Dimanche, Mars 13 2011 14: 43

Questions environnementales et de santé publique

Évaluer cet élément
(1 Vote)

Adapté de UNEP et IISI 1997 et d'un article non publié de Jerry Spiegel.

En raison du volume et de la complexité de ses opérations et de sa forte utilisation d'énergie et de matières premières, l'industrie sidérurgique, comme d'autres industries "lourdes", a le potentiel d'avoir un impact significatif sur l'environnement et la population des communautés voisines. . La figure 1 résume les polluants et les déchets générés par ses principaux processus de production. Ils comprennent trois catégories principales : les polluants atmosphériques, les contaminants des eaux usées et les déchets solides.

Figure 1. Organigramme des polluants et déchets générés par différents procédés

IRO200F1

Historiquement, les enquêtes sur l'impact de l'industrie sidérurgique sur la santé publique se sont concentrées sur les effets localisés dans les zones locales densément peuplées dans lesquelles la production d'acier était concentrée et en particulier dans des régions spécifiques où des épisodes aigus de pollution de l'air ont été enregistrés, comme le vallées de la Donora et de la Meuse, et le triangle entre la Pologne, l'ex-Tchécoslovaquie et l'ex-République démocratique allemande (OMS 1992).

Les polluants atmosphériques

Les polluants atmosphériques provenant des opérations de fabrication du fer et de l'acier ont toujours été une préoccupation environnementale. Ces polluants comprennent des substances gazeuses telles que les oxydes de soufre, le dioxyde d'azote et le monoxyde de carbone. De plus, les particules telles que la suie et la poussière, qui peuvent contenir des oxydes de fer, ont fait l'objet de contrôles. Les émissions des fours à coke et des usines de sous-produits des fours à coke ont été une préoccupation, mais les améliorations continues de la technologie de la fabrication de l'acier et du contrôle des émissions au cours des deux dernières décennies, associées à des réglementations gouvernementales plus strictes, ont considérablement réduit ces émissions. en Amérique du Nord, en Europe occidentale et au Japon. Les coûts totaux de la lutte contre la pollution, dont plus de la moitié sont liés aux émissions atmosphériques, ont été estimés entre 1 et 3 % des coûts de production totaux ; les installations de dépollution de l'air ont représenté environ 10 à 20 % des investissements totaux des usines. Ces coûts créent un obstacle à l'application mondiale de contrôles de pointe dans les pays en développement et pour les entreprises plus anciennes et économiquement marginales.

Les polluants atmosphériques varient en fonction du processus particulier, de l'ingénierie et de la construction de l'usine, des matières premières utilisées, des sources et des quantités d'énergie nécessaires, de la mesure dans laquelle les déchets sont recyclés dans le processus et de l'efficacité des contrôles de la pollution. Par exemple, l'introduction de la fabrication d'acier à base d'oxygène a permis la collecte et le recyclage des gaz résiduaires de manière contrôlée, réduisant les quantités à évacuer, tandis que l'utilisation du procédé de coulée continue a réduit la consommation d'énergie, entraînant une une réduction des émissions. Cela a augmenté le rendement du produit et amélioré la qualité.

le dioxyde de soufre

La quantité de dioxyde de soufre, formé en grande partie dans les processus de combustion, dépend principalement de la teneur en soufre du combustible fossile utilisé. Le coke et le gaz de four à coke utilisés comme combustibles sont des sources majeures de dioxyde de soufre. Dans l'atmosphère, le dioxyde de soufre peut réagir avec les radicaux oxygène et l'eau pour former un aérosol d'acide sulfurique et, en combinaison avec l'ammoniac, peut former un aérosol de sulfate d'ammonium. Les effets sur la santé attribués aux oxydes de soufre ne sont pas seulement dus au dioxyde de soufre mais aussi à sa tendance à former de tels aérosols respirables. De plus, le dioxyde de soufre peut être adsorbé sur les particules, dont beaucoup sont dans la plage respirable. Ces expositions potentielles peuvent être réduites non seulement par l'utilisation de carburants à faible teneur en soufre, mais également par la réduction de la concentration des particules. L'utilisation accrue de fours électriques a réduit les émissions d'oxydes de soufre en éliminant le besoin de coke, mais cela a répercuté cette charge de contrôle de la pollution sur les centrales produisant de l'électricité. La désulfuration des gaz de four à coke est réalisée par l'élimination des composés soufrés réduits, principalement le sulfure d'hydrogène, avant la combustion.

Oxydes d'azote

Comme les oxydes de soufre, les oxydes d'azote, principalement l'oxyde d'azote et le dioxyde d'azote, se forment dans les processus de combustion de carburant. Ils réagissent avec l'oxygène et les composés organiques volatils (COV) en présence de rayonnement ultraviolet (UV) pour former de l'ozone. Ils se combinent également avec l'eau pour former de l'acide nitrique, qui, à son tour, se combine avec l'ammoniac pour former du nitrate d'ammonium. Ceux-ci peuvent également former des aérosols respirables qui peuvent être éliminés de l'atmosphère par dépôt humide ou sec.

Affaire particulière

La matière particulaire, la forme de pollution la plus visible, est un mélange variable et complexe de matières organiques et inorganiques. La poussière peut être soufflée à partir des stocks de minerai de fer, de charbon, de coke et de calcaire ou elle peut pénétrer dans l'air pendant leur chargement et leur transport. Les matériaux grossiers génèrent de la poussière lorsqu'ils sont frottés ou écrasés sous les véhicules. Des particules fines sont générées lors des processus de frittage, de fusion et de fusion, en particulier lorsque le fer en fusion entre en contact avec l'air pour former de l'oxyde de fer. Les fours à coke produisent du coke de charbon fin et des émissions de goudron. Les effets potentiels sur la santé dépendent du nombre de particules dans la plage respirable, de la composition chimique de la poussière et de la durée et de la concentration de l'exposition.

Des réductions importantes des niveaux de pollution particulaire ont été obtenues. Par exemple, en utilisant des précipitateurs électrostatiques pour nettoyer les gaz résiduaires secs dans la fabrication d'acier à l'oxygène, une aciérie allemande a réduit le niveau de poussière émise de 9.3 kg/t d'acier brut en 1960 à 5.3 kg/t en 1975 et à un peu moins de 1 kg/t en 1990. Le coût, cependant, était une augmentation marquée de la consommation d'énergie. D'autres méthodes de contrôle de la pollution par les particules comprennent l'utilisation d'épurateurs humides, de filtres à manches et de cyclones (qui ne sont efficaces que contre les grosses particules).

métaux lourds

Des métaux tels que le cadmium, le plomb, le zinc, le mercure, le manganèse, le nickel et le chrome peuvent être émis par un four sous forme de poussière, de fumée ou de vapeur ou ils peuvent être adsorbés par des particules. Les effets sur la santé, qui sont décrits ailleurs dans ce Encyclopédie, dépendent du niveau et de la durée d'exposition.

Émissions organiques

Les émissions organiques provenant des opérations sidérurgiques primaires peuvent inclure le benzène, le toluène, le xylène, les solvants, les HAP, les dioxines et les phénols. La ferraille utilisée comme matière première peut comprendre une variété de ces substances, selon sa source et la façon dont elle a été utilisée (p. ex. peinture et autres revêtements, autres métaux et lubrifiants). Tous ces polluants organiques ne sont pas capturés par les systèmes conventionnels d'épuration des gaz.

Radioactivité

Ces dernières années, on a signalé des cas dans lesquels des matières radioactives ont été incluses par inadvertance dans la ferraille. Les propriétés physicochimiques des nucléides (par exemple, les températures de fusion et d'ébullition et l'affinité pour l'oxygène) détermineront ce qui leur arrive dans le processus de fabrication de l'acier. Il peut y avoir une quantité suffisante pour contaminer les produits sidérurgiques, les sous-produits et les divers types de déchets et nécessiter ainsi un nettoyage et une élimination coûteux. Il y a aussi la contamination potentielle de l'équipement de fabrication de l'acier, avec une exposition potentielle résultante des travailleurs de l'acier. Cependant, de nombreuses exploitations sidérurgiques ont installé des détecteurs de rayonnement sensibles pour filtrer toutes les ferrailles d'acier achetées.

Gaz carbonique

Bien qu'il n'ait aucun effet sur la santé humaine ou les écosystèmes aux niveaux atmosphériques habituels, le dioxyde de carbone est important en raison de sa contribution à « l'effet de serre », qui est associé au réchauffement climatique. L'industrie sidérurgique est un important générateur de dioxyde de carbone, davantage en raison de l'utilisation du carbone comme agent réducteur dans la production de fer à partir du minerai de fer que de son utilisation comme source d'énergie. En 1990, grâce à diverses mesures de réduction du taux de coke dans les hauts fourneaux, de récupération de la chaleur perdue et d'économies d'énergie, les émissions de dioxyde de carbone de l'industrie sidérurgique avaient été réduites à 47 % des niveaux de 1960.

Ozone

L'ozone, un constituant majeur du smog atmosphérique près de la surface de la terre, est un polluant secondaire formé dans l'air par la réaction photochimique de la lumière du soleil sur les oxydes d'azote, facilitée à un degré variable, selon leur structure et leur réactivité, par une gamme de COV . Les gaz d'échappement des véhicules à moteur constituent la principale source de précurseurs de l'ozone, mais certains sont également générés par les usines sidérurgiques ainsi que par d'autres industries. En raison des conditions atmosphériques et topographiques, la réaction de l'ozone peut avoir lieu à de grandes distances de leur source.

Contaminants des eaux usées

Les aciéries rejettent de grands volumes d'eau dans les lacs, les rivières et les ruisseaux, des volumes supplémentaires étant vaporisés lors du refroidissement du coke ou de l'acier. Les eaux usées retenues dans des bassins de rétention non scellés ou présentant des fuites peuvent s'infiltrer et contaminer la nappe phréatique locale et les cours d'eau souterrains. Ceux-ci peuvent également être contaminés par le lessivage des eaux de pluie à travers des tas de matières premières ou des accumulations de déchets solides. Les contaminants comprennent les solides en suspension, les métaux lourds et les huiles et graisses. Les changements de température dans les eaux naturelles dus au rejet d'eau de procédé à plus haute température (70 % de l'eau de procédé sidérurgique est utilisée pour le refroidissement) peuvent affecter les écosystèmes de ces eaux. Par conséquent, le traitement de refroidissement avant le rejet est essentiel et peut être réalisé grâce à l'application de la technologie disponible.

Matières solides en suspension

Les solides en suspension (MES) sont les principaux polluants d'origine hydrique rejetés lors de la production d'acier. Ils comprennent principalement des oxydes de fer provenant de la formation de tartre lors du traitement ; du charbon, des boues biologiques, des hydroxydes métalliques et d'autres solides peuvent également être présents. Ceux-ci sont en grande partie non toxiques dans les environnements aqueux à des niveaux de rejet normaux. Leur présence à des niveaux plus élevés peut entraîner une décoloration des cours d'eau, une désoxygénation et un envasement.

métaux lourds

L'eau de fabrication de l'acier peut contenir des niveaux élevés de zinc et de manganèse, tandis que les rejets des zones de laminage à froid et de revêtement peuvent contenir du zinc, du cadmium, de l'aluminium, du cuivre et du chrome. Ces métaux sont naturellement présents dans le milieu aquatique ; c'est leur présence à des concentrations plus élevées que d'habitude qui suscite des inquiétudes quant aux effets potentiels sur les humains et les écosystèmes. Ces préoccupations sont accrues par le fait que, contrairement à de nombreux polluants organiques, ces métaux lourds ne se biodégradent pas en produits finaux inoffensifs et peuvent se concentrer dans les sédiments et dans les tissus des poissons et d'autres formes de vie aquatique. De plus, en étant combiné avec d'autres contaminants (par exemple, l'ammoniac, les composés organiques, les huiles, les cyanures, les alcalis, les solvants et les acides), leur toxicité potentielle peut être augmentée.

Huiles et graisses

Les huiles et les graisses peuvent être présentes dans les eaux usées sous des formes solubles et insolubles. La plupart des huiles lourdes et des graisses sont insolubles et s'enlèvent relativement facilement. Ils peuvent cependant s'émulsionner par contact avec des détergents ou des alcalis ou par agitation. Les huiles émulsifiées sont couramment utilisées dans le cadre du processus dans les broyeurs à froid. À l'exception de la décoloration de la surface de l'eau, de petites quantités de la plupart des composés d'huile aliphatique sont inoffensives. Cependant, les composés d'huiles aromatiques monohydriques peuvent être toxiques. En outre, les composants de l'huile peuvent contenir des substances toxiques telles que les PCB, le plomb et d'autres métaux lourds. Outre la question de la toxicité, la demande biologique et chimique en oxygène (DBO et DCO) des huiles et autres composés organiques peut diminuer la teneur en oxygène de l'eau, affectant ainsi la viabilité de la vie aquatique.

Les déchets solides

Une grande partie des déchets solides produits dans la fabrication de l'acier est réutilisable. Le processus de production de coke, par exemple, donne naissance à des dérivés du charbon qui sont des matières premières importantes pour l'industrie chimique. De nombreux sous-produits (par exemple, la poussière de coke) peuvent être réintroduits dans les processus de production. Les scories produites lorsque les impuretés présentes dans le charbon et le minerai de fer fondent et se combinent avec la chaux utilisée comme fondant dans la fonte peuvent être utilisées de plusieurs façons : enfouissement pour des projets de récupération, dans la construction de routes et comme matière première pour les usines de frittage qui fournissent hauts fourneaux. L'acier, quelle que soit sa qualité, sa taille, son utilisation ou sa durée de service, est entièrement recyclable et peut être recyclé à plusieurs reprises sans aucune dégradation de ses propriétés mécaniques, physiques ou métallurgiques. Le taux de recyclage est estimé à 90 %. Le tableau 1 présente un aperçu de la mesure dans laquelle l'industrie sidérurgique japonaise est parvenue à recycler les déchets.

Tableau 1. Déchets générés et recyclés dans la production d'acier au Japon

 

Génération (A)
(1,000 XNUMX tonnes)

Décharge (B)
(1,000 XNUMX tonnes)

Réutilisation
(A-B/A) %

Scories

Hauts fourneaux
Fours à oxygène de base
Fours à arc électrique
Sous-total

24,717
9,236
2,203
36,156

712
1,663
753
3,128

97.1
82.0
65.8
91.3

Poussière

4,763

238

95.0

Boue

519

204

60.7

Huile usée

81

   

Total

41,519

3,570

91.4

Source : IISI 1992.

Conservation de l'énergie

La conservation de l'énergie est souhaitable non seulement pour des raisons économiques, mais également pour réduire la pollution dans les installations d'approvisionnement en énergie telles que les services publics d'électricité. La quantité d'énergie consommée dans la production d'acier varie considérablement selon les procédés utilisés et le mélange de ferraille et de minerai de fer dans la matière première. En 1988, l'intensité énergétique des usines américaines utilisant de la ferraille était en moyenne de 21.1 gigajoules par tonne, tandis que les usines japonaises consommaient environ 25 % de moins. Une usine modèle à base de ferraille de l'Institut international du fer et de l'acier (IISI) ne nécessitait que 10.1 gigajoules par tonne (IISI 1992).

L'augmentation du coût de l'énergie a stimulé le développement de technologies économes en énergie et en matériaux. Les gaz à faible énergie, tels que les sous-produits gazeux produits dans les hauts fourneaux et les fours à coke, sont récupérés, nettoyés et utilisés comme combustible. La consommation de coke et de combustible auxiliaire par l'industrie sidérurgique allemande, qui était en moyenne de 830 kg/tonne en 1960, a été réduite à 510 kg/tonne en 1990. L'industrie sidérurgique japonaise a pu réduire sa part de la consommation totale d'énergie au Japon de 20.5 % en 1973 à environ 7 % en 1988. L'industrie sidérurgique des États-Unis a réalisé d'importants investissements dans la conservation de l'énergie. L'usine moyenne a réduit sa consommation d'énergie de 45 % depuis 1975 grâce à la modification des procédés, aux nouvelles technologies et à la restructuration (les émissions de dioxyde de carbone ont diminué proportionnellement).

Face à l'avenir

Traditionnellement, les gouvernements, les associations professionnelles et les industries individuelles ont abordé les préoccupations environnementales sur une base spécifique aux médias, traitant séparément, par exemple, les problèmes d'air, d'eau et d'élimination des déchets. Bien qu'utile, cela a parfois simplement déplacé le problème d'un domaine environnemental à un autre, comme dans le cas du traitement coûteux des eaux usées qui laisse le problème ultérieur de l'élimination des boues de traitement, ce qui peut également causer une grave pollution des eaux souterraines.

Ces dernières années, cependant, l'industrie sidérurgique internationale s'est attaquée à ce problème par le biais du contrôle intégré de la pollution, qui s'est ensuite développé en gestion totale des risques environnementaux, un programme qui examine tous les impacts simultanément et aborde systématiquement les domaines prioritaires. Un deuxième développement d'égale importance a été l'accent mis sur l'action préventive plutôt que sur l'action corrective. Cela aborde des questions telles que l'emplacement de l'usine, la préparation du site, l'aménagement et l'équipement de l'usine, la spécification des responsabilités de gestion quotidiennes et l'assurance d'un personnel et de ressources adéquats pour surveiller la conformité aux réglementations environnementales et rendre compte des résultats aux autorités compétentes.

Le Centre de l'industrie et de l'environnement, créé en 1975 par le Programme des Nations Unies pour l'environnement (PNUE), vise à encourager la coopération entre les industries et les gouvernements afin de promouvoir un développement industriel respectueux de l'environnement. Ses objectifs incluent :

  • encouragement à l'intégration de critères environnementaux dans les plans de développement industriel
  • facilitation de la mise en œuvre des procédures et principes de protection de l'environnement
  • promotion de l'utilisation de techniques sûres et propres
  • stimulation de l'échange d'informations et d'expériences à travers le monde.

 

L'UNEP travaille en étroite collaboration avec l'IISI, la première association industrielle internationale consacrée à une seule industrie. Les membres de l'IISI comprennent des entreprises sidérurgiques publiques et privées et des associations nationales et régionales de l'industrie sidérurgique, des fédérations et des instituts de recherche dans les 51 pays qui, ensemble, représentent plus de 70 % de la production mondiale totale d'acier. L'IISI, souvent de concert avec le PNUE, produit des déclarations de politique et de principes environnementaux et des rapports techniques tels que celui sur lequel une grande partie de cet article est basé (PNUE et IISI 1997). Ensemble, ils s'efforcent d'aborder les facteurs économiques, sociaux, moraux, personnels, de gestion et technologiques qui influent sur le respect des principes, des politiques et des réglementations environnementales.

 

Retour

Lire 19602 fois Dernière modification le Samedi, 27 Août 2011 18:33

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références sidérurgiques

Constantino, JP, CK Redmond et A Bearden. 1995. Risque de cancer lié au travail chez les travailleurs des fours à coke : 30 ans de suivi. J Occup Env Med 37:597-603.

Cullen, MR, JR Balmes, JM Robins et GJ Walker Smith. 1981. Pneumonie lipoïde causée par l'exposition au brouillard d'huile d'un laminoir tandem en acier. Am J Ind Med 2: 51–58.

Centre international de recherche sur le cancer (CIRC). 1984. Monographies 1984. 34:101–131.

Institut international du fer et de l'acier (IISI). 1992. Contrôle environnemental dans l'industrie sidérurgique. Documents préparés pour la conférence mondiale ENCOSTEEL de 1991, Bruxelles.

Organisation internationale du travail (OIT). 1992. Développements récents dans l'industrie du fer et de l'acier. Rapport l. Genève : OIT.

Johnson, A, CY Moira, L MacLean, E Atkins, A Dybuncio, F Cheng et D Enarson. 1985. Anomalies respiratoires chez les travailleurs de la sidérurgie. Br J Ind Med 42:94–100.

Kronenberg, RS, JC Levin, RF Dodson, JGN Garcia et DE Grifith. 1991. Maladie liée à l'amiante chez les employés d'une aciérie et d'une usine de fabrication de bouteilles en verre. Ann NY Acad Sei 643:397–403.

Lydahl, E et B Philipson. 1984. Rayonnement infrarouge et cataracte. 1. Enquête épidémiologique sur les sidérurgistes. Acta Ophthalmol 62:961–975.

McShane, DP, ML Hyde et PW Alberti. 1988. Prévalence des acouphènes chez les demandeurs d'indemnisation de perte auditive industrielle. Oto-rhino-laryngologie clinique 13: 323–330.

Pauline, MB, CB Hendriek, TJH Carel et PK Agaath. 1988. Troubles du dos chez les grutiers exposés à des vibrations globales du corps. Int Arch Occup Environ Health 1988:129-137.

Steenland, K, T Schnoor, J Beaumont, W Halperin et T Bloom. 1988. Incidence du cancer du larynx et exposition aux brouillards acides. Br J Ind Med 45:766–776.

Thomas, PR et D Clarke. 1992. Vibration, doigt blanc et contracture de Dupuytren : sont-ils liés ? Occup Med 42(3):155–158.

Programme des Nations Unies pour l'environnement (PNUE). 1986. Directives pour la gestion environnementale des usines sidérurgiques. Paris : PNUE.

Programme des Nations Unies pour l'environnement (PNUE) et Institut de l'acier (IISI). 1997. L'industrie sidérurgique et l'environnement : problèmes techniques et de gestion. Rapport technique n° 38. Paris et Bruxelles : PNUE et IISI.

Wennberg, A, A Iregren, G Strich, G Cizinsky, M Hagman et L Johansson. Exposition au manganèse dans les fonderies d'acier, un danger pour la santé du système nerveux. Scand J Work Environ Health 17 : 255–62.

Commission de la santé de l'Organisation mondiale de la santé (OMS). 1992. Rapport du Groupe d'experts sur l'industrie et la santé. Genève : OMS.