé le programme VIRA pour l'étude des membres supérieurs ; Kerguelen (1986) a produit un package complet d'enregistrement et d'analyse des tâches de travail ; Kivi et Mattila (1991) ont conçu une version informatisée d'OWAS pour l'enregistrement et l'analyse.

                 

                La vidéo fait généralement partie intégrante du processus d'enregistrement et d'analyse. Le National Institute for Occupational Safety and Health (NIOSH) des États-Unis a présenté des lignes directrices pour l'utilisation de méthodes vidéo dans l'analyse des risques (NIOSH 1990).

                Les programmes informatiques biomécaniques et anthropométriques offrent des outils spécialisés pour l'analyse de certains éléments posturaux dans l'activité de travail et en laboratoire (ex. Chaffin 1969).

                Facteurs affectant les postures de travail

                Les postures de travail servent un but, une finalité hors d'elles-mêmes. C'est pourquoi ils sont liés aux conditions de travail externes. L'analyse posturale qui ne tient pas compte de l'environnement de travail et de la tâche elle-même présente un intérêt limité pour les ergonomes.

                Les caractéristiques dimensionnelles du poste de travail définissent en grande partie les postures (comme dans le cas d'une tâche assise), même pour des tâches dynamiques (par exemple, la manipulation de matériel dans un espace confiné). Les charges à manipuler obligent le corps à adopter une certaine posture, tout comme le poids et la nature de l'outil de travail. Certaines tâches nécessitent que le poids du corps soit utilisé pour soutenir un outil ou pour appliquer une force sur l'objet du travail, comme illustré, par exemple, à la figure 2.

                Figure 2. Aspects ergonomiques de la station debout

                ERG080F4

                Les différences individuelles, l'âge et le sexe influencent les postures. En fait, il a été constaté qu'une posture « typique » ou « meilleure », par exemple dans la manutention manuelle, est en grande partie une fiction. Pour chaque individu et chaque situation de travail, il existe un certain nombre de « meilleures » postures alternatives selon différents critères.

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                Outils de travail et supports pour les postures de travail

                Les ceintures, les supports lombaires et les orthèses ont été recommandés pour les tâches à risque de lombalgie ou de lésions musculo-squelettiques des membres supérieurs. On a supposé que ces dispositifs apportaient un soutien aux muscles, par exemple en contrôlant la pression intra-abdominale ou les mouvements de la main. On s'attend également à ce qu'ils limitent l'amplitude des mouvements du coude, du poignet ou des doigts. Il n'y a aucune preuve que la modification des éléments posturaux avec ces appareils aiderait à éviter les problèmes musculo-squelettiques.

                Les supports posturaux sur le lieu de travail et sur les machines, tels que les poignées, les coussins de soutien pour s'agenouiller et les aides à s'asseoir, peuvent être utiles pour soulager les charges posturales et la douleur.

                Règlements de sécurité et de santé concernant les éléments posturaux

                Les postures ou les éléments posturaux n'ont pas fait l'objet d'activités réglementaires per se. Cependant, plusieurs documents contiennent soit des mentions portant sur les postures, soit incluent la question des postures comme partie intégrante d'une réglementation. Une image complète du matériel réglementaire existant n'est pas disponible. Les références suivantes sont présentées à titre d'exemples.

                  1. L'Organisation internationale du travail a publié une recommandation en 1967 sur les charges maximales à manutentionner. Bien que la recommandation ne réglemente pas les éléments posturaux en tant que tels, elle a une incidence importante sur la contrainte posturale. La recommandation est maintenant obsolète, mais elle a joué un rôle important en attirant l'attention sur les problèmes de manutention manuelle des matériaux.
                  2. Les directives de levage du NIOSH (NIOSH 1981), en tant que telles, ne sont pas non plus des réglementations, mais elles ont atteint ce statut. Les directives dérivent des limites de poids pour les charges en utilisant l'emplacement de la charge - un élément postural - comme base.
                  3. Au sein de l'Organisation internationale de normalisation ainsi que dans la Communauté européenne, il existe des normes et des directives ergonomiques qui contiennent des éléments relatifs aux éléments posturaux (CEN 1990 et 1991).

                   

                  Retour

                  Dimanche, Janvier 16 2011 16: 34

                  Toxicologie génétique

                  La toxicologie génétique, par définition, est l'étude de la façon dont les agents chimiques ou physiques affectent le processus complexe de l'hérédité. Les produits chimiques génotoxiques sont définis comme des composés capables de modifier le matériel héréditaire des cellules vivantes. La probabilité qu'un produit chimique particulier cause des dommages génétiques dépend inévitablement de plusieurs variables, dont le niveau d'exposition de l'organisme au produit chimique, la distribution et la rétention du produit chimique une fois qu'il pénètre dans l'organisme, l'efficacité des systèmes d'activation métabolique et/ou de détoxification dans tissus cibles et la réactivité du produit chimique ou de ses métabolites avec les macromolécules critiques dans les cellules. La probabilité qu'un dommage génétique cause une maladie dépend en fin de compte de la nature du dommage, de la capacité de la cellule à réparer ou à amplifier le dommage génétique, de la possibilité d'exprimer toute altération induite et de la capacité de l'organisme à reconnaître et à supprimer la multiplication des cellules aberrantes.

                  Dans les organismes supérieurs, l'information héréditaire est organisée en chromosomes. Les chromosomes sont constitués de brins étroitement condensés d'ADN associé à des protéines. Au sein d'un même chromosome, chaque molécule d'ADN existe sous la forme d'une paire de longues chaînes non ramifiées de sous-unités nucléotidiques reliées entre elles par des liaisons phosphodiester qui relient le carbone 5 d'un fragment désoxyribose au carbone 3 du suivant (figure 1). De plus, l'une des quatre bases nucléotidiques différentes (adénine, cytosine, guanine ou thymine) est attachée à chaque sous-unité désoxyribose comme des perles sur une ficelle. En trois dimensions, chaque paire de brins d'ADN forme une double hélice avec toutes les bases orientées vers l'intérieur de la spirale. Au sein de l'hélice, chaque base est associée à sa base complémentaire sur le brin d'ADN opposé ; la liaison hydrogène dicte un appariement fort et non covalent de l'adénine avec la thymine et de la guanine avec la cytosine (figure 1). Étant donné que la séquence des bases nucléotidiques est complémentaire sur toute la longueur de la molécule d'ADN duplex, les deux brins portent essentiellement la même information génétique. En effet, lors de la réplication de l'ADN chaque brin sert de matrice pour la production d'un nouveau brin partenaire.

                  Figure 1. L'organisation (a) primaire, (b) secondaire et (c) tertiaire de l'information héréditaire humaine

                  TOX090F1À l'aide d'ARN et d'un ensemble de protéines différentes, la cellule déchiffre finalement les informations codées par la séquence linéaire de bases dans des régions spécifiques de l'ADN (gènes) et produit des protéines essentielles à la survie cellulaire de base ainsi qu'à la croissance et à la différenciation normales. Essentiellement, les nucléotides fonctionnent comme un alphabet biologique utilisé pour coder les acides aminés, les éléments constitutifs des protéines.

                  Lorsque des nucléotides incorrects sont insérés ou que des nucléotides sont perdus, ou lorsque des nucléotides inutiles sont ajoutés pendant la synthèse de l'ADN, l'erreur est appelée mutation. Il a été estimé que moins d'une mutation se produit pour 109 nucléotides incorporés lors de la réplication normale des cellules. Bien que les mutations ne soient pas nécessairement nocives, les altérations entraînant l'inactivation ou la surexpression de gènes importants peuvent entraîner divers troubles, notamment le cancer, des maladies héréditaires, des anomalies du développement, l'infertilité et la mort embryonnaire ou périnatale. Très rarement, une mutation peut entraîner une amélioration de la survie ; de tels événements sont à la base de la sélection naturelle.

                  Bien que certains produits chimiques réagissent directement avec l'ADN, la plupart nécessitent une activation métabolique. Dans ce dernier cas, les intermédiaires électrophiles tels que les époxydes ou les ions carbonium sont finalement responsables de l'induction de lésions sur une variété de sites nucléophiles au sein du matériel génétique (figure 2). Dans d'autres cas, la génotoxicité est médiée par des sous-produits de l'interaction du composé avec des lipides intracellulaires, des protéines ou de l'oxygène.

                  Figure 2. Bioactivation de : a) benzo(a)pyrène ; et b) N-nitrosodiméthylamine

                  TOX090F2

                  En raison de leur abondance relative dans les cellules, les protéines sont la cible la plus fréquente des interactions toxiques. Cependant, la modification de l'ADN est plus préoccupante en raison du rôle central de cette molécule dans la régulation de la croissance et de la différenciation à travers plusieurs générations de cellules.

                  Au niveau moléculaire, les composés électrophiles ont tendance à attaquer l'oxygène et l'azote dans l'ADN. Les sites les plus susceptibles d'être modifiés sont illustrés à la figure 3. Bien que les oxygènes au sein des groupes phosphate dans le squelette de l'ADN soient également des cibles de modification chimique, on pense que les dommages aux bases sont biologiquement plus pertinents puisque ces groupes sont considérés comme le principal vecteur d'information. éléments de la molécule d'ADN.

                  Figure 3. Sites primaires de dommages à l'ADN induits chimiquement

                  TOX090F3

                  Les composés qui contiennent une fraction électrophile exercent généralement une génotoxicité en produisant des mono-adduits dans l'ADN. De même, les composés qui contiennent deux fractions réactives ou plus peuvent réagir avec deux centres nucléophiles différents et produire ainsi des réticulations intra- ou inter-moléculaires dans le matériel génétique (figure 4). Les réticulations interbrin ADN-ADN et ADN-protéine peuvent être particulièrement cytotoxiques car elles peuvent former des blocs complets pour la réplication de l'ADN. Pour des raisons évidentes, la mort d'une cellule élimine la possibilité qu'elle soit mutée ou transformée de façon néoplasique. Les agents génotoxiques peuvent également agir en induisant des cassures dans le squelette phosphodiester, ou entre les bases et les sucres (produisant des sites abasiques) dans l'ADN. De telles cassures peuvent être le résultat direct de la réactivité chimique au niveau du site endommagé ou peuvent se produire pendant la réparation de l'un des types de lésions de l'ADN susmentionnés.

                  Figure 4. Différents types de dommages au complexe protéine-ADN

                  TOX090F4

                  Au cours des trente à quarante dernières années, diverses techniques ont été développées pour surveiller le type de dommages génétiques induits par divers produits chimiques. Ces tests sont décrits en détail ailleurs dans ce chapitre et Encyclopédie.

                  Une mauvaise réplication de « microlésions » telles que des mono-adduits, des sites abasiques ou des cassures simple brin peut finalement entraîner des substitutions de paires de bases de nucléotides, ou l'insertion ou la suppression de courts fragments de polynucléotides dans l'ADN chromosomique. En revanche, les «macrolésions», telles que les adduits volumineux, les réticulations ou les cassures double brin, peuvent déclencher le gain, la perte ou le réarrangement de morceaux de chromosomes relativement volumineux. Dans tous les cas, les conséquences peuvent être dévastatrices pour l'organisme puisque chacun de ces événements peut entraîner la mort cellulaire, la perte de fonction ou la transformation maligne des cellules. La manière exacte dont les dommages à l'ADN causent le cancer est en grande partie inconnue. On pense actuellement que le processus peut impliquer une activation inappropriée de proto-oncogènes tels que monc ainsi que ras, et/ou l'inactivation de gènes suppresseurs de tumeurs récemment identifiés tels que p53. L'expression anormale de l'un ou l'autre type de gène abroge les mécanismes cellulaires normaux pour contrôler la prolifération et/ou la différenciation cellulaire.

                  La prépondérance des preuves expérimentales indique que le développement d'un cancer suite à une exposition à des composés électrophiles est un événement relativement rare. Cela peut s'expliquer, en partie, par la capacité intrinsèque de la cellule à reconnaître et à réparer l'ADN endommagé ou par l'incapacité des cellules dont l'ADN est endommagé à survivre. Pendant la réparation, la base endommagée, le nucléotide ou le court tronçon de nucléotides entourant le site endommagé est retiré et (en utilisant le brin opposé comme modèle) un nouveau morceau d'ADN est synthétisé et épissé en place. Pour être efficace, la réparation de l'ADN doit se produire avec une grande précision avant la division cellulaire, avant les opportunités de propagation de la mutation.

                  Des études cliniques ont montré que les personnes présentant des défauts héréditaires dans la capacité de réparer l'ADN endommagé développent fréquemment un cancer et/ou des anomalies du développement à un âge précoce (tableau 1). De tels exemples fournissent des preuves solides reliant l'accumulation de dommages à l'ADN à la maladie humaine. De même, les agents qui favorisent la prolifération cellulaire (tels que l'acétate de tétradécanoylphorbol) améliorent souvent la carcinogenèse. Pour ces composés, la probabilité accrue de transformation néoplasique peut être une conséquence directe d'une diminution du temps disponible pour que la cellule effectue une réparation adéquate de l'ADN.

                  Tableau 1. Troubles héréditaires prédisposés au cancer qui semblent impliquer des défauts de réparation de l'ADN

                  Syndrome Symptômes Phénotype cellulaire
                  Ataxie télangiectasie Détérioration neurologique
                  Immunodéficience
                  Incidence élevée de lymphome
                  Hypersensibilité aux rayonnements ionisants et à certains agents alkylants.
                  Réplication dérégulée de l'ADN endommagé (peut indiquer un temps raccourci pour la réparation de l'ADN)
                  Syndrome de Bloom Anomalies du développement
                  Lésions sur la peau exposée
                  Incidence élevée de tumeurs du système immunitaire et du tractus gastro-intestinal
                  Fréquence élevée des aberrations chromosomiques
                  Ligature défectueuse des cassures associées à la réparation de l'ADN
                  L'anémie de Fanconi Retard de croissance
                  Incidence élevée de leucémie
                  Hypersensibilité aux agents de réticulation
                  Fréquence élevée des aberrations chromosomiques
                  Réparation défectueuse des liaisons croisées dans l'ADN
                  Cancer du côlon héréditaire sans polypose Forte incidence du cancer du côlon Défaut dans la réparation des mésappariements d'ADN (lorsque l'insertion d'un mauvais nucléotide se produit pendant la réplication)
                  Xéroderma pigmentosum Incidence élevée d'épithéliome sur les zones exposées de la peau
                  Atteinte neurologique (dans de nombreux cas)
                  Hypersensibilité aux rayons UV et à de nombreux cancérigènes chimiques
                  Défauts de réparation par excision et/ou de réplication de l'ADN endommagé

                   

                  Les premières théories sur la façon dont les produits chimiques interagissent avec l'ADN remontent aux études menées lors du développement du gaz moutarde utilisé dans la guerre. Une meilleure compréhension est née des efforts visant à identifier des agents anticancéreux qui arrêteraient sélectivement la réplication des cellules tumorales à division rapide. L'inquiétude croissante du public concernant les dangers dans notre environnement a incité des recherches supplémentaires sur les mécanismes et les conséquences de l'interaction chimique avec le matériel génétique. Des exemples de divers types de produits chimiques qui exercent une génotoxicité sont présentés dans le tableau 2.

                  Tableau 2. Exemples de produits chimiques qui présentent une génotoxicité dans les cellules humaines

                  Classe de produit chimique Exemple Source d'exposition Lésion génotoxique probable
                  Aflatoxines Aflatoxine B1 Nourriture contaminée Adduits volumineux à l'ADN
                  Amines aromatiques 2-Acétylaminofluorène Environnement Adduits volumineux à l'ADN
                  Quinones d'aziridine Mitomycine c Chimiothérapie anticancéreuse Mono-adduits, réticulations interbrins et cassures simple brin dans l'ADN.
                  Hydrocarbures chlorés Chlorure de vinyle Environnement Mono-adduits dans l'ADN
                  Métaux et composés métalliques Cisplatine Chimiothérapie anticancéreuse Crosslinks intra- et inter-brins dans l'ADN
                    Composés de nickel Environnement Mono-adduits et cassures simple brin dans l'ADN
                  Moutardes à l'azote Cyclophosphamide Chimiothérapie anticancéreuse Mono-adduits et réticulations interbrins dans l'ADN
                  Nitrosamines N-Nitrosodiméthylamine Nourriture contaminée Mono-adduits dans l'ADN
                  Hydrocarbures aromatiques polycycliques Benzo (a) pyrène Environnement Adduits volumineux à l'ADN

                   

                  Retour

                  Page 2 de 7

                  " AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

                  Table des matières