Mercredi, Mars 16 2011 19: 06

Fabrication de câbles électriques

Évaluer cet élément
(1 Vote)

Les câbles sont disponibles dans une variété de tailles pour différentes utilisations, des câbles d'alimentation à surtension qui transportent de l'énergie électrique à plus de 100 kilovolts, jusqu'aux câbles de télécommunication. Dans le passé, ces derniers utilisaient des conducteurs en cuivre, mais ceux-ci ont été remplacés par des câbles à fibres optiques, qui transportent plus d'informations dans un câble beaucoup plus petit. Entre les deux se trouvent les câbles généraux utilisés à des fins de câblage domestique, d'autres câbles flexibles et des câbles d'alimentation à des tensions inférieures à celles des câbles de surtension. En outre, il existe des câbles plus spécialisés tels que les câbles à isolation minérale (utilisés là où leur protection inhérente contre les brûlures lors d'un incendie est cruciale, par exemple, dans une usine, un hôtel ou à bord d'un navire), les fils émaillés (utilisés comme câbles électriques enroulements pour moteurs), fil de guirlande (utilisé dans la connexion bouclée d'un combiné téléphonique), câbles de cuisinière (qui utilisaient historiquement une isolation en amiante mais utilisent maintenant d'autres matériaux) et ainsi de suite.

Matériaux et procédés

Chefs

Le matériau le plus couramment utilisé comme conducteur dans les câbles a toujours été le cuivre, en raison de sa conductivité électrique. Le cuivre doit être affiné jusqu'à une grande pureté avant de pouvoir être transformé en conducteur. Le raffinage du cuivre à partir de minerai ou de ferraille est un processus en deux étapes :

  1. affinage au feu dans un grand four pour éliminer les impuretés indésirables et couler une anode en cuivre
  2. affinage électrolytique dans une cellule électrique contenant de l'acide sulfurique, à partir de laquelle du cuivre très pur est déposé sur la cathode.

 

Dans les usines modernes, les cathodes de cuivre sont fondues dans un four à cuve et coulées en continu et laminées en tige de cuivre. Cette tige est étirée à la taille requise sur une machine à tréfiler en tirant le cuivre à travers une série de matrices précises. Historiquement, l'opération de tréfilage était effectuée dans un lieu central, avec de nombreuses machines produisant des fils de différentes tailles. Plus récemment, de plus petites usines autonomes ont leur propre opération de tréfilage plus petite. Pour certaines applications spécialisées, le conducteur en cuivre est plaqué d'un revêtement métallique, tel que l'étain, l'argent ou le zinc.

Les conducteurs en aluminium sont utilisés dans les câbles électriques aériens où le poids plus léger compense largement la conductivité inférieure par rapport au cuivre. Les conducteurs en aluminium sont fabriqués en pressant une billette d'aluminium chauffée à travers une filière à l'aide d'une presse à extrusion.

Des conducteurs métalliques plus spécialisés utilisent des alliages spéciaux pour une application particulière. Un alliage cadmium-cuivre a été utilisé pour les caténaires aériens (le conducteur aérien utilisé sur un chemin de fer) et pour le fil de guirlande utilisé dans un combiné téléphonique. Le cadmium augmente la résistance à la traction par rapport au cuivre pur et est utilisé pour que la caténaire ne s'affaisse pas entre les supports. L'alliage béryllium-cuivre est également utilisé dans certaines applications.

Les fibres optiques, constituées d'un filament continu de verre de haute qualité optique pour transmettre les télécommunications, ont été développées au début des années 1980. Cela nécessitait une toute nouvelle technologie de fabrication. Le tétrachlorure de silicium est brûlé à l'intérieur d'un tour pour déposer du dioxyde de silicium sur une ébauche. Le dioxyde de silicium est transformé en verre par chauffage dans une atmosphère chlorée ; puis il est étiré sur mesure et un revêtement protecteur est appliqué.

Isolation

De nombreux matériaux d'isolation ont été utilisés sur différents types de câbles. Les types les plus courants sont les matières plastiques telles que le PVC, le polyéthylène, le polytétrafluoroéthylène (PTFE) et les polyamides. Dans chaque cas, le plastique est formulé pour répondre à une spécification technique et est appliqué à l'extérieur du conducteur à l'aide d'une machine d'extrusion. Dans certains cas, des matériaux peuvent être ajoutés au composé plastique pour une application particulière. Certains câbles d'alimentation, par exemple, incorporent un composé de silane pour réticuler le plastique. Dans les cas où le câble va être enfoui dans le sol, un pesticide est ajouté pour empêcher les termites de manger l'isolant.

Certains câbles flexibles, en particulier ceux des mines souterraines, utilisent une isolation en caoutchouc. Des centaines de composés de caoutchouc différents sont nécessaires pour répondre à différentes spécifications, et une installation spécialisée dans le mélange de caoutchouc est nécessaire. Le caoutchouc est extrudé sur le conducteur. Il doit également être vulcanisé en passant soit dans un bain de sel de nitrite chaud, soit dans un liquide sous pression. Pour empêcher les conducteurs isolés en caoutchouc adjacents de coller ensemble, ils sont tirés à travers de la poudre de talc.

Le conducteur à l'intérieur d'un câble peut être enveloppé d'un isolant tel que du papier (qui peut avoir été trempé dans une huile minérale ou synthétique) ou du mica. Une gaine extérieure est ensuite appliquée, typiquement par extrusion plastique.

Deux méthodes de fabrication de câbles à isolation minérale (IM) ont été développées. Dans le premier, un tube en cuivre contient un certain nombre de conducteurs en cuivre massif insérés dans celui-ci, et l'espace entre est rempli d'une poudre d'oxyde de magnésium. L'ensemble est ensuite étiré à travers une série de matrices à la taille requise. L'autre technique consiste à souder en continu une spirale de cuivre autour de conducteurs séparés par de la poudre. En utilisation, la gaine extérieure en cuivre d'un câble MI est la connexion à la terre et les conducteurs internes transportent le courant. Bien qu'aucune couche extérieure ne soit nécessaire, certains clients spécifient une gaine en PVC pour des raisons esthétiques. Ceci est contre-productif, car le principal avantage du câble MI est qu'il ne brûle pas, et une gaine en PVC annule quelque peu cet avantage.

Ces dernières années, le comportement des câbles au feu a reçu une attention croissante pour deux raisons :

  1. La plupart des caoutchoucs et des plastiques, les matériaux d'isolation traditionnels, émettent de grandes quantités de fumée et de gaz toxiques lors d'un incendie, et dans un certain nombre d'incendies très médiatisés, cela a été la principale cause de décès.
  2. Une fois qu'un câble a brûlé, les conducteurs se touchent et fusionnent le circuit, et ainsi l'alimentation électrique est perdue. Cela a conduit au développement de composés à faible dégagement de fumée et de feu (LSF), à la fois pour les matériaux en plastique et en caoutchouc. Il convient toutefois de réaliser que les meilleures performances en cas d'incendie seront toujours obtenues à partir d'un câble à isolation minérale.

 

Un certain nombre de matériaux spécialisés sont utilisés pour certains câbles. Les câbles de supertension sont remplis d'huile à la fois pour les propriétés d'isolation et de refroidissement. D'autres câbles utilisent une graisse hydrocarbonée appelée MIND, de la vaseline ou une gaine de plomb. Les fils émaillés sont généralement fabriqués en les enduisant d'un émail polyuréthane dissous dans du crésol.

Câblerie

Dans de nombreux câbles, les conducteurs isolés individuels sont torsadés ensemble pour former une configuration particulière. Un certain nombre de bobines contenant les conducteurs individuels tournent autour d'un axe central lorsque le câble est tiré à travers la machine, dans des opérations connues sous le nom de échouage ainsi que mise en place.

Certains câbles doivent être protégés contre les dommages mécaniques. Cela se fait souvent par tressage, où un matériau est entrelacé autour de l'isolant extérieur d'un câble flexible de sorte que chaque toron se croise encore et encore en spirale. Un exemple d'un tel câble tressé (au moins au Royaume-Uni) est celui utilisé sur les fers électriques, où le fil textile est utilisé comme matériau de tressage. Dans d'autres cas, du fil d'acier est utilisé pour le tressage, où l'opération est appelée blindage.

Opérations annexes

Les câbles plus gros sont fournis sur des tambours pouvant atteindre quelques mètres de diamètre. Traditionnellement, les tambours sont en bois, mais ceux en acier ont été utilisés. Un tambour en bois est fabriqué en clouant du bois scié à l'aide d'une machine ou d'un cloueur pneumatique. Un conservateur cuivre-chrome-arsenic est utilisé pour empêcher le bois de pourrir. Les câbles plus petits sont généralement fournis sur une bobine en carton.

L'opération de raccordement des deux extrémités de câbles entre elles, dite assemblage, peut très bien devoir être effectué dans un endroit éloigné. Le joint doit non seulement avoir une bonne connexion électrique, mais doit également être capable de résister aux conditions environnementales futures. Les composés de jointoiement utilisés sont généralement des résines acryliques et incorporent à la fois des composés isocyanates et de la poudre de silice.

Les connecteurs de câbles sont généralement fabriqués en laiton sur des tours automatiques qui les fabriquent à partir de barres. Les machines sont refroidies et lubrifiées à l'aide d'une émulsion eau-huile. Les serre-câbles sont fabriqués par des machines d'injection plastique.

Les dangers et leur prévention

Le bruit est le danger pour la santé le plus répandu dans l'industrie du câble. Les opérations les plus bruyantes sont :

  • tréfilage
  • tressage
  • la raffinerie de cuivre
  • coulée continue de barres de cuivre
  • fabrication de tambours de câbles.

 

Des niveaux de bruit supérieurs à 90 dBA sont courants dans ces zones. Pour le tréfilage et le tressage, le niveau sonore global dépend du nombre et de l'emplacement des machines et de l'environnement acoustique. La disposition de la machine doit être planifiée pour minimiser les expositions au bruit. Des enceintes acoustiques soigneusement conçues sont les moyens les plus efficaces pour contrôler le bruit, mais elles sont coûteuses. Pour la raffinerie de cuivre et la coulée continue de barres de cuivre, les principales sources de bruit sont les brûleurs, qui doivent être conçus pour produire de faibles émissions sonores. Dans le cas de la fabrication de tambours de câble, les cloueuses pneumatiques sont la principale source de bruit, qui peut être réduite en abaissant la pression de la conduite d'air et en installant des silencieux d'échappement. La norme de l'industrie dans la plupart des cas ci-dessus, cependant, est de délivrer une protection auditive aux travailleurs dans les zones touchées, mais une telle protection sera plus inconfortable que d'habitude en raison des environnements chauds dans la raffinerie de cuivre et de la coulée continue de tiges de cuivre. Une audiométrie régulière doit également être effectuée pour surveiller l'audition de chaque individu.

Bon nombre des risques pour la sécurité et leur prévention sont les mêmes que ceux de nombreuses autres industries manufacturières. Cependant, certaines machines de câblerie présentent des risques particuliers en ce qu'elles comportent de nombreuses bobines de conducteurs tournant autour de deux axes en même temps. Il est essentiel de s'assurer que les protections de la machine sont verrouillées pour empêcher la machine de fonctionner à moins que les protections ne soient en place pour empêcher l'accès aux lignes de contact et autres pièces rotatives, telles que les gros tambours de câble. Lors de l'enfilage initial de la machine, lorsqu'il peut être nécessaire de permettre à l'opérateur d'accéder à l'intérieur du protecteur de la machine, la machine ne doit pouvoir se déplacer que de quelques centimètres à la fois. Des arrangements de verrouillage peuvent être obtenus en ayant une clé unique qui ouvre la protection ou doit être insérée dans la console de commande pour lui permettre de fonctionner.

Une évaluation du risque lié aux particules volantes - par exemple, si un fil se casse et se détache - doit être effectuée.

Les protections doivent de préférence être conçues pour empêcher physiquement ces particules d'atteindre l'opérateur. Lorsque cela n'est pas possible, une protection oculaire appropriée doit être délivrée et portée. Les opérations de tréfilage sont souvent désignées comme des zones où une protection oculaire doit être utilisée.

Chefs

Dans tout processus de métal chaud, comme une raffinerie de cuivre ou la coulée de tiges de cuivre, il faut empêcher l'eau d'entrer en contact avec le métal en fusion pour éviter une explosion. Le chargement du four peut entraîner l'échappement de vapeurs d'oxydes métalliques sur le lieu de travail. Ceci doit être contrôlé à l'aide d'une ventilation par aspiration locale efficace au-dessus de la porte de chargement. De même, les goulottes par lesquelles le métal en fusion passe du four à la machine de coulée et la machine de coulée elle-même doivent être contrôlées de manière adéquate.

Le principal danger dans la raffinerie électrolytique est le brouillard d'acide sulfurique dégagé par chaque cellule. Les concentrations atmosphériques doivent être maintenues en dessous de 1 mg/m3 par une ventilation appropriée pour éviter les irritations.

Lors de la coulée de tiges de cuivre, un danger supplémentaire peut être présenté par l'utilisation de panneaux isolants ou de couvertures pour conserver la chaleur autour de la roue de coulée. Les matériaux céramiques peuvent avoir remplacé l'amiante dans de telles applications, mais les fibres céramiques elles-mêmes doivent être manipulées avec beaucoup de soin pour éviter les expositions. De tels matériaux deviennent plus friables (c'est-à-dire se cassent facilement) après utilisation lorsqu'ils ont été affectés par la chaleur et qu'ils ont été exposés à des fibres respirables en suspension dans l'air lors de leur manipulation.

Un danger inhabituel est présenté dans la fabrication de câbles d'alimentation en aluminium. Une suspension de graphite dans une huile lourde est appliquée sur le piston de la presse à filer pour empêcher la billette d'aluminium de coller au piston. Lorsque le bélier est chaud, une partie de ce matériau est brûlée et monte dans l'espace du toit. À condition qu'il n'y ait pas d'opérateur de pont roulant à proximité et que des ventilateurs de toit soient installés et fonctionnent, il ne devrait y avoir aucun risque pour la santé des travailleurs.

La fabrication d'un alliage cadmium-cuivre ou d'un alliage béryllium-cuivre peut présenter des risques élevés pour les employés concernés. Étant donné que le cadmium bout bien en dessous du point de fusion du cuivre, des fumées d'oxyde de cadmium fraîchement générées seront générées en grande quantité chaque fois que du cadmium est ajouté au cuivre fondu (ce qui doit être le cas pour fabriquer l'alliage). Le processus ne peut être effectué en toute sécurité qu'avec une conception très soignée de la ventilation par aspiration locale. De même, la fabrication de l'alliage béryllium-cuivre nécessite une grande attention aux détails, car le béryllium est le plus toxique de tous les métaux toxiques et a les limites d'exposition les plus strictes.

La fabrication de fibres optiques est une opération hautement spécialisée et de haute technologie. Les produits chimiques utilisés présentent leurs propres risques particuliers et le contrôle de l'environnement de travail nécessite la conception, l'installation et la maintenance de systèmes complexes de ventilation LEV et de processus. Ces systèmes doivent être contrôlés par des registres de contrôle contrôlés par ordinateur. Les principaux dangers chimiques proviennent du chlore, du chlorure d'hydrogène et de l'ozone. De plus, les solvants utilisés pour nettoyer les matrices doivent être manipulés dans des hottes à extraction de vapeurs et le contact cutané avec les résines à base d'acrylate utilisées pour enrober les fibres doit être évité.

Isolation

Les opérations de mélange de plastique et de mélange de caoutchouc présentent des risques particuliers qui doivent être maîtrisés de manière adéquate (voir le chapitre Industrie du caoutchouc). Bien que l'industrie du câble puisse utiliser des composés différents des autres industries, les techniques de contrôle sont les mêmes.

Lorsqu'ils sont chauffés, les composés plastiques dégagent un mélange complexe de produits de dégradation thermique, dont la composition dépend du composé plastique d'origine et de la température à laquelle il est soumis. À la température de traitement normale des extrudeuses en plastique, les contaminants en suspension dans l'air sont généralement un problème relativement mineur, mais il est prudent d'installer une ventilation sur l'espace entre la tête de l'extrudeuse et le bac à eau utilisé pour refroidir le produit, principalement pour contrôler l'exposition au phtalate. plastifiants couramment utilisés dans le PVC. La phase de l'opération qui pourrait bien justifier une enquête plus approfondie se situe lors d'un basculement. L'opérateur doit se tenir au-dessus de la tête de l'extrudeuse pour retirer le composé plastique encore chaud, puis faire passer le nouveau composé (et sur le sol) jusqu'à ce que seule la nouvelle couleur passe et que le câble soit centralisé dans la tête de l'extrudeuse. Il peut être difficile de concevoir une LEV efficace pendant cette phase lorsque l'opérateur est si proche de la tête de l'extrudeuse.

Le polytétrafluoroéthylène (PTFE) présente un danger particulier. Il peut provoquer la fièvre des polymères, dont les symptômes ressemblent à ceux de la grippe. La condition est temporaire, mais doit être évitée en contrôlant adéquatement les expositions au composé chauffé.

L'utilisation du caoutchouc dans la fabrication de câbles a présenté un niveau de risque inférieur à celui d'autres utilisations du caoutchouc, comme dans l'industrie du pneumatique. Dans les deux industries, l'utilisation d'un antioxydant (Nonox S) contenant de la β-naphtylamine, jusqu'à son retrait en 1949, a entraîné des cas de cancer de la vessie jusqu'à 30 ans plus tard chez ceux qui avaient été exposés avant la date de retrait, mais aucun en ceux employés après 1949 seulement. L'industrie du câble, cependant, n'a pas connu l'augmentation de l'incidence d'autres cancers, en particulier du poumon et de l'estomac, observée dans l'industrie du pneumatique. La raison en est presque certainement que dans la fabrication de câbles, les machines d'extrusion et de vulcanisation sont fermées et que l'exposition des employés aux vapeurs de caoutchouc et à la poussière de caoutchouc était généralement beaucoup plus faible que dans l'industrie du pneumatique. Une exposition potentiellement préoccupante dans les usines de câbles en caoutchouc est l'utilisation de talc. Il est important de s'assurer que seule la forme non fibreuse du talc (c'est-à-dire une forme qui ne contient pas de trémolite fibreuse) est utilisée et que le talc est appliqué dans une boîte fermée avec une ventilation par aspiration locale.

De nombreux câbles sont imprimés avec des marques d'identification. Lorsque des imprimantes à jet vidéo modernes sont utilisées, le risque pour la santé est presque certainement négligeable en raison des très petites quantités de solvant utilisées. Cependant, d'autres techniques d'impression peuvent entraîner des expositions importantes aux solvants, soit pendant la production normale, soit plus généralement pendant les opérations de nettoyage. Des systèmes d'extraction appropriés doivent donc être utilisés pour contrôler ces expositions.

Les principaux risques liés à la fabrication de câbles MI sont l'exposition à la poussière, le bruit et les vibrations. Les deux premiers d'entre eux sont contrôlés par des techniques standard décrites ailleurs. L'exposition aux vibrations s'est produite dans le passé pendant sertissage, lorsqu'une pointe a été formée à l'extrémité du tube assemblé par insertion manuelle dans une machine à marteaux rotatifs, de sorte que la pointe puisse être insérée dans la machine à dessiner. Plus récemment, ce type de machine à sertir a été remplacé par des machines pneumatiques, ce qui a éliminé à la fois les vibrations et le bruit générés par l'ancienne méthode.

L'exposition au plomb pendant le gainage en plomb doit être contrôlée en utilisant une LEV adéquate et en interdisant de manger, de boire et de fumer dans les zones susceptibles d'être contaminées par le plomb. Une surveillance biologique régulière doit être entreprise en analysant des échantillons de sang pour la teneur en plomb dans un laboratoire qualifié.

Le crésol utilisé dans la fabrication des fils émaillés est corrosif et dégage une odeur caractéristique à très faible concentration. Une partie du polyuréthane est dégradée thermiquement dans les fours d'émaillage pour libérer du diisocyanate de toluène (TDI), un puissant sensibilisant respiratoire. Une bonne LEV est nécessaire autour des fours à post-combustion catalytique pour s'assurer que le TDI ne pollue pas la zone environnante.

Opérations annexes

Jointure les opérations présentent des dangers pour deux groupes distincts de travailleurs : ceux qui les fabriquent et ceux qui les utilisent. La fabrication implique la manipulation d'une poussière fibrogène (silice), d'un sensibilisant respiratoire (isocyanate) et d'un sensibilisant cutané (résine acrylique). Une LEV efficace doit être utilisée pour contrôler adéquatement les expositions des employés, et des gants appropriés doivent être portés pour éviter tout contact de la peau avec la résine. Le principal danger pour les utilisateurs des composés est la sensibilisation cutanée à la résine. Cela peut être difficile à contrôler car la dégauchisseuse peut ne pas être en mesure d'éviter complètement le contact avec la peau et se trouvera souvent dans un endroit éloigné d'une source d'eau à des fins de nettoyage. Un nettoyant pour les mains sans eau est donc indispensable.

Les risques environnementaux et leur prévention

Dans l'ensemble, la fabrication de câbles n'entraîne pas d'émissions significatives à l'extérieur de l'usine. Il existe trois exceptions à cette règle. La première est que l'exposition aux vapeurs de solvants utilisés pour l'impression et à d'autres fins est contrôlée par l'utilisation de systèmes LEV qui rejettent les vapeurs dans l'atmosphère. Ces émissions de composés organiques volatils (COV) sont l'un des composants nécessaires à la formation du smog photochimique et sont donc soumises à une pression croissante de la part des autorités réglementaires dans un certain nombre de pays. La deuxième exception est le rejet potentiel de TDI provenant de la fabrication de fils émaillés. La troisième exception est que, dans un certain nombre de cas, la fabrication des matières premières utilisées dans les câbles peut entraîner des émissions dans l'environnement si des mesures de contrôle ne sont pas prises. Les émissions de particules métalliques provenant d'une raffinerie de cuivre et de la fabrication d'alliages cadmium-cuivre ou béryllium-cuivre doivent chacune être canalisées vers des systèmes de filtres à manches appropriés. De même, toute émission de particules provenant du mélange de caoutchouc doit être canalisée vers une unité de filtre à manches. Les émissions de particules, de chlorure d'hydrogène et de chlore provenant de la fabrication des fibres optiques doivent être canalisées vers un système de filtre à manches suivi d'un épurateur de soude caustique.

 

Retour

Lire 11292 fois Dernière mise à jour le mardi, Juin 28 2011 13: 51

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Appareils électriques et références d'équipements

Ducatman, AM, BS Ducatman et JA Barnes. 1988. Danger des batteries au lithium : implications de planification à l'ancienne des nouvelles technologies. J Occup Med 30:309–311.

Responsable de la santé et de la sécurité (HSE). 1990. Fibres minérales artificielles. Note d'orientation exécutive EH46. Londres : HSE.

Centre international de recherche sur le cancer (CIRC). 1992. Monographies sur l'évaluation des risques cancérigènes pour l'homme, Vol. 54. Lyon : CIRC.

Matte TD, JP Figueroa, G Burr, JP Flesch, RH Keenlyside et EL Baker. 1989. Exposition au plomb chez les travailleurs des batteries au plomb en Jamaïque. Amer J Ind Med 16:167–177.

McDiarmid, MA, CS Freeman, EA Grossman et J Martonik. 1996. Résultats de la surveillance biologique des travailleurs exposés au cadmium. Amer Ind Hyg Assoc J 57:1019–1023.

Roels, HA, JP Ghyselen, E Ceulemans et RR Lauwerys. 1992. Évaluation du niveau d'exposition admissible au manganèse chez les travailleurs exposés à la poussière de dioxyde de manganèse. Brit J Ind Med 49:25–34.

Teleska, DR. 1983. Enquête sur les systèmes de contrôle des risques pour la santé liés à l'utilisation et au traitement du mercure. Rapport no CT-109-4. Cincinnati, Ohio : NIOSH.

Wallis, G, R Menke et C Chelton. 1993. Essai sur le terrain en milieu de travail d'un demi-masque anti-poussière jetable à pression négative (3M 8710). Amer Ind Hyg Assoc J 54:576-583.