Mercredi, Février 16 2011 01: 28

Types de lampes et d'éclairage

Évaluer cet élément
(42 votes)

Une lampe est un convertisseur d'énergie. Bien qu'il puisse remplir des fonctions secondaires, sa vocation première est la transformation de l'énergie électrique en rayonnement électromagnétique visible. Il existe de nombreuses façons de créer de la lumière. La méthode standard pour créer un éclairage général est la conversion de l'énergie électrique en lumière.

Types de lumière

Incandescence

Lorsque les solides et les liquides sont chauffés, ils émettent un rayonnement visible à des températures supérieures à 1,000 XNUMX K ; c'est ce qu'on appelle l'incandescence.

Un tel chauffage est à la base de la génération de lumière dans les lampes à incandescence : un courant électrique traverse un fin fil de tungstène, dont la température s'élève à environ 2,500 3,200 à XNUMX XNUMX K, selon le type de lampe et son application.

Il y a une limite à cette méthode, qui est décrite par la loi de Planck pour les performances d'un radiateur à corps noir, selon laquelle la répartition spectrale de l'énergie rayonnée augmente avec la température. À environ 3,600 2,700 K et plus, il y a un gain marqué d'émission de rayonnement visible et la longueur d'onde de puissance maximale se décale dans la bande visible. Cette température est proche du point de fusion du tungstène, qui est utilisé pour le filament, la température limite pratique est donc d'environ XNUMX XNUMX K, au-dessus de laquelle l'évaporation du filament devient excessive. Une des conséquences de ces décalages spectraux est qu'une grande partie du rayonnement émis n'est pas émise sous forme de lumière mais sous forme de chaleur dans le domaine infrarouge. Les lampes à incandescence peuvent donc être des dispositifs de chauffage efficaces et sont utilisées dans des lampes conçues pour le séchage des impressions, la préparation des aliments et l'élevage des animaux.

Décharge électrique

La décharge électrique est une technique utilisée dans les sources lumineuses modernes pour le commerce et l'industrie en raison de la production plus efficace de lumière. Certains types de lampes combinent la décharge électrique avec la photoluminescence.

Un courant électrique traversant un gaz excitera les atomes et les molécules pour émettre un rayonnement d'un spectre caractéristique des éléments présents. Deux métaux sont couramment utilisés, le sodium et le mercure, car leurs caractéristiques donnent des rayonnements utiles dans le spectre visible. Aucun des deux métaux n'émet de spectre continu et les lampes à décharge ont des spectres sélectifs. Leur rendu des couleurs ne sera jamais identique aux spectres continus. Les lampes à décharge sont souvent classées comme haute pression ou basse pression, bien que ces termes ne soient que relatifs, et une lampe au sodium haute pression fonctionne en dessous d'une atmosphère.

Types de luminescence

Photoluminescence se produit lorsque le rayonnement est absorbé par un solide et est ensuite réémis à une longueur d'onde différente. Lorsque le rayonnement réémis se situe dans le spectre visible, le processus est appelé fluorescence or phosphorescence.

Electroluminescence se produit lorsque la lumière est générée par un courant électrique traversant certains solides, tels que les matériaux phosphoreux. Il est utilisé pour les enseignes auto-éclairantes et les tableaux de bord mais ne s'est pas avéré être une source lumineuse pratique pour l'éclairage des bâtiments ou des extérieurs.

Évolution des lampes électriques

Bien que le progrès technologique ait permis de produire différentes lampes, les principaux facteurs qui ont influencé leur développement ont été les forces extérieures du marché. Par exemple, la production de lampes à incandescence utilisées au début de ce siècle n'a été possible qu'après la disponibilité de bonnes pompes à vide et le tréfilage du fil de tungstène. Cependant, ce sont la production et la distribution à grande échelle d'électricité pour répondre à la demande d'éclairage électrique qui ont déterminé la croissance du marché. L'éclairage électrique offrait de nombreux avantages par rapport à l'éclairage au gaz ou au mazout, tels qu'une lumière stable nécessitant un entretien peu fréquent ainsi qu'une sécurité accrue en l'absence de flamme exposée et d'absence de sous-produits locaux de combustion.

Pendant la période de reprise après la Seconde Guerre mondiale, l'accent a été mis sur la productivité. La lampe tubulaire fluorescente est devenue la source lumineuse dominante car elle a rendu possible l'éclairage sans ombre et relativement sans chaleur des usines et des bureaux, permettant une utilisation maximale de l'espace. Les exigences de rendement lumineux et de puissance pour une lampe tubulaire fluorescente typique de 1,500 1 mm sont indiquées dans le tableau XNUMX.

Tableau 1. Rendement lumineux amélioré et exigences de puissance de certaines lampes à tube fluorescent typiques de 1,500 XNUMX mm

Classement (W)

Diamètre (mm)

Remplissage de gaz

Flux lumineux (lumens)

80

38

argon

4,800

65

38

argon

4,900

58

25

krypton

5,100

50

25

argon

5,100
(équipement haute fréquence)

 

Dans les années 1970, les prix du pétrole ont augmenté et les coûts énergétiques sont devenus une part importante des coûts d'exploitation. Les lampes fluorescentes produisant la même quantité de lumière avec une consommation électrique moindre étaient demandées par le marché. La conception de la lampe a été raffinée de plusieurs manières. À la fin du siècle, on assiste à une prise de conscience croissante des problèmes environnementaux mondiaux. Une meilleure utilisation des matières premières en déclin, le recyclage ou l'élimination sûre des produits et les préoccupations persistantes concernant la consommation d'énergie (en particulier l'énergie générée à partir de combustibles fossiles) ont un impact sur les conceptions actuelles des lampes.

Critère de performance

Les critères de performance varient selon l'application. En général, il n'y a pas de hiérarchie particulière d'importance de ces critères.

Sortie de la lumière: Le flux lumineux d'une lampe déterminera son adéquation par rapport à l'échelle de l'installation et à la quantité d'éclairement nécessaire.

Aspect des couleurs et rendu des couleurs: Des échelles et des valeurs numériques distinctes s'appliquent à l'apparence et au rendu des couleurs. Il est important de se rappeler que les chiffres ne sont fournis qu'à titre indicatif et que certains ne sont que des approximations. Dans la mesure du possible, les évaluations d'adéquation doivent être faites avec des lampes réelles et avec les couleurs ou les matériaux qui s'appliquent à la situation.

Vie de la lampe: La plupart des lampes devront être remplacées plusieurs fois au cours de la durée de vie de l'installation d'éclairage, et les concepteurs doivent minimiser les inconvénients pour les occupants des pannes et de l'entretien. Les lampes sont utilisées dans une grande variété d'applications. La durée de vie moyenne prévue est souvent un compromis entre coût et performance. Par exemple, la lampe d'un projecteur de diapositives aura une durée de vie de quelques centaines d'heures car le rendement lumineux maximal est important pour la qualité de l'image. En revanche, certaines lampes d'éclairage de voirie peuvent être changées tous les deux ans, ce qui représente environ 8,000 XNUMX heures de fonctionnement.

De plus, la durée de vie de la lampe est affectée par les conditions de fonctionnement, et il n'y a donc pas de chiffre simple qui s'appliquera dans toutes les conditions. En outre, la durée de vie effective de la lampe peut être déterminée par différents modes de défaillance. Une défaillance physique telle qu'une rupture de filament ou de lampe peut être précédée d'une réduction de la puissance lumineuse ou de changements d'apparence des couleurs. La durée de vie de la lampe est affectée par les conditions environnementales externes telles que la température, les vibrations, la fréquence de démarrage, les fluctuations de la tension d'alimentation, l'orientation, etc.

Il convient de noter que la durée de vie moyenne indiquée pour un type de lampe est le temps pour 50 % de défaillances d'un lot de lampes de test. Cette définition de la durée de vie ne s'appliquera probablement pas à de nombreuses installations commerciales ou industrielles ; ainsi, la durée de vie pratique de la lampe est généralement inférieure aux valeurs publiées, qui ne doivent être utilisées qu'à titre de comparaison.

Efficacité: En règle générale, l'efficacité d'un type de lampe donné s'améliore à mesure que la puissance nominale augmente, car la plupart des lampes ont une perte fixe. Cependant, différents types de lampes ont une variation marquée de l'efficacité. Les lampes les plus efficaces doivent être utilisées, à condition que les critères de taille, de couleur et de durée de vie soient également respectés. Les économies d'énergie ne doivent pas se faire au détriment du confort visuel ou de la capacité de performance des occupants. Quelques efficacités typiques sont données dans le tableau 2.

Tableau 2. Efficacité typique des lampes

Efficacité des lampes

 

Lampe à incandescence 100 W

14 lumens/watt

Tube fluorescent 58 W

89 lumens/watt

Sodium haute pression 400 W

125 lumens/watt

131 W sodium basse pression

198 lumens/watt

 

Principaux types de lampes

Au fil des ans, plusieurs systèmes de nomenclature ont été élaborés par des normes et des registres nationaux et internationaux.

En 1993, la Commission électrotechnique internationale (CEI) a publié un nouveau système international de codage des lampes (ILCOS) destiné à remplacer les systèmes de codage nationaux et régionaux existants. Une liste de certains codes abrégés ILCOS pour diverses lampes est donnée dans le tableau 3.

Tableau 3. Système de codage abrégé du système international de codage des lampes (ILCOS) pour certains types de lampes

Genre (code)

Notes courantes (watts)

Rendu des couleurs

Température de couleur (K)

Durée de vie (heures)

Lampes fluocompactes (FS)

5-55

Bien

2,700-5,000

5,000-10,000

Lampes au mercure à haute pression (QE)

80-750

juste

3,300-3,800

20,000

Lampes sodium haute pression (S-)

50-1,000

médiocre à bon

2,000-2,500

6,000-24,000

Lampes à incandescence (I)

5-500

Bien

2,700

1,000-3,000

Lampes à induction (XF)

23-85

Bien

3,000-4,000

10,000-60,000

Lampes sodium basse pression (LS)

26-180

couleur jaune monochromatique

1,800

16,000

Lampes tungstène halogène basse tension (HS)

12-100

Bien

3,000

2,000-5,000

Lampes aux halogénures métalliques (M-)

35-2,000

bon à excellent

3,000-5,000

6,000-20,000

Lampes fluorescentes tubulaires (FD)

4-100

passable à bon

2,700-6,500

10,000-15,000

Lampes halogènes au tungstène (HS)

100-2,000

Bien

3,000

2,000-4,000

 

Lampes incandescentes

Ces lampes utilisent un filament de tungstène dans un gaz inerte ou sous vide avec une enveloppe en verre. Le gaz inerte supprime l'évaporation du tungstène et diminue le noircissement de l'enveloppe. Il existe une grande variété de formes de lampes, qui sont en grande partie décoratives. La construction d'une lampe typique du service d'éclairage général (GLS) est donnée à la figure 1.

Figure 1. Construction d'une lampe GLS

LIG010F1

Les lampes à incandescence sont également disponibles dans une large gamme de couleurs et de finitions. Les codes ILCOS et certaines formes typiques incluent ceux indiqués dans le tableau 4.

Tableau 4. Couleurs et formes courantes des lampes à incandescence, avec leurs codes ILCOS

Couleur/Forme

Code

Effacer

/C

Givré

/F

Blanc

/W

Rouge

/R

Bleu

/B

Vert

/G

Jaune

/Y

En forme de poire (GLS)

IA

Massage à la bougie

IB

Conique

IC

Globulaire

IG

Mushroom

IM

 

Les lampes à incandescence sont toujours populaires pour l'éclairage domestique en raison de leur faible coût et de leur taille compacte. Cependant, pour l'éclairage commercial et industriel, la faible efficacité génère des coûts d'exploitation très élevés, de sorte que les lampes à décharge sont le choix normal. Une lampe de 100 W a une efficacité typique de 14 lumens/watt contre 96 lumens/watt pour une lampe fluorescente de 36 W.

Les lampes à incandescence sont simples à atténuer en réduisant la tension d'alimentation et sont toujours utilisées lorsque la gradation est une fonction de contrôle souhaitée.

Le filament de tungstène est une source lumineuse compacte, facilement focalisée par des réflecteurs ou des lentilles. Les lampes à incandescence sont utiles pour l'éclairage des écrans lorsqu'un contrôle directionnel est nécessaire.

Lampes halogènes au tungstène

Celles-ci sont similaires aux lampes à incandescence et produisent de la lumière de la même manière à partir d'un filament de tungstène. Cependant, l'ampoule contient un gaz halogène (brome ou iode) qui est actif dans le contrôle de l'évaporation du tungstène. Voir figure 2.

Figure 2. Le cycle halogène

LIG010F2

Le principe fondamental du cycle halogène est une température minimale de la paroi de l'ampoule de 250 °C pour garantir que l'halogénure de tungstène reste à l'état gazeux et ne se condense pas sur la paroi de l'ampoule. Cette température signifie des ampoules en quartz à la place du verre. Avec le quartz, il est possible de réduire la taille de l'ampoule.

La plupart des lampes halogènes au tungstène ont une durée de vie améliorée par rapport aux équivalents incandescents et le filament est à une température plus élevée, créant plus de lumière et une couleur plus blanche.

Les lampes halogènes au tungstène sont devenues populaires là où la petite taille et les hautes performances sont la principale exigence. Des exemples typiques sont l'éclairage de scène, y compris le cinéma et la télévision, où le contrôle directionnel et la gradation sont des exigences courantes.

Lampes halogènes au tungstène basse tension

Ceux-ci ont été initialement conçus pour les projecteurs de diapositives et de films. À 12 V, le filament pour la même puissance que 230 V devient plus petit et plus épais. Cela peut être focalisé plus efficacement, et la plus grande masse de filament permet une température de fonctionnement plus élevée, augmentant le rendement lumineux. Le filament épais est plus robuste. Ces avantages ont été réalisés comme étant utiles pour le marché de l'affichage commercial, et même s'il est nécessaire d'avoir un transformateur abaisseur, ces lampes dominent maintenant l'éclairage des vitrines. Voir figure 3.

Figure 3. Lampe à réflecteur dichroïque basse tension

LIG010F3

Bien que les utilisateurs de projecteurs de film veuillent autant de lumière que possible, trop de chaleur endommage le support transparent. Un type spécial de réflecteur a été développé, qui reflète uniquement le rayonnement visible, permettant au rayonnement infrarouge (chaleur) de passer à travers l'arrière de la lampe. Cette fonctionnalité fait désormais partie de nombreuses lampes à réflecteur basse tension pour l'éclairage des écrans ainsi que des équipements de projection.

 

 

 

Sensibilité à la tension: Toutes les lampes à incandescence sont sensibles aux variations de tension, et le rendement lumineux et la durée de vie sont affectés. La démarche « d'harmonisation » de la tension d'alimentation en 230 V dans toute l'Europe passe par l'élargissement des tolérances auxquelles les autorités productrices peuvent opérer. Le mouvement est vers ± 10%, ce qui correspond à une plage de tension de 207 à 253 V. Les lampes halogènes à incandescence et au tungstène ne peuvent pas fonctionner raisonnablement sur cette plage, il sera donc nécessaire de faire correspondre la tension d'alimentation réelle aux valeurs nominales de la lampe. Voir figure 4.

Figure 4. Lampes à incandescence GLS et tension d'alimentation

LIG010F4

Les lampes à décharge seront également affectées par cette large variation de tension, de sorte que la spécification correcte du ballast devient importante.

 

 

 

 

 

 

 

Lampes fluorescentes tubulaires

Ce sont des lampes au mercure à basse pression et sont disponibles en versions « cathode chaude » et « cathode froide ». Le premier est le tube fluorescent classique pour les bureaux et les usines ; « cathode chaude » concerne l'amorçage de la lampe en préchauffant les électrodes pour créer une ionisation suffisante du gaz et de la vapeur de mercure pour établir la décharge.

Les lampes à cathode froide sont principalement utilisées pour la signalisation et la publicité. Voir figure 5.

Figure 5. Principe de la lampe fluorescente

LIG010F5

Les lampes fluorescentes nécessitent un appareillage de commande externe pour démarrer et contrôler le courant de la lampe. En plus de la faible quantité de vapeur de mercure, il existe un gaz d'amorçage (argon ou krypton).

La basse pression de mercure génère une décharge de lumière bleu pâle. La majeure partie du rayonnement se situe dans la région UV à 254 nm, une fréquence de rayonnement caractéristique du mercure. À l'intérieur de la paroi du tube se trouve un mince revêtement de phosphore, qui absorbe les UV et rayonne l'énergie sous forme de lumière visible. La qualité de la couleur de la lumière est déterminée par le revêtement de phosphore. Une gamme de luminophores est disponible avec une apparence de couleur et un rendu des couleurs variables.

Au cours des années 1950, les luminophores disponibles offraient le choix d'une efficacité raisonnable (60 lumens/watt) avec une lumière déficiente en rouges et bleus, ou un rendu des couleurs amélioré à partir de luminophores "de luxe" d'efficacité inférieure (40 lumens/watt).

Dans les années 1970, de nouveaux luminophores à bande étroite avaient été développés. Celles-ci rayonnaient séparément de la lumière rouge, bleue et verte mais, combinées, produisaient de la lumière blanche. L'ajustement des proportions a donné une gamme d'apparences de couleurs différentes, toutes avec un excellent rendu des couleurs similaire. Ces tri-phosphores sont plus efficaces que les types précédents et représentent la meilleure solution d'éclairage économique, même si les lampes sont plus chères. L'efficacité améliorée réduit les coûts d'exploitation et d'installation.

Le principe tri-phosphore a été étendu aux lampes multi-phosphores lorsqu'un rendu critique des couleurs est nécessaire, comme pour les galeries d'art et la correspondance des couleurs industrielle.

Les luminophores modernes à bande étroite sont plus durables, ont un meilleur maintien du flux lumineux et augmentent la durée de vie de la lampe.

Lampes fluocompactes

Le tube fluorescent n'est pas un remplacement pratique de la lampe à incandescence en raison de sa forme linéaire. De petits tubes à alésage étroit peuvent être configurés à peu près de la même taille que la lampe à incandescence, mais cela impose une charge électrique beaucoup plus élevée sur le matériau luminophore. L'utilisation de tri-phosphores est essentielle pour obtenir une durée de vie acceptable de la lampe. Voir figure 6.

Figure 6. Fluocompacte à quatre pattes

LIG010F6

Toutes les lampes fluorescentes compactes utilisent des tri-phosphores, donc, lorsqu'elles sont utilisées avec des lampes fluorescentes linéaires, ces dernières doivent également être tri-phosphores pour assurer la cohérence des couleurs.

Certaines lampes compactes incluent le dispositif de commande de fonctionnement pour former des dispositifs de rattrapage pour lampes à incandescence. La gamme s'élargit et permet une mise à niveau facile des installations existantes vers un éclairage plus économe en énergie. Ces unités intégrales ne conviennent pas à la gradation là où cela faisait partie des commandes d'origine.

 

 

 

 

Ballast électronique haute fréquence: Si la fréquence normale d'alimentation de 50 ou 60 Hz est augmentée à 30 kHz, on obtient un gain de 10 % sur l'efficacité des tubes fluorescents. Les circuits électroniques peuvent faire fonctionner des lampes individuelles à de telles fréquences. Le circuit électronique est conçu pour fournir le même rendement lumineux qu'un appareillage bobiné, à partir d'une puissance de lampe réduite. Cela offre une compatibilité du flux lumineux avec l'avantage qu'une charge réduite de la lampe augmentera considérablement la durée de vie de la lampe. Les ballasts électroniques sont capables de fonctionner sur une plage de tensions d'alimentation.

Il n'y a pas de norme commune pour les ballasts électroniques et les performances des lampes peuvent différer des informations publiées par les fabricants de lampes.

L'utilisation d'équipements électroniques à haute fréquence supprime le problème normal de scintillement, auquel certains occupants peuvent être sensibles.

Lampes à induction

Des lampes utilisant le principe de l'induction sont apparues récemment sur le marché. Ce sont des lampes au mercure à basse pression avec un revêtement tri-phosphore et, en tant que producteurs de lumière, elles sont similaires aux lampes fluorescentes. L'énergie est transférée à la lampe par rayonnement à haute fréquence, à environ 2.5 MHz à partir d'une antenne positionnée au centre de la lampe. Il n'y a pas de connexion physique entre l'ampoule de la lampe et la bobine. Sans électrodes ou autres connexions filaires, la construction de l'enceinte de décharge est plus simple et plus durable. La durée de vie de la lampe est principalement déterminée par la fiabilité des composants électroniques et le maintien du flux lumineux du revêtement de phosphore.

Lampes au mercure à haute pression

Les décharges à haute pression sont plus compactes et ont des charges électriques plus élevées ; par conséquent, ils nécessitent des tubes à arc en quartz pour résister à la pression et à la température. Le tube à arc est contenu dans une enveloppe extérieure en verre avec une atmosphère d'azote ou d'argon-azote pour réduire l'oxydation et la formation d'arcs. L'ampoule filtre efficacement le rayonnement UV du tube à arc. Voir figure 7.

Figure 7. Construction de la lampe au mercure

LIG010F7

A haute pression, la décharge de mercure est principalement un rayonnement bleu et vert. Pour améliorer la couleur, un revêtement de phosphore de l'ampoule extérieure ajoute de la lumière rouge. Il existe des versions de luxe avec une teneur en rouge accrue, qui donnent un rendement lumineux plus élevé et un meilleur rendu des couleurs.

Toutes les lampes à décharge à haute pression mettent du temps à atteindre leur pleine puissance. La décharge initiale se fait via le remplissage de gaz conducteur et le métal s'évapore à mesure que la température de la lampe augmente.

À la pression stable, la lampe ne redémarrera pas immédiatement sans équipement de commande spécial. Il y a un délai pendant lequel la lampe refroidit suffisamment et la pression diminue, de sorte que la tension d'alimentation normale ou le circuit d'allumage est suffisant pour rétablir l'arc.

Les lampes à décharge ont une caractéristique de résistance négative, et donc le dispositif de commande externe est nécessaire pour contrôler le courant. Il y a des pertes dues à ces composants d'appareillage de commande, l'utilisateur doit donc tenir compte des watts totaux lors de l'examen des coûts d'exploitation et de l'installation électrique. Il existe une exception pour les lampes à mercure à haute pression, et un type contient un filament de tungstène qui agit à la fois comme dispositif de limitation de courant et ajoute des couleurs chaudes à la décharge bleu/vert. Cela permet le remplacement direct des lampes à incandescence.

Bien que les lampes au mercure aient une longue durée de vie d'environ 20,000 55 heures, le rendement lumineux tombera à environ XNUMX % du rendement initial à la fin de cette période, et par conséquent la durée de vie économique peut être plus courte.

Lampes aux halogénures métalliques

La couleur et le rendement lumineux des lampes à décharge au mercure peuvent être améliorés en ajoutant différents métaux à l'arc au mercure. Pour chaque lampe, la dose est faible et, pour une application précise, il est plus pratique de manipuler les métaux sous forme de poudre sous forme d'halogénures. Cela se décompose lorsque la lampe se réchauffe et libère le métal.

Une lampe aux halogénures métalliques peut utiliser un certain nombre de métaux différents, chacun dégageant une couleur caractéristique spécifique. Ceux-ci inclus:

  • dysprosium—large bleu-vert
  • indium - bleu étroit
  • lithium—rouge étroit
  • scandium—large bleu-vert
  • sodium—jaune étroit
  • thallium—vert étroit
  • étain - large rouge orangé

 

Il n'y a pas de mélange standard de métaux, de sorte que les lampes aux halogénures métalliques de différents fabricants peuvent ne pas être compatibles en termes d'apparence ou de performances de fonctionnement. Pour les lampes avec les puissances nominales inférieures, de 35 à 150 W, il existe une compatibilité physique et électrique plus étroite avec une norme commune.

Les lampes aux halogénures métalliques nécessitent un appareillage de commande, mais le manque de compatibilité signifie qu'il est nécessaire d'adapter chaque combinaison de lampe et d'appareillage pour garantir des conditions de démarrage et de fonctionnement correctes.

Lampes au sodium basse pression

Le tube à arc est de taille similaire au tube fluorescent mais est fait de verre spécial avec un revêtement intérieur résistant au sodium. Le tube à arc est formé en forme de « U » étroit et est contenu dans une enveloppe extérieure sous vide pour assurer la stabilité thermique. Lors du démarrage, les lampes ont une forte lueur rouge provenant du remplissage de gaz néon.

Le rayonnement caractéristique de la vapeur de sodium à basse pression est un jaune monochromatique. C'est proche de la sensibilité maximale de l'œil humain, et les lampes au sodium à basse pression sont les lampes les plus efficaces disponibles à près de 200 lumens/watt. Cependant, les applications sont limitées aux endroits où la discrimination des couleurs n'a pas d'importance visuelle, comme les routes principales et les passages souterrains, et les rues résidentielles.

Dans de nombreuses situations, ces lampes sont remplacées par des lampes au sodium à haute pression. Leur petite taille offre un meilleur contrôle optique, en particulier pour l'éclairage des chaussées où l'on s'inquiète de plus en plus de la lueur excessive du ciel.

Lampes au sodium haute pression

Ces lampes sont similaires aux lampes au mercure à haute pression mais offrent une meilleure efficacité (plus de 100 lumens/watt) et un excellent maintien du flux lumineux. Le caractère réactif du sodium impose de fabriquer le tube à arc en alumine polycristalline translucide, le verre ou le quartz ne convenant pas. L'ampoule extérieure en verre contient un vide pour éviter la formation d'arc et l'oxydation. Il n'y a pas de rayonnement UV provenant de la décharge de sodium, de sorte que les revêtements de phosphore n'ont aucune valeur. Certaines ampoules sont dépolies ou enrobées pour diffuser la source lumineuse. Voir figure 8.

Figure 8. Construction de la lampe au sodium haute pression

LIG010F8

Au fur et à mesure que la pression de sodium augmente, le rayonnement devient une large bande autour du pic jaune et l'apparence est d'un blanc doré. Cependant, à mesure que la pression augmente, l'efficacité diminue. Il existe actuellement trois types distincts de lampes au sodium à haute pression disponibles, comme indiqué dans le tableau 5.

Tableau 5. Types de lampes au sodium haute pression

Type de lampe (code)

Couleur (K)

Efficacité (lumens/watt)

Durée de vie (heures)

Standard

2,000

110

24,000

deluxe

2,200

80

14,000

Blanc (FILS)

2,500

50

 

 

Généralement, les lampes standard sont utilisées pour l'éclairage extérieur, les lampes de luxe pour les intérieurs industriels et les White SON pour les applications commerciales/d'affichage.

Gradation des lampes à décharge

Les lampes à haute pression ne peuvent pas être atténuées de manière satisfaisante, car la modification de la puissance de la lampe modifie la pression et donc les caractéristiques fondamentales de la lampe.

Les lampes fluorescentes peuvent être atténuées à l'aide d'alimentations haute fréquence générées généralement dans le dispositif de commande électronique. L'aspect de la couleur reste très constant. De plus, le rendement lumineux est approximativement proportionnel à la puissance de la lampe, avec une économie d'énergie électrique conséquente lorsque le rendement lumineux est réduit. En intégrant la sortie de lumière de la lampe avec le niveau dominant de lumière naturelle du jour, un niveau d'éclairement presque constant peut être fourni dans un intérieur.

 

Retour

Lire 90498 fois Dernière modification le jeudi 13 octobre 2011 21:28
Plus dans cette catégorie: Conditions requises pour le confort visuel »

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références d'éclairage

Institution agréée des ingénieurs des services du bâtiment (CIBSE). 1993. Guide d'éclairage. Londres : CIBSE.

—. 1994. Code de l'éclairage intérieur. Londres : CIBSE.

Commission Internationale de l'Eclairage (CIE). 1992. Maintenance des systèmes d'éclairage électrique intérieurs. Rapport technique CIE n° 97. Autriche : CIE.

Commission électrotechnique internationale (CEI). 1993. Système international de codage des lampes. Document CEI n°. 123-93. Londres : CEI.

Fédération de l'industrie de l'éclairage. 1994. Guide des lampes de la Fédération de l'industrie de l'éclairage. Londres : Fédération de l'industrie de l'éclairage.