Mercredi, Mars 16 2011 20: 59

Fusion et affinage du cuivre, du plomb et du zinc

Évaluer cet élément
(5 votes)

Adapté de l'EPA 1995.

Cuivre

Le cuivre est extrait à la fois dans des mines à ciel ouvert et dans des mines souterraines, selon la teneur du minerai et la nature du gisement de minerai. Le minerai de cuivre contient généralement moins de 1 % de cuivre sous forme de minéraux sulfurés. Une fois que le minerai est livré au-dessus du sol, il est concassé et broyé à une finesse pulvérulente, puis concentré pour un traitement ultérieur. Dans le processus de concentration, le minerai broyé est mis en suspension avec de l'eau, des réactifs chimiques sont ajoutés et de l'air est soufflé à travers la suspension. Les bulles d'air se fixent aux minéraux de cuivre et sont ensuite écrémées au sommet des cellules de flottation. Le concentré contient entre 20 et 30 % de cuivre. Les résidus, ou minéraux de la gangue, du minerai tombent au fond des cellules et sont retirés, déshydratés par des épaississeurs et transportés sous forme de boue vers un bassin de résidus pour élimination. Toute l'eau utilisée dans cette opération, provenant des épaississeurs de déshydratation et du bassin de résidus, est récupérée et recyclée dans le procédé.

Le cuivre peut être produit par pyrométallurgie ou par hydrométallurgie selon le type de minerai utilisé comme charge. Les concentrés de minerai, qui contiennent des minéraux de sulfure de cuivre et de sulfure de fer, sont traités par des procédés pyrométallurgiques pour donner des produits de cuivre de haute pureté. Les minerais oxydés, qui contiennent des minéraux d'oxyde de cuivre qui peuvent se trouver dans d'autres parties de la mine, ainsi que d'autres déchets oxydés, sont traités par des procédés hydrométallurgiques pour produire des produits de cuivre de haute pureté.

La conversion du cuivre du minerai en métal est réalisée par fusion. Pendant la fusion, les concentrés sont séchés et introduits dans l'un des différents types de fours. Là, les minéraux sulfurés sont partiellement oxydés et fondus pour donner une couche de matte, un mélange de sulfure de cuivre-fer et de laitier, une couche supérieure de déchets.

La matte est ensuite traitée par conversion. Les scories sont extraites du four et stockées ou jetées dans des tas de scories sur place. Une petite quantité de scories est vendue pour le ballast des chemins de fer et pour le sablage. Un troisième produit du processus de fusion est le dioxyde de soufre, un gaz qui est collecté, purifié et transformé en acide sulfurique pour la vente ou pour une utilisation dans les opérations de lixiviation hydrométallurgique.

Après fusion, la matte de cuivre est introduite dans un convertisseur. Au cours de ce processus, la matte de cuivre est coulée dans une cuve cylindrique horizontale (environ 10ґ4 m) munie d'une rangée de tuyaux. Les tuyaux, appelés tuyères, font saillie dans le cylindre et servent à introduire de l'air dans le convertisseur. De la chaux et de la silice sont ajoutées à la matte de cuivre pour réagir avec l'oxyde de fer produit dans le processus pour former des scories. Des déchets de cuivre peuvent également être ajoutés au convertisseur. Le four est mis en rotation de manière à ce que les tuyères soient submergées et de l'air est soufflé dans la matte fondue, ce qui fait réagir le reste du sulfure de fer avec l'oxygène pour former de l'oxyde de fer et du dioxyde de soufre. Ensuite, le convertisseur est mis en rotation pour déverser le laitier de silicate de fer.

Une fois que tout le fer est éliminé, le convertisseur est remis en rotation et reçoit un deuxième souffle d'air au cours duquel le reste du soufre est oxydé et éliminé du sulfure de cuivre. Le convertisseur est ensuite mis en rotation pour déverser le cuivre fondu, qui à ce stade est appelé cuivre blister (ainsi nommé parce que s'il est autorisé à se solidifier à ce stade, il aura une surface bosselée en raison de la présence d'oxygène gazeux et de soufre). Le dioxyde de soufre des convertisseurs est collecté et introduit dans le système de purification de gaz avec celui du four de fusion et transformé en acide sulfurique. En raison de sa teneur résiduelle en cuivre, le laitier est recyclé vers le four de fusion.

Le cuivre blister, contenant un minimum de 98.5 % de cuivre, est affiné en cuivre de haute pureté en deux étapes. La première étape est l'affinage au feu, dans lequel le cuivre blister fondu est versé dans un four cylindrique, semblable en apparence à un convertisseur, où d'abord de l'air, puis du gaz naturel ou du propane sont soufflés à travers la masse fondue pour éliminer le reste du soufre et tout l'oxygène résiduel du cuivre. Le cuivre fondu est ensuite versé dans une roue de coulée pour former des anodes suffisamment pures pour l'électroraffinage.

Dans l'électroraffinage, les anodes de cuivre sont chargées dans des cellules électrolytiques et intercalées avec des feuilles de départ en cuivre, ou cathodes, dans un bain de solution de sulfate de cuivre. Lorsqu'un courant continu traverse la cellule, le cuivre est dissous à partir de l'anode, transporté à travers l'électrolyte et redéposé sur les feuilles de départ de la cathode. Lorsque les cathodes ont atteint une épaisseur suffisante, elles sont retirées de la cellule électrolytique et un nouveau jeu de feuilles de départ est mis à leur place. Les impuretés solides dans les anodes tombent au fond de la cellule sous forme de boue où elles sont finalement collectées et traitées pour la récupération des métaux précieux tels que l'or et l'argent. Ce matériau est connu sous le nom de boue d'anode.

Les cathodes retirées de la cellule électrolytique sont le produit primaire du producteur de cuivre et contiennent 99.99 % de cuivre. Ceux-ci peuvent être vendus aux usines de fil machine comme cathodes ou transformés ultérieurement en un produit appelé barre. Dans la fabrication de barres, les cathodes sont fondues dans un four à cuve et le cuivre fondu est versé sur une roue de coulée pour former une barre adaptée au laminage en une barre continue de 3/8 de pouce de diamètre. Ce produit de tige est expédié aux tréfileries où il est extrudé en différentes tailles de fil de cuivre.

Dans le procédé hydrométallurgique, les minerais oxydés et les déchets sont lessivés avec de l'acide sulfurique provenant du procédé de fusion. La lixiviation est effectuée sur place, ou dans des tas spécialement préparés en répartissant l'acide sur le dessus et en le laissant s'infiltrer à travers le matériau où il est collecté. Le sol sous les tampons de lixiviation est recouvert d'un matériau plastique imperméable et résistant aux acides pour empêcher la liqueur de lixiviation de contaminer les eaux souterraines. Une fois que les solutions riches en cuivre sont collectées, elles peuvent être traitées par l'un des deux procédés suivants : le procédé de cémentation ou le procédé d'extraction par solvant/extraction électrolytique (SXEW). Dans le procédé de cémentation (qui est rarement utilisé aujourd'hui), le cuivre de la solution acide se dépose à la surface de la ferraille en échange du fer. Lorsqu'une quantité suffisante de cuivre a été cimentée, le fer riche en cuivre est introduit dans la fonderie avec les concentrés de minerai pour la récupération du cuivre par la voie pyrométallurgique.

Dans le procédé SXEW, la solution de lixiviation enceinte (PLS) est concentrée par extraction au solvant, qui extrait le cuivre mais pas les impuretés métalliques (fer et autres impuretés). La solution organique chargée en cuivre est ensuite séparée du lixiviat dans un décanteur. L'acide sulfurique est ajouté au mélange organique prégnant, qui décape le cuivre dans une solution électrolytique. Le lixiviat, contenant le fer et d'autres impuretés, est renvoyé à l'opération de lixiviation où son acide est utilisé pour une lixiviation supplémentaire. La solution de bande riche en cuivre est passée dans une cellule électrolytique connue sous le nom de cellule d'extraction électrolytique. Une cellule d'extraction électrolytique diffère d'une cellule d'électroraffinage en ce qu'elle utilise une anode permanente et insoluble. Le cuivre en solution est ensuite plaqué sur une cathode en feuille de départ de la même manière qu'il l'est sur la cathode dans une cellule d'électroraffinage. L'électrolyte appauvri en cuivre est renvoyé au processus d'extraction par solvant où il est utilisé pour extraire plus de cuivre de la solution organique. Les cathodes produites à partir du processus d'extraction électrolytique sont ensuite vendues ou transformées en barres de la même manière que celles produites à partir du processus d'électroraffinage.

Les cellules d'extraction électrolytique sont également utilisées pour la préparation de feuilles de départ pour les processus d'électroraffinage et d'extraction électrolytique en plaquant le cuivre sur des cathodes en acier inoxydable ou en titane, puis en enlevant le cuivre plaqué.

Les dangers et leur prévention

Les principaux risques sont l'exposition aux poussières de minerai pendant le traitement et la fusion du minerai, les fumées métalliques (y compris le cuivre, le plomb et l'arsenic) pendant la fusion, le dioxyde de soufre et le monoxyde de carbone pendant la plupart des opérations de fusion, le bruit des opérations de concassage et de broyage et des fours, le stress thermique dû aux les fours et l'acide sulfurique et les risques électriques lors des procédés électrolytiques.

Les précautions comprennent : LEV pour les poussières pendant les opérations de transfert ; aspiration locale et ventilation par dilution pour le dioxyde de soufre et le monoxyde de carbone ; un programme de lutte contre le bruit et de protection auditive ; vêtements et boucliers de protection, pauses et fluides pour le stress thermique; et LEV, EPI et précautions électriques pour les procédés électrolytiques. Une protection respiratoire est couramment portée pour se protéger contre les poussières, les fumées et le dioxyde de soufre.

Le tableau 1 énumère les polluants environnementaux pour les différentes étapes de la fusion et de l'affinage du cuivre.

Tableau 1. Entrées de matériaux de procédé et sorties de pollution pour la fusion et l'affinage du cuivre

Processus

Apport matériel

Émissions atmosphériques

Déchets de processus

Autres déchets

Teneur en cuivre

Minerai de cuivre, eau, réactifs chimiques, épaississants

 

Eaux usées de flottation

Résidus contenant des déchets minéraux tels que le calcaire et le quartz

Lixiviation du cuivre

Concentré de cuivre, acide sulfurique

 

Lixiviat non contrôlé

Déchets de lixiviation en tas

Fusion du cuivre

Concentré de cuivre, flux siliceux

Anhydride sulfureux, particules contenant de l'arsenic, de l'antimoine, du cadmium, du plomb, du mercure et du zinc

 

Boues/boues de purge d'usine d'acide, scories contenant des sulfures de fer, de la silice

Transformation du cuivre

Mat de cuivre, chutes de cuivre, flux siliceux

Anhydride sulfureux, particules contenant de l'arsenic, de l'antimoine, du cadmium, du plomb, du mercure et du zinc

 

Boues/boues de purge d'usine d'acide, scories contenant des sulfures de fer, de la silice

Affinage électrolytique du cuivre

Cuivre blister, acide sulfurique

   

Slimes contenant des impuretés telles que l'or, l'argent, l'antimoine, l'arsenic, le bismuth, le fer, le plomb, le nickel, le sélénium, le soufre et le zinc

 

Plomb

Le processus de production primaire du plomb comprend quatre étapes : le frittage, la fusion, le décrassage et l'affinage pyrométallurgique. Pour commencer, une charge d'alimentation comprenant principalement du concentré de plomb sous forme de sulfure de plomb est introduite dans une machine de frittage. D'autres matières premières peuvent être ajoutées, notamment du fer, de la silice, du fondant calcaire, du coke, de la soude, des cendres, de la pyrite, du zinc, de la soude caustique et des particules provenant des dispositifs antipollution. Dans la machine de frittage, la charge de plomb est soumise à des jets d'air chaud qui brûlent le soufre, créant du dioxyde de soufre. Le matériau d'oxyde de plomb existant après ce processus contient environ 9 % de son poids en carbone. L'aggloméré est ensuite introduit avec du coke, divers matériaux recyclés et de nettoyage, du calcaire et d'autres fondants dans un haut fourneau pour la réduction, où le carbone agit comme un combustible et fond ou fond le matériau de plomb. Le plomb fondu s'écoule au fond du four où se forment quatre couches : « speiss » (le matériau le plus léger, essentiellement de l'arsenic et de l'antimoine) ; « matte » (sulfure de cuivre et autres sulfures métalliques) ; laitier de haut fourneau (principalement silicates); et lingots de plomb (98 % de plomb, en poids). Toutes les couches sont ensuite drainées. Le speiss et la matte sont vendus à des fonderies de cuivre pour la récupération du cuivre et des métaux précieux. Le laitier de haut fourneau qui contient du zinc, du fer, de la silice et de la chaux est stocké en tas et partiellement recyclé. Les émissions d'oxyde de soufre sont générées dans les hauts fourneaux à partir de petites quantités de sulfure de plomb résiduel et de sulfates de plomb dans l'alimentation de l'aggloméré.

Le lingot de plomb brut provenant du haut fourneau nécessite généralement un traitement préliminaire dans des cuves avant de subir des opérations d'affinage. Pendant l'écume, le lingot est agité dans une bouilloire d'écume et refroidi juste au-dessus de son point de congélation (370 à 425°C). Une écume, composée d'oxyde de plomb, de cuivre, d'antimoine et d'autres éléments, flotte vers le haut et se solidifie au-dessus du plomb fondu.

L'écume est retirée et introduite dans un four à écume pour la récupération des métaux utiles autres que le plomb. Pour améliorer la récupération du cuivre, le lingot de plomb décrassé est traité en ajoutant des matériaux soufrés, du zinc et/ou de l'aluminium, abaissant la teneur en cuivre à environ 0.01 %.

Au cours de la quatrième étape, le lingot de plomb est affiné à l'aide de méthodes pyrométallurgiques pour éliminer tous les matériaux restants vendables sans plomb (par exemple, l'or, l'argent, le bismuth, le zinc et les oxydes métalliques tels que l'antimoine, l'arsenic, l'étain et l'oxyde de cuivre). Le plomb est affiné dans une bouilloire en fonte en cinq étapes. L'antimoine, l'étain et l'arsenic sont éliminés en premier. Ensuite, le zinc est ajouté et l'or et l'argent sont éliminés dans le laitier de zinc. Ensuite, le plomb est affiné par élimination sous vide (distillation) du zinc. L'affinage se poursuit avec l'ajout de calcium et de magnésium. Ces deux matériaux se combinent avec le bismuth pour former un composé insoluble qui est écrémé de la bouilloire. Dans l'étape finale, de la soude caustique et/ou des nitrates peuvent être ajoutés au plomb pour éliminer toute trace restante d'impuretés métalliques. Le plomb affiné aura une pureté de 99.90 à 99.99 % et pourra être mélangé avec d'autres métaux pour former des alliages ou il pourra être directement coulé en formes.

Les dangers et leur prévention

Les principaux dangers sont l'exposition aux poussières de minerai pendant le traitement et la fusion du minerai, les fumées métalliques (y compris le plomb, l'arsenic et l'antimoine) pendant la fusion, le dioxyde de soufre et le monoxyde de carbone pendant la plupart des opérations de fusion, le bruit des opérations de broyage et de concassage et des fours, et le stress thermique. des fours.

Les précautions comprennent : LEV pour les poussières pendant les opérations de transfert ; aspiration locale et ventilation par dilution pour le dioxyde de soufre et le monoxyde de carbone ; un programme de lutte contre le bruit et de protection auditive ; et des vêtements et des écrans de protection, des pauses et des fluides pour le stress thermique. Une protection respiratoire est couramment portée pour se protéger contre les poussières, les fumées et le dioxyde de soufre. La surveillance biologique du plomb est essentielle.

Le tableau 2 énumère les polluants environnementaux pour diverses étapes de la fusion et de l'affinage du plomb.

Tableau 2. Entrées de matériaux de procédé et sorties de pollution pour la fusion et l'affinage du plomb

Processus

Apport matériel

Émissions atmosphériques

Déchets de processus

Autres déchets

Frittage de plomb

Minerai de plomb, fer, silice, fondant calcaire, coke, soude, cendre, pyrite, zinc, caustique, poussière de dépoussiérage

Anhydride sulfureux, particules contenant du cadmium et du plomb

   

Fusion du plomb

Plomb fritté, coke

Anhydride sulfureux, particules contenant du cadmium et du plomb

Eaux usées de lavage de l'usine, eau de granulation des scories

Laitier contenant des impuretés telles que le zinc, le fer, la silice et la chaux, solides de retenue de surface

Scories de plomb

Plomb lingot, carbonate de soude, soufre, poussière de dépoussiérage, coke

   

Laitier contenant des impuretés telles que le cuivre, les solides de retenue de surface

Affinage du plomb

Lingots de plomb

     

 

Zinc

Le concentré de zinc est produit en séparant le minerai, qui peut contenir aussi peu que 2 % de zinc, des stériles par concassage et flottation, un processus normalement effectué sur le site minier. Le concentré de zinc est ensuite réduit en zinc métallique de l'une des deux manières suivantes : soit par voie pyrométallurgique par distillation (autoclave dans un four), soit par voie hydrométallurgique par extraction électrolytique. Ce dernier représente environ 80 % du raffinage total du zinc.

Quatre étapes de traitement sont généralement utilisées dans l'affinage hydrométallurgique du zinc : la calcination, la lixiviation, la purification et l'extraction électrolytique. La calcination, ou torréfaction, est un processus à haute température (700 à 1000 °C) qui convertit le concentré de sulfure de zinc en un oxyde de zinc impur appelé calcine. Les types de torréfacteurs comprennent les foyers multiples, la suspension ou le lit fluidisé. En général, la calcination commence par le mélange de matériaux contenant du zinc avec du charbon. Ce mélange est ensuite chauffé, ou torréfié, pour vaporiser l'oxyde de zinc qui est ensuite déplacé hors de la chambre de réaction avec le courant gazeux résultant. Le flux de gaz est dirigé vers la zone du filtre à manches où l'oxyde de zinc est capturé dans la poussière du filtre à manches.

Tous les procédés de calcination génèrent du dioxyde de soufre, qui est contrôlé et transformé en acide sulfurique en tant que sous-produit commercialisable.

Le traitement électrolytique de la calcine désulfurée comprend trois étapes de base : la lixiviation, la purification et l'électrolyse. La lixiviation fait référence à la dissolution de la calcine capturée dans une solution d'acide sulfurique pour former une solution de sulfate de zinc. La calcine peut être lessivée une ou deux fois. Dans la méthode de double lixiviation, la calcine est dissoute dans une solution légèrement acide pour éliminer les sulfates. Le calcinât est ensuite lixivié une seconde fois dans une solution plus forte qui dissout le zinc. Cette deuxième étape de lixiviation est en fait le début de la troisième étape de purification car de nombreuses impuretés de fer tombent de la solution ainsi que le zinc.

Après lixiviation, la solution est purifiée en deux ou plusieurs étapes par ajout de poussière de zinc. La solution est purifiée car la poussière force les éléments délétères à précipiter afin qu'ils puissent être filtrés. La purification est généralement effectuée dans de grandes cuves d'agitation. Le processus se déroule à des températures allant de 40 à 85°C et à des pressions allant de la pression atmosphérique à 2.4 atmosphères. Les éléments récupérés lors de la purification comprennent le cuivre sous forme de gâteau et le cadmium sous forme de métal. Après purification, la solution est prête pour l'étape finale, l'extraction électrolytique.

L'extraction électrolytique du zinc a lieu dans une cellule électrolytique et consiste à faire passer un courant électrique à partir d'une anode en alliage plomb-argent à travers la solution aqueuse de zinc. Ce processus charge le zinc en suspension et le force à se déposer sur une cathode en aluminium qui est immergée dans la solution. Toutes les 24 à 48 heures, chaque cellule est arrêtée, les cathodes zinguées retirées et rincées, et le zinc débarrassé mécaniquement des plaques d'aluminium. Le concentré de zinc est ensuite fondu et coulé en lingots et est souvent pur à 99.995 %.

Les fonderies de zinc électrolytique contiennent jusqu'à plusieurs centaines de cellules. Une partie de l'énergie électrique est convertie en chaleur, ce qui augmente la température de l'électrolyte. Les cellules électrolytiques fonctionnent dans des plages de température de 30 à 35°C à pression atmosphérique. Au cours de l'extraction électrolytique, une partie de l'électrolyte passe à travers des tours de refroidissement pour diminuer sa température et pour évaporer l'eau qu'il recueille au cours du processus.

Les dangers et leur prévention

Les principaux dangers sont l'exposition aux poussières de minerai pendant le traitement et la fusion du minerai, les fumées métalliques (y compris le zinc et le plomb) pendant le raffinage et le grillage, le dioxyde de soufre et le monoxyde de carbone pendant la plupart des opérations de fusion, le bruit des opérations de concassage et de broyage et des fours, le stress thermique dû aux les fours et l'acide sulfurique et les risques électriques lors des procédés électrolytiques.

Les précautions comprennent : LEV pour les poussières pendant les opérations de transfert ; aspiration locale et ventilation par dilution pour le dioxyde de soufre et le monoxyde de carbone ; un programme de lutte contre le bruit et de protection auditive ; vêtements et boucliers de protection, pauses et fluides pour le stress thermique; et LEV, EPI et précautions électriques pour les processus électrolytiques. Une protection respiratoire est couramment portée pour se protéger contre les poussières, les fumées et le dioxyde de soufre.

Le tableau 3 énumère les polluants environnementaux pour les différentes étapes de la fusion et de l'affinage du zinc.

Tableau 3. Entrées de matériaux de procédé et sorties de pollution pour la fusion et l'affinage du zinc

Processus

Apport matériel

Émissions atmosphériques

Déchets de processus

Autres déchets

Calcination du zinc

Minerai de zinc, coke

Anhydride sulfureux, particules contenant du zinc et du plomb

 

Boue de purge d'usine d'acide

Lessivage du zinc

Calcine de zinc, acide sulfurique, calcaire, électrolyte usé

 

Eaux usées contenant de l'acide sulfurique

 

Épuration du zinc

Solution acide de zinc, poudre de zinc

 

Eaux usées contenant de l'acide sulfurique, du fer

Gâteau de cuivre, cadmium

Extraction électrolytique de zinc

Zinc en acide sulfurique/solution aqueuse, anodes en alliage plomb-argent, cathodes en aluminium, carbonate de baryum ou de strontium, additifs colloïdaux

 

Acide sulfurique dilué

Boues/boues de cellules électrolytiques

 

Retour

Lire 21858 fois Dernière modification le mercredi 10 août 2011 23:11

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de l'industrie de la transformation et du travail des métaux

Buonicore, AJ et WT Davis (éd.). 1992. Manuel d'ingénierie de la pollution atmosphérique. New York : Van Nostrand Reinhold/Association de gestion de l'air et des déchets.

Agence de protection de l'environnement (EPA). 1995. Profil de l'industrie des métaux non ferreux. EPA/310-R-95-010. Washington, DC : EPA.

Association internationale de recherche sur le cancer (CIRC). 1984. Monographies sur l'évaluation des risques cancérigènes pour l'homme. Vol. 34. Lyon : CIRC.

Johnson A, CY Moira, L MacLean, E Atkins, A Dybunico, F Cheng et D Enarson. 1985. Anomalies respiratoires chez les travailleurs de la sidérurgie. Brit J Ind Med 42:94–100.

Kronenberg RS, JC Levin, RF Dodson, JGN Garcia et DE Griffith. 1991. Maladie liée à l'amiante chez les employés d'une aciérie et d'une usine de fabrication de bouteilles en verre. Ann NY Acad Sei 643:397–403.

Landrigan, PJ, MG Cherniack, FA Lewis, LR Catlett et RW Hornung. 1986. Silicose dans une fonderie de fonte grise. La persistance d'une maladie ancienne. Scand J Work Environ Health 12:32–39.

Institut national pour la sécurité et la santé au travail (NIOSH). 1996. Critères pour une norme recommandée : expositions professionnelles aux fluides de travail des métaux. Cincinatti, Ohio : NIOSH.

Palheta, D et A Taylor. 1995. Mercure dans des échantillons environnementaux et biologiques d'une zone d'extraction d'or dans la région amazonienne du Brésil. Science de l'environnement total 168: 63-69.

Thomas, PR et D Clarke. 1992 Vibration doigt blanc et maladie de Dupuytren : sont-elles liées ? Occup Med 42(3):155–158.