Dimanche, Mars 13 2011 15: 57

Extraction de charbon souterraine

Évaluer cet élément
(10 votes)

La production souterraine de charbon a d'abord commencé avec des tunnels d'accès, ou des galeries, exploités dans les coutures à partir de leurs affleurements de surface. Cependant, les problèmes causés par des moyens de transport inadéquats pour amener le charbon à la surface et par le risque croissant d'enflammer des poches de méthane à partir de bougies et d'autres lampes à flamme nue ont limité la profondeur à laquelle les premières mines souterraines pouvaient être exploitées.

La demande croissante de charbon pendant la révolution industrielle a incité le forage de puits à accéder à des réserves de charbon plus profondes, et au milieu du XXe siècle, la plus grande proportion de la production mondiale de charbon provenait de loin des opérations souterraines. Au cours des années 1970 et 1980, il y a eu un développement généralisé de la nouvelle capacité des mines de charbon à ciel ouvert, en particulier dans des pays comme les États-Unis, l'Afrique du Sud, l'Australie et l'Inde. Dans les années 1990, cependant, un regain d'intérêt pour l'exploitation minière souterraine a entraîné le développement de nouvelles mines (dans le Queensland, en Australie, par exemple) à partir des points les plus profonds d'anciennes mines à ciel ouvert. Au milieu des années 1990, l'exploitation minière souterraine représentait peut-être 45 % de toute la houille extraite dans le monde. La proportion réelle variait considérablement, allant de moins de 30 % en Australie et en Inde à environ 95 % en Chine. Pour des raisons économiques, le lignite et le lignite sont rarement extraits sous terre.

Une mine de charbon souterraine se compose essentiellement de trois éléments : une zone de production ; transport du charbon jusqu'au pied d'un puits ou d'une rampe ; et hisser ou transporter le charbon à la surface. La production comprend également les travaux préparatoires nécessaires pour permettre l'accès aux futures zones de production d'une mine et, par conséquent, représente le niveau de risque personnel le plus élevé.

Développement minier

Le moyen le plus simple d'accéder à un filon de charbon est de le suivre depuis son affleurement de surface, une technique encore largement pratiquée dans les zones où la topographie sus-jacente est escarpée et les filons relativement plats. Un exemple est le bassin houiller des Appalaches du sud de la Virginie-Occidentale aux États-Unis. La méthode d'extraction réelle utilisée dans le filon est sans importance à ce stade ; le facteur important est que l'accès peut être obtenu à moindre coût et avec un effort de construction minimal. Les galeries sont également couramment utilisées dans les zones d'extraction de charbon à faible technologie, où le charbon produit lors de l'extraction de la galerie peut être utilisé pour compenser ses coûts de développement.

Les autres moyens d'accès comprennent les rampes (ou rampes) et les puits verticaux. Le choix dépend généralement de la profondeur du filon de charbon exploité : plus le filon est profond, plus il est coûteux de développer une rampe graduée le long de laquelle des véhicules ou des convoyeurs à bande peuvent fonctionner.

Le fonçage de puits, dans lequel un puits est exploité verticalement vers le bas à partir de la surface, est à la fois coûteux et long et nécessite un délai plus long entre le début de la construction et le premier charbon extrait. Dans les cas où les veines sont profondes, comme dans la plupart des pays européens et en Chine, les puits doivent souvent être creusés à travers des roches aquifères recouvrant les veines de charbon. Dans ce cas, des techniques spécialisées, telles que le gel du sol ou l'injection, doivent être utilisées pour empêcher l'eau de s'écouler dans le puits, qui est ensuite revêtu d'anneaux en acier ou de béton coulé pour assurer une étanchéité à long terme.

Les rampes sont généralement utilisées pour accéder à des couches trop profondes pour l'exploitation à ciel ouvert, mais qui sont encore relativement proches de la surface. Dans le bassin houiller de Mpumalanga (est du Transvaal) en Afrique du Sud, par exemple, les veines exploitables se trouvent à une profondeur ne dépassant pas 150 m ; dans certaines régions, ils sont extraits à ciel ouvert, et dans d'autres, l'exploitation souterraine est nécessaire, auquel cas les rampes sont souvent utilisées pour permettre l'accès à l'équipement minier et pour installer les convoyeurs à bande utilisés pour transporter le charbon coupé hors de la mine.

Les déclins diffèrent des galeries d'accès en ce qu'ils sont généralement creusés dans la roche, pas dans le charbon (à moins que le filon ne plonge à un rythme constant), et sont exploités à une pente constante pour optimiser l'accès des véhicules et des convoyeurs. Une innovation depuis les années 1970 a été l'utilisation de convoyeurs à bande fonctionnant en descente pour transporter la production des mines profondes, un système qui présente des avantages par rapport au levage de puits traditionnel en termes de capacité et de fiabilité.

Méthodes d'exploitation minière

L'extraction souterraine du charbon englobe deux méthodes principales, dont de nombreuses variantes ont évolué pour répondre aux conditions d'extraction dans les opérations individuelles. L'extraction par chambres et piliers implique des tunnels miniers (ou des chaussées) sur une grille régulière, laissant souvent des piliers substantiels pour le soutien à long terme du toit. L'exploitation minière à longue taille permet l'extraction totale de grandes parties d'un filon de charbon, provoquant l'effondrement des roches du toit dans la zone exploitée.

Extraction par chambres et piliers

L'exploitation minière par chambres et piliers est le plus ancien système souterrain d'extraction de charbon et le premier à utiliser le concept de support de toit régulier pour protéger les travailleurs de la mine. Le nom d'exploitation minière par chambres et piliers dérive des piliers de charbon qui sont laissés sur une grille régulière pour fournir sur place support au toit. Il a été développé en une méthode mécanisée à haute production qui, dans certains pays, représente une proportion substantielle de la production souterraine totale. Par exemple, 60 % de la production souterraine de charbon aux États-Unis provient de mines à chambres et piliers. En termes d'échelle, certaines mines d'Afrique du Sud ont des capacités installées supérieures à 10 millions de tonnes par an à partir d'opérations multi-sections de production dans des veines jusqu'à 6 m d'épaisseur. En revanche, de nombreuses mines à chambres et piliers aux États-Unis sont petites, opérant dans des veines d'une épaisseur aussi faible que 1 m, avec la possibilité d'arrêter et de redémarrer la production rapidement selon les conditions du marché.

L'exploitation minière par chambres et piliers est généralement utilisée dans les veines moins profondes, où la pression appliquée par les roches sus-jacentes sur les piliers de support n'est pas excessive. Le système présente deux avantages clés par rapport à l'exploitation minière à longue taille : sa flexibilité et sa sécurité inhérente. Son inconvénient majeur est que la récupération de la ressource en charbon n'est que partielle, la quantité précise dépendant de facteurs tels que la profondeur du filon sous la surface et son épaisseur. Des récupérations allant jusqu'à 60% sont possibles. Une récupération de XNUMX % est possible si les piliers sont extraits dans le cadre d'une deuxième phase du processus d'extraction.

Le système est également capable de divers niveaux de sophistication technique, allant des techniques à forte intensité de main-d'œuvre (telles que «l'exploitation minière en panier» dans laquelle la plupart des étapes de l'extraction, y compris le transport du charbon, sont manuelles), à des techniques hautement mécanisées. Le charbon peut être extrait de la face du tunnel à l'aide d'explosifs ou de machines d'extraction en continu. Des véhicules ou des convoyeurs à bande mobiles assurent le transport mécanisé du charbon. Des boulons de toit et des cerclages en métal ou en bois sont utilisés pour soutenir le toit de la chaussée et les intersections entre les chaussées où la portée ouverte est plus grande.

Un mineur continu, qui intègre une tête de coupe et un système de chargement du charbon montés sur chenilles, pèse généralement de 50 à 100 tonnes, selon la hauteur de fonctionnement à laquelle il est conçu pour travailler, la puissance installée et la largeur de coupe requise. Certains sont équipés de machines embarquées d'installation de boulons d'ancrage qui assurent le soutènement du toit en même temps que la coupe du charbon ; dans d'autres cas, des machines de minage continu et de boulonnage de toit séparées sont utilisées séquentiellement.

Les transporteurs de charbon peuvent être alimentés en énergie électrique à partir d'un câble ombilical ou peuvent être alimentés par batterie ou par moteur diesel. Ce dernier offre une plus grande flexibilité. Le charbon est chargé depuis l'arrière du mineur continu dans le véhicule, qui transporte ensuite une charge utile, généralement entre 5 et 20 tonnes, sur une courte distance jusqu'à une trémie d'alimentation pour le système de convoyeur à bande principal. Un concasseur peut être inclus dans la trémie d'alimentation pour briser le charbon ou la roche surdimensionnés qui pourraient bloquer les goulottes ou endommager les bandes transporteuses plus loin le long du système de transport.

Une alternative au transport par véhicule est le système de transport continu, un convoyeur sectionnel flexible monté sur chenilles qui transporte le charbon coupé directement du mineur continu à la trémie. Ceux-ci offrent des avantages en termes de sécurité du personnel et de capacité de production, et leur utilisation s'étend aux systèmes d'aménagement de passerelles à longue paroi pour les mêmes raisons.

Les chaussées sont exploitées sur des largeurs de 6.0 m, normalement sur toute la hauteur du joint. La taille des piliers dépend de la profondeur sous la surface ; Des piliers carrés de 15.0 m sur des centres de 21.0 m seraient représentatifs de la conception des piliers d'une mine peu profonde à couches basses.

Exploitation minière de longue taille

L'exploitation minière à longue taille est largement perçue comme un développement du XXe siècle; cependant, on pense en fait que le concept a été développé plus de 200 ans plus tôt. La principale avancée est que les opérations antérieures étaient principalement manuelles, tandis que, depuis les années 1950, le niveau de mécanisation a augmenté au point qu'un front de taille est maintenant une unité à haute productivité qui peut être exploitée par une très petite équipe de travailleurs.

L'exploitation à longue taille présente un avantage primordial par rapport à l'extraction par chambres et piliers : elle peut réaliser l'extraction complète du panneau en un seul passage et récupère une proportion globale plus élevée de la ressource totale en charbon. Cependant, la méthode est relativement rigide et exige à la fois une ressource exploitable importante et des ventes garanties pour être viable, en raison des coûts d'investissement élevés impliqués dans le développement et l'équipement d'un front de taille moderne (plus de 20 millions de dollars américains dans certains cas).

Alors que dans le passé, les mines individuelles exploitaient souvent simultanément plusieurs fronts de taille (dans des pays comme la Pologne, plus de dix par mine dans un certain nombre de cas), la tendance actuelle est à la consolidation de la capacité minière en unités plus petites et plus lourdes. Les avantages de ceci sont des besoins en main-d'œuvre réduits et la nécessité d'un développement et d'un entretien moins étendus des infrastructures souterraines.

Dans l'exploitation minière à longue taille, le toit est délibérément effondré lorsque la couche est extraite; seules les grandes voies d'accès souterraines sont protégées par des piliers de soutènement. Le contrôle du toit est assuré sur un front long par des supports hydrauliques à deux ou quatre pieds qui prennent la charge immédiate du toit sus-jacent, permettant sa répartition partielle sur le front non miné et les piliers de chaque côté du panneau, et protégeant les équipements de front et le personnel du toit effondré derrière la ligne de supports. Le charbon est coupé par une cisaille électrique, généralement équipée de deux tambours de coupe de charbon, qui extrait une bande de charbon jusqu'à 1.1 m d'épaisseur à partir du front à chaque passage. La cisaille roule et charge le charbon coupé sur un convoyeur blindé qui serpente vers l'avant après chaque coupe par un mouvement séquentiel des supports de face.

À l'extrémité frontale, le charbon coupé est transféré sur un convoyeur à bande pour être transporté à la surface. Dans une face qui avance, la ceinture doit être rallongée régulièrement au fur et à mesure que la distance depuis le point de départ de la face augmente, tandis qu'en recul, c'est l'inverse qui s'applique.

Au cours des 40 dernières années, il y a eu des augmentations substantielles à la fois de la longueur du front de taille exploité et de la longueur du panneau individuel de taille longue (le bloc de charbon à travers lequel le front progresse). A titre illustratif, aux Etats-Unis, la longueur moyenne des fronts de taille est passée de 150 m en 1980 à 227 m en 1993. En Allemagne, la moyenne du milieu des années 1990 était de 270 m et des longueurs de front supérieures à 300 m sont en projet. Tant au Royaume-Uni qu'en Pologne, les fronts de taille sont exploités jusqu'à 300 m de long. La longueur des panneaux est en grande partie déterminée par les conditions géologiques, telles que les failles, ou par les limites de la mine, mais est désormais régulièrement supérieure à 2.5 km dans de bonnes conditions. La possibilité de panneaux jusqu'à 6.7 km de long est en discussion aux États-Unis.

L'exploitation minière de retraite devient la norme de l'industrie, bien qu'elle implique des dépenses en capital initiales plus élevées dans le développement de la chaussée jusqu'à l'étendue la plus éloignée de chaque panneau avant que la longue taille ne puisse commencer. Dans la mesure du possible, les routes sont désormais exploitées dans la couture, à l'aide de mineurs continus, le support de boulons d'ancrage remplaçant les arches et les fermes en acier qui étaient utilisées auparavant afin de fournir un support positif aux roches sus-jacentes, plutôt qu'une réaction passive aux mouvements des roches. Son applicabilité est toutefois limitée aux roches de toit compétentes.

Précautions de sécurité

Les statistiques de l'OIT (1994) indiquent une grande variation géographique du taux de décès dans les mines de charbon, bien que ces données doivent tenir compte du niveau de sophistication de l'exploitation minière et du nombre de travailleurs employés pays par pays. Les conditions se sont améliorées dans de nombreux pays industrialisés.

Les incidents miniers majeurs sont désormais relativement peu fréquents, car les normes d'ingénierie se sont améliorées et la résistance au feu a été incorporée dans des matériaux tels que les bandes transporteuses et les fluides hydrauliques utilisés sous terre. Néanmoins, le potentiel d'incidents pouvant causer des dommages personnels ou structurels demeure. Des explosions de gaz méthane et de poussière de charbon se produisent encore, malgré des pratiques de ventilation largement améliorées, et les chutes de toit représentent la majorité des accidents graves dans le monde. Les incendies, qu'ils soient sur des équipements ou survenant à la suite d'une combustion spontanée, représentent un danger particulier.

Si l'on considère les deux extrêmes, l'exploitation minière à forte intensité de main-d'œuvre et hautement mécanisée, il existe également de grandes différences dans les taux d'accidents et les types d'incidents impliqués. Les travailleurs employés dans une mine manuelle à petite échelle sont plus susceptibles d'être blessés par des chutes de pierres ou de charbon du toit ou des parois latérales de la chaussée. Ils risquent également une plus grande exposition à la poussière et aux gaz inflammables si les systèmes de ventilation sont inadéquats.

L'exploitation minière par chambres et piliers et le développement de routes pour permettre l'accès aux panneaux de longue paroi nécessitent un support pour les roches du toit et des parois latérales. Le type et la densité du support varient en fonction de l'épaisseur du filon, de la compétence des roches sus-jacentes et de la profondeur du filon, entre autres facteurs. L'endroit le plus dangereux de toute mine se trouve sous un toit non soutenu, et la plupart des pays imposent des contraintes législatives strictes sur la longueur de la chaussée qui peut être développée avant l'installation du soutien. La récupération des piliers dans les opérations à chambres et piliers présente des risques spécifiques en raison du potentiel d'effondrement soudain du toit et doit être planifiée avec soin pour éviter un risque accru pour les travailleurs.

Les fronts de taille modernes à haute productivité nécessitent une équipe de six à huit opérateurs, de sorte que le nombre de personnes exposées à des dangers potentiels est considérablement réduit. La poussière générée par la cisaille à longue taille est une préoccupation majeure. La coupe du charbon est ainsi parfois restreinte à une seule direction le long du front de taille pour profiter du flux de ventilation pour évacuer les poussières des opérateurs de la cisaille. La chaleur générée par des machines électriques de plus en plus puissantes dans les confins du front a également des effets potentiellement délétères sur les travailleurs du front, d'autant plus que les mines deviennent plus profondes.

La vitesse à laquelle les tondeurs travaillent le long du front augmente également. Des vitesses de coupe allant jusqu'à 45 m/minute sont activement envisagées à la fin des années 1990. La capacité des travailleurs à suivre physiquement le coup de charbon se déplaçant à plusieurs reprises sur un front de taille de 300 m de long pendant un quart de travail complet est douteuse, et l'augmentation de la vitesse de la cisaille est donc une incitation majeure à l'introduction plus large de systèmes d'automatisation pour lesquels les mineurs agiraient. en tant que moniteurs plutôt qu'en tant qu'opérateurs sur le terrain.

La récupération de l'équipement facial et son transfert vers un nouveau chantier présentent des risques uniques pour les travailleurs. Des méthodes innovantes ont été développées pour sécuriser le toit longwall et le charbon de face afin de minimiser les risques de chutes de pierres lors de l'opération de transfert. Cependant, les pièces individuelles de la machinerie sont extrêmement lourdes (plus de 20 tonnes pour un grand support frontal et considérablement plus pour une cisaille), et malgré l'utilisation de transporteurs conçus sur mesure, il subsiste un risque d'écrasement ou de levage lors de la récupération de longue taille. .

 

Retour

Lire 14614 fois Dernière mise à jour le mardi, Juin 28 2011 12: 18

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références Mines et Carrières

Agricola, G. 1950. De Re Metallica, traduit par HC Hoover et LH Hoover. New York : Publications de Douvres.

Bickel, KL. 1987. Analyse de l'équipement minier à moteur diesel. Dans Actes du Séminaire de transfert de technologie du Bureau des mines : Diesels dans les mines souterraines. Circulaire d'information 9141. Washington, DC : Bureau des Mines.

Bureau des Mines. 1978. Prévention des incendies et des explosions dans les mines de charbon. Circulaire d'information 8768. Washington, DC : Bureau des mines.

—. 1988. Développements récents dans la protection contre les incendies métalliques et non métalliques. Circulaire d'information 9206. Washington, DC : Bureau des Mines.

Chamberlain, EAC. 1970. L'oxydation à température ambiante du charbon en relation avec la détection précoce de l'échauffement spontané. Ingénieur des Mines (Octobre) 130(121):1-6.

Ellicott, CW. 1981. Évaluation de l'explosibilité des mélanges de gaz et surveillance des tendances de temps d'échantillonnage. Actes du Symposium sur les allumages, les explosions et les incendies. Illawara : Institut australien des mines et de la métallurgie.

Agence de protection de l'environnement (Australie). 1996. Meilleures pratiques de gestion environnementale dans l'exploitation minière. Canberra : Agence de protection de l'environnement.

Funkemeyer, M et FJ Kock. 1989. Prévention des incendies dans les coutures de travail sujettes à la combustion spontanée. Gluckauf 9-12.

Graham, JI. 1921. La production normale de monoxyde de carbone dans les mines de charbon. Transactions de l'Institut des ingénieurs miniers 60:222-234.

Grannes, SG, MA Ackerson et GR Green. 1990. Prévention des défaillances des systèmes d'extinction automatique des incendies sur les convoyeurs à bande des mines souterraines. Circulaire d'information 9264. Washington, DC : Bureau des mines.

Greuer, RE. 1974. Étude de la lutte contre les incendies de mines à l'aide de gaz inertes. Rapport de contrat USBM n° S0231075. Washington, DC : Bureau des Mines.

Griffon, RE. 1979. Évaluation dans la mine des détecteurs de fumée. Circulaire d'information 8808. Washington, DC : Bureau des Mines.

Hartman, HL (éd.). 1992. SME Mining Engineering Handbook, 2e édition. Baltimore, MD : Société pour l'exploitation minière, la métallurgie et l'exploration.

Hertzberg, M. 1982. Inhibition et extinction des explosions de poussière de charbon et de méthane. Rapport d'enquête 8708. Washington, DC : Bureau des mines.

Hoek, E, PK Kaiser et WF Bawden. 1995. Conception de Suppoert pour les mines souterraines de roche dure. Rotterdam : AA Balkema.

Hughes, AJ et WE Raybold. 1960. La détermination rapide de l'explosibilité des gaz d'incendie de mine. Ingénieur des Mines 29:37-53.

Conseil international sur les métaux et l'environnement (ICME). 1996. Études de cas illustrant les pratiques environnementales dans les procédés miniers et métallurgiques. Ottawa : ICME.

Organisation internationale du travail (OIT). 1994. Développements récents dans l'industrie charbonnière. Genève : OIT.

Jones, JE et JC Trickett. 1955. Quelques observations sur l'examen des gaz résultant des explosions dans les houillères. Transactions de l'Institut des ingénieurs des mines 114 : 768-790.

Mackenzie-Wood P et J Strang. 1990. Gaz d'incendie et leur interprétation. Ingénieur minier 149(345):470-478.

Association pour la prévention des accidents dans les mines de l'Ontario. sd Lignes directrices sur la préparation aux situations d'urgence. Rapport du Comité technique permanent. North Bay : Association pour la prévention des accidents dans les mines de l'Ontario.

Mitchell, D et F Burns. 1979. Interprétation de l'état d'un incendie de mine. Washington, DC : Département du travail des États-Unis.

Morris, RM. 1988. Un nouveau rapport d'incendie pour déterminer les conditions dans les zones étanches. Ingénieur minier 147(317):369-375.

Morrow, GS et CD Litton. 1992. Évaluation dans la mine des détecteurs de fumée. Circulaire d'information 9311. Washington, DC : Bureau des mines.

Association nationale de protection contre les incendies (NFPA). 1992a. Code de prévention des incendies. NFPA 1. Quincy, MA : NFPA.

—. 1992b. Standard sur les systèmes de carburant pulvérisé. NFPA 8503. Quincy, MA : NFPA.

—. 1994a. Norme de prévention des incendies lors de l'utilisation de procédés de coupage et de soudage. NFPA 51B. Quincy, MA : NFPA.

—. 1994b. Norme pour les extincteurs portatifs. NFPA 10. Quincy, MA : NFPA.

—. 1994c. Norme pour les systèmes de mousse à foisonnement moyen et élevé. NFPA 11A. Quncy, MA : NFPA.

—. 1994d. Norme pour les systèmes d'extinction à poudre chimique. NFPA 17. Quincy, MA : NFPA.

—. 1994e. Norme pour les usines de préparation du charbon. NFPA 120. Quincy, MA : NFPA.

—. 1995a. Norme pour la prévention et le contrôle des incendies dans les mines souterraines métalliques et non métalliques. NFPA 122. Quincy, MA : NFPA.

—. 1995b. Norme pour la prévention et le contrôle des incendies dans les mines souterraines de charbon bitumineux. NFPA 123. Quincy, MA : NFPA.

—. 1996a. Norme sur la protection contre l'incendie pour l'équipement minier à ciel ouvert automoteur et mobile. NFPA 121. Quincy, MA : NFPA.

—. 1996b. Code des liquides inflammables et combustibles. NFPA 30. Quincy, MA : NFPA.

—. 1996c. Code national de l'électricité. NFPA 70. Quincy, MA : NFPA.

—. 1996d. Code national d'alarme incendie. NFPA 72. Quincy, MA : NFPA.

—. 1996e. Norme pour l'installation de systèmes de gicleurs. NFPA 13. Quincy, MA : NFPA.

—. 1996f. Norme pour l'installation de systèmes de pulvérisation d'eau. NFPA 15. Quincy, MA : NFPA.

—. 1996g. Norme sur les systèmes d'extinction d'incendie à agent propre. NFPA 2001. Quincy, MA : NFPA.

—. 1996h. Pratique recommandée pour la protection contre les incendies dans les centrales électriques et les stations de conversion CC haute tension. NFPA 850. Quincy, MA : NFPA.

Ng, D et CP Lazzara. 1990. Performance des barrages en blocs de béton et en panneaux d'acier lors d'un incendie de mine simulé. Technologie du feu 26(1):51-76.

Ninterman, DJ. 1978. Oxydation spontanée et combustion des minerais sulfurés dans les mines souterraines. Circulaire d'information 8775. Washington, DC : Bureau des Mines.

Pomroy, WH et TL Muldoon. 1983. Un nouveau système d'avertissement d'incendie de gaz puant. Dans Actes de l'assemblée générale annuelle et des sessions techniques du MAPAO de 1983. North Bay : Association pour la prévention des accidents dans les mines de l'Ontario.

Ramaswatny, A et PS Katiyar. 1988. Expériences avec l'azote liquide dans la lutte contre les feux de charbon souterrains. Journal of Mines Metals and Fuels 36(9):415-424.

Smith, AC et CN Thompson. 1991. Développement et application d'une méthode de prédiction du potentiel de combustion spontanée des charbons bitumineux. Présenté à la 24e Conférence internationale sur la sécurité dans les instituts de recherche minière, Makeevka State Research Institute for Safety in the Coal Industry, Makeevka, Fédération de Russie.

Timmons, ED, RP Vinson et FN Kissel. 1979. Prévision des dangers du méthane dans les mines métalliques et non métalliques. Rapport d'enquête 8392. Washington, DC : Bureau des mines.

Département de la coopération technique pour le développement des Nations Unies (ONU) et Fondation allemande pour le développement international. 1992. Exploitation minière et environnement : les lignes directrices de Berlin. Londres: Livres du journal minier.

Programme des Nations Unies pour l'environnement (PNUE). 1991. Aspects environnementaux de certains métaux non ferreux (Cu, Ni, Pb, Zn, Au) dans l'extraction minière. Paris : PNUE.