Mercredi, Mars 16 2011 18: 52

Fabrication de batteries au plomb

Évaluer cet élément
(12 votes)

La première conception pratique d'une batterie au plomb a été développée par Gaston Planté en 1860, et la production n'a cessé de croître depuis. Les batteries automobiles représentent la principale utilisation de la technologie plomb-acide, suivies des batteries industrielles (alimentation de secours et traction). Plus de la moitié de la production mondiale de plomb est destinée aux batteries.

Le faible coût et la facilité de fabrication des batteries plomb-acide par rapport aux autres couples électrochimiques devraient assurer une demande continue pour ce système dans le futur.

La batterie plomb-acide a une électrode positive de peroxyde de plomb (PbO2) et une électrode négative en plomb spongieux de grande surface (Pb). L'électrolyte est une solution d'acide sulfurique de densité comprise entre 1.21 et 1.30 (28 à 39 % en poids). Lors de la décharge, les deux électrodes se transforment en sulfate de plomb, comme indiqué ci-dessous :

Processus de fabrication

Le processus de fabrication, qui est illustré dans l'organigramme du processus (figure 1), est décrit ci-dessous :

Figure 1. Processus de fabrication d'une batterie au plomb

ELA020F1

Fabrication d'oxyde : L'oxyde de plomb est fabriqué à partir de porcs de plomb (masses de plomb provenant de fours de fusion) par l'une des deux méthodes suivantes: un pot Barton ou un processus de broyage. Dans le procédé Barton Pot, de l'air est soufflé sur du plomb fondu pour produire un fin jet de gouttelettes de plomb. Les gouttelettes réagissent avec l'oxygène de l'air pour former l'oxyde, qui consiste en un noyau de plomb recouvert d'un revêtement d'oxyde de plomb (PbO).

Dans le processus de broyage, le plomb solide (dont la taille peut varier de petites boules à des porcs complets) est introduit dans un broyeur rotatif. L'action de culbutage du plomb génère de la chaleur et la surface du plomb s'oxyde. Au fur et à mesure que les particules roulent dans le tambour, les couches superficielles d'oxyde sont éliminées pour exposer plus de plomb propre à l'oxydation. Le courant d'air transporte la poudre vers un filtre à manches, où elle est collectée.

Fabrication de grille : Les grilles sont produites principalement par coulée (automatique et manuelle) ou, en particulier pour les batteries automobiles, par expansion à partir d'un alliage de plomb corroyé ou coulé.

Collage : La pâte de batterie est fabriquée en mélangeant l'oxyde avec de l'eau, de l'acide sulfurique et une gamme d'additifs exclusifs. La pâte est pressée à la machine ou à la main dans le treillis de la grille, et les plaques sont généralement séchées dans un four à haute température.

Les plaques collées sont durcies en les stockant dans des fours dans des conditions soigneusement contrôlées de température, d'humidité et de temps. Le plomb libre dans la pâte se transforme en oxyde de plomb.

Formation, découpe et assemblage de plaques : Les plaques de batterie subissent un processus de formation électrique de deux manières. Dans la formation du réservoir, les plaques sont chargées dans de grands bains d'acide sulfurique dilué et un courant continu est passé pour former les plaques positives et négatives. Après séchage, les plaques sont découpées et assemblées, avec des séparateurs entre elles, en boîtiers de batterie. Des plaques de même polarité sont connectées en soudant ensemble les cosses de plaque.

Dans la formation de pots, les plaques sont formées électriquement après avoir été assemblées dans des boîtiers de batterie.

Risques et contrôles pour la santé au travail

Plomb

Le plomb est le principal danger pour la santé associé à la fabrication de batteries. La principale voie d'exposition est l'inhalation, mais l'ingestion peut également poser problème si une attention insuffisante est portée à l'hygiène personnelle. L'exposition peut se produire à toutes les étapes de la production.

La fabrication d'oxyde de plomb est potentiellement très dangereuse. Les expositions sont contrôlées en automatisant le processus, éloignant ainsi les travailleurs du danger. Dans de nombreuses usines, le processus est géré par une seule personne.

Dans la coulée en grille, les expositions aux fumées de plomb sont minimisées par l'utilisation d'une ventilation par aspiration locale (LEV) associée à un contrôle thermostatique des pots en plomb (les émissions de fumées de plomb augmentent nettement au-dessus de 500 C). Les scories contenant du plomb, qui se forment au-dessus du plomb fondu, peuvent également causer des problèmes. Les scories contiennent une grande quantité de poussière très fine et il faut faire très attention lors de leur élimination.

Les zones de collage ont traditionnellement entraîné des expositions élevées au plomb. La méthode de fabrication entraîne souvent des éclaboussures de boue de plomb sur les machines, le sol, les tabliers et les bottes. Ces éclaboussures sèchent et produisent de la poussière de plomb en suspension dans l'air. Le contrôle est obtenu en gardant le sol mouillé en permanence et en épongeant fréquemment les tabliers.

Les expositions au plomb dans d'autres départements (formage, découpe et assemblage de plaques) se produisent lors de la manipulation de plaques sèches et poussiéreuses. Les expositions sont minimisées par LEV ainsi que l'utilisation appropriée de l'équipement de protection individuelle.

De nombreux pays ont mis en place une législation pour limiter le degré d'exposition professionnelle, et des normes numériques existent pour les niveaux de plomb dans l'air et dans le sang.

Un professionnel de la santé au travail est normalement employé pour prélever des échantillons de sang sur les travailleurs exposés. La fréquence des tests sanguins peut varier d'annuelle pour les travailleurs à faible risque à trimestrielle pour ceux des services à haut risque (p. ex., collage). Si la plombémie d'un travailleur dépasse la limite réglementaire, le travailleur doit être soustrait à toute exposition professionnelle au plomb jusqu'à ce que la plombémie tombe à un niveau jugé acceptable par le médecin-conseil.

L'échantillonnage de l'air pour le plomb est complémentaire au dosage de la plombémie. L'échantillonnage personnel, plutôt que statique, est la méthode préférée. Un grand nombre d'échantillons de plomb dans l'air est généralement nécessaire en raison de la variabilité inhérente des résultats. L'utilisation de procédures statistiques correctes dans l'analyse des données peut fournir des informations sur les sources de plomb et peut fournir une base pour apporter des améliorations à la conception technique. Un échantillonnage régulier de l'air peut être utilisé pour évaluer l'efficacité continue des systèmes de contrôle.

Les concentrations admissibles de plomb dans l'air et les concentrations de plomb dans le sang varient d'un pays à l'autre et se situent actuellement entre 0.05 et 0.20 mg/m3 et 50 à 80 mg/dl respectivement. Il y a une tendance continue à la baisse de ces limites.

En plus des contrôles techniques normaux, d'autres mesures sont nécessaires pour minimiser les expositions au plomb. Il est interdit de manger, de fumer, de boire ou de mâcher de la gomme dans toute zone de production.

Des installations appropriées pour se laver et se changer devraient être prévues pour permettre de ranger les vêtements de travail dans une zone séparée des vêtements et des chaussures personnels. Les installations de lavage/douche doivent être situées entre les zones propres et sales.

acide sulfurique

Au cours du processus de formation, le matériau actif sur les plaques est converti en PbO2 à l'électrode positive et Pb à l'électrode négative. Au fur et à mesure que les plaques se chargent complètement, le courant de formation commence à dissocier l'eau de l'électrolyte en hydrogène et oxygène :

Positive :        

Négatif:      

Le gazage génère un brouillard d'acide sulfurique. L'érosion dentaire était, à une certaine époque, une caractéristique courante chez les travailleurs des zones de formation. Les entreprises de batteries ont traditionnellement recours aux services d'un dentiste, et beaucoup continuent de le faire.

Des études récentes (IARC 1992) ont suggéré un lien possible entre les expositions aux brouillards d'acides inorganiques (dont l'acide sulfurique) et le cancer du larynx. Les recherches se poursuivent dans ce domaine.

La norme d'exposition professionnelle au Royaume-Uni pour le brouillard d'acide sulfurique est de 1 mg/m3. Les expositions peuvent être maintenues en dessous de ce niveau avec LEV en place sur les circuits de formation.

L'exposition cutanée au liquide d'acide sulfurique corrosif est également préoccupante. Les précautions comprennent les équipements de protection individuelle, les douches oculaires et les douches d'urgence.

Talc

Le talc est utilisé dans certaines opérations de moulage à la main comme agent de démoulage. Une exposition à long terme à la poussière de talc peut provoquer une pneumoconiose, et il est important que la poussière soit contrôlée par une ventilation appropriée et des mesures de contrôle du processus.

Fibres minérales artificielles (FMM)

Les séparateurs sont utilisés dans les batteries au plomb pour isoler électriquement le positif des plaques négatives. Divers types de matériaux ont été utilisés au fil des ans (par exemple, le caoutchouc, la cellulose, le polychlorure de vinyle (PVC), le polyéthylène), mais, de plus en plus, des séparateurs en fibre de verre sont utilisés. Ces séparateurs sont fabriqués à partir de MMF.

Un risque accru de cancer du poumon chez les travailleurs a été démontré au tout début de l'industrie de la laine minérale (HSE 1990). Cependant, cela peut avoir été causé par d'autres matériaux cancérigènes utilisés à l'époque. Il est néanmoins prudent de veiller à ce que toute exposition aux fonds monétaires soit réduite au minimum soit par une fermeture totale, soit par une LEV.

Stibine et arsine

L'antimoine et l'arsenic sont couramment utilisés dans les alliages de plomb et la stibine (SbH3) ou arsine (AsH3) peut être produit dans certaines circonstances :

    • lorsqu'une cellule subit une surcharge excessive
    • lorsque des scories provenant d'un alliage plomb-calcium sont mélangées avec des scories provenant d'un alliage plomb-antimoine ou plomb-arsenic. Les deux scories peuvent réagir chimiquement pour former du stibide de calcium ou de l'arséniure de calcium qui, lors d'un mouillage ultérieur, peut générer du SbH3 ou cendre3.

       

      La stibine et l'arsine sont deux gaz hautement toxiques qui agissent en détruisant les globules rouges. Des contrôles de processus stricts lors de la fabrication de la batterie doivent prévenir tout risque d'exposition à ces gaz.

      Dangers physiques

      Divers risques physiques existent également dans la fabrication des batteries (par exemple, le bruit, les éclaboussures de métal en fusion et d'acide, les risques électriques et la manipulation manuelle), mais les risques qui en découlent peuvent être réduits par une ingénierie et des contrôles de processus appropriés.

      Problèmes environnementaux

      L'effet du plomb sur la santé des enfants a été largement étudié. Il est donc très important que les rejets de plomb dans l'environnement soient réduits au minimum. Pour les usines de batteries, les émissions atmosphériques les plus polluantes doivent être filtrées. Tous les déchets de procédé (généralement une boue contenant du plomb acide) doivent être traités dans une usine de traitement des effluents pour neutraliser l'acide et séparer le plomb de la suspension.

      Développements futurs

      Il est probable qu'il y aura de plus en plus de restrictions sur l'utilisation du plomb à l'avenir. D'un point de vue professionnel, cela se traduira par une automatisation croissante des processus afin que le travailleur soit éloigné du danger.

       

      Retour

      Lire 32361 fois Dernière modification le samedi, 30 Juillet 2022 20: 55
      Plus dans cette catégorie: « Profil général Piles "

      " AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

      Table des matières

      Appareils électriques et références d'équipements

      Ducatman, AM, BS Ducatman et JA Barnes. 1988. Danger des batteries au lithium : implications de planification à l'ancienne des nouvelles technologies. J Occup Med 30:309–311.

      Responsable de la santé et de la sécurité (HSE). 1990. Fibres minérales artificielles. Note d'orientation exécutive EH46. Londres : HSE.

      Centre international de recherche sur le cancer (CIRC). 1992. Monographies sur l'évaluation des risques cancérigènes pour l'homme, Vol. 54. Lyon : CIRC.

      Matte TD, JP Figueroa, G Burr, JP Flesch, RH Keenlyside et EL Baker. 1989. Exposition au plomb chez les travailleurs des batteries au plomb en Jamaïque. Amer J Ind Med 16:167–177.

      McDiarmid, MA, CS Freeman, EA Grossman et J Martonik. 1996. Résultats de la surveillance biologique des travailleurs exposés au cadmium. Amer Ind Hyg Assoc J 57:1019–1023.

      Roels, HA, JP Ghyselen, E Ceulemans et RR Lauwerys. 1992. Évaluation du niveau d'exposition admissible au manganèse chez les travailleurs exposés à la poussière de dioxyde de manganèse. Brit J Ind Med 49:25–34.

      Teleska, DR. 1983. Enquête sur les systèmes de contrôle des risques pour la santé liés à l'utilisation et au traitement du mercure. Rapport no CT-109-4. Cincinnati, Ohio : NIOSH.

      Wallis, G, R Menke et C Chelton. 1993. Essai sur le terrain en milieu de travail d'un demi-masque anti-poussière jetable à pression négative (3M 8710). Amer Ind Hyg Assoc J 54:576-583.