33. Tossicologia
Redattore del capitolo: Ellen K. Silbergeld
Introduzione
Ellen K. Silbergeld, caporedattore
Definizioni e Concetti
Bo Holmberg, Johan Hogberg e Gunnar Johanson
Tossicocinetica
Dušan Djuric
Organo bersaglio ed effetti critici
Marek Jakubowski
Effetti dell'età, del sesso e di altri fattori
Spomenka Telisman
Determinanti genetici della risposta tossica
Daniel W. Nebert e Ross A. McKinnon
Introduzione e concetti
Philip G. Watanabe
Danno cellulare e morte cellulare
Benjamin F. Trump e Irene K. Berezesky
Tossicologia genetica
R. Rita Misra e Michael P. Waalkes
Immunotossicologia
Joseph G. Vos e Henk van Loveren
Tossicologia dell'organo bersaglio
Ellen K. Silbergeld
biomarkers
Filippo Grandjean
Valutazione della tossicità genetica
David M. De Marini e James Huff
Test di tossicità in vitro
Giovanna Zurlo
Relazioni struttura attività
Ellen K. Silbergeld
Tossicologia nel regolamento sulla salute e la sicurezza
Ellen K. Silbergeld
Principi di identificazione dei pericoli - L'approccio giapponese
Masayuki Ikeda
L'approccio degli Stati Uniti alla valutazione del rischio di sostanze tossiche per la riproduzione e agenti neurotossici
Ellen K. Silbergeld
Approcci all'identificazione dei pericoli - IARC
Harri Vainio e Julian Wilbourn
Appendice - Valutazioni complessive di cancerogenicità per l'uomo: Monografie IARC Volumi 1-69 (836)
Valutazione del rischio cancerogeno: altri approcci
Cees A. van der Heijden
Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.
Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.
Esposizione, dose e risposta
Tossicità è la capacità intrinseca di un agente chimico di influenzare negativamente un organismo.
xenobiotici è un termine per "sostanze estranee", cioè estranee all'organismo. Il suo opposto sono i composti endogeni. Gli xenobiotici includono farmaci, prodotti chimici industriali, veleni presenti in natura e inquinanti ambientali.
Pericolo è il potenziale per la tossicità da realizzare in un ambiente o situazione specifica.
Rischio è la probabilità che si verifichi uno specifico effetto avverso. È spesso espresso come percentuale di casi in una data popolazione e durante un periodo di tempo specifico. Una stima del rischio può basarsi su casi effettivi o su una proiezione di casi futuri, basata su estrapolazioni.
Valutazione della tossicità e a classificazione della tossicità può essere utilizzato a fini normativi. La valutazione della tossicità è una classificazione arbitraria delle dosi o dei livelli di esposizione che causano effetti tossici. La classificazione può essere "supertossica", "altamente tossica", "moderatamente tossica" e così via. Le valutazioni più comuni riguardano la tossicità acuta. La classificazione della tossicità riguarda il raggruppamento delle sostanze chimiche in categorie generali in base al loro effetto tossico più importante. Tali categorie possono includere allergeni, neurotossici, cancerogeni e così via. Questa classificazione può avere valore amministrativo come avvertimento e come informazione.
Le relazione dose-effetto è la relazione tra dose ed effetto a livello individuale. Un aumento della dose può aumentare l'intensità di un effetto o può determinarne un effetto più grave. Una curva dose-effetto può essere ottenuta a livello dell'intero organismo, della cellula o della molecola bersaglio. Alcuni effetti tossici, come la morte o il cancro, non sono classificati ma sono effetti "tutti o nessuno".
Le relazione dose-risposta è il rapporto tra la dose e la percentuale di individui che mostrano un effetto specifico. Con l'aumentare della dose, di solito sarà colpito un numero maggiore di individui nella popolazione esposta.
Per la tossicologia è essenziale stabilire le relazioni dose-effetto e dose-risposta. Negli studi medici (epidemiologici) un criterio spesso utilizzato per accettare una relazione causale tra un agente e una malattia è che l'effetto o la risposta è proporzionale alla dose.
È possibile tracciare diverse curve dose-risposta per una sostanza chimica, una per ciascun tipo di effetto. La curva dose-risposta per la maggior parte degli effetti tossici (quando studiata in grandi popolazioni) ha una forma sigmoidea. Di solito esiste un intervallo di basse dosi in cui non viene rilevata alcuna risposta; all'aumentare della dose, la risposta segue una curva ascendente che di solito raggiunge un plateau con una risposta del 100%. La curva dose-risposta riflette le variazioni tra gli individui in una popolazione. La pendenza della curva varia da sostanza chimica a chimica e tra diversi tipi di effetti. Per alcune sostanze chimiche con effetti specifici (agenti cancerogeni, iniziatori, mutageni) la curva dose-risposta potrebbe essere lineare dalla dose zero entro un certo intervallo di dose. Ciò significa che non esiste una soglia e che anche piccole dosi rappresentano un rischio. Al di sopra di tale intervallo di dose, il rischio può aumentare a una velocità superiore a quella lineare.
La variazione dell'esposizione durante il giorno e la durata totale dell'esposizione durante la vita di una persona possono essere tanto importanti per l'esito (risposta) quanto il livello di dose medio o medio o anche integrato. Le esposizioni di picco elevate possono essere più dannose di un livello di esposizione più uniforme. Questo è il caso di alcuni solventi organici. D'altra parte, per alcuni agenti cancerogeni, è stato sperimentalmente dimostrato che il frazionamento di una singola dose in più esposizioni con la stessa dose totale può essere più efficace nella produzione di tumori.
A dose è spesso espresso come la quantità di uno xenobiotico che entra in un organismo (in unità come mg/kg di peso corporeo). La dose può essere espressa in modi diversi (più o meno informativi): dose di esposizione, che è la concentrazione nell'aria dell'inquinante inalato durante un certo periodo di tempo (in igiene del lavoro di solito otto ore), o il mantenuto or dose assorbita (in igiene industriale chiamato anche il carico corporeo), che è la quantità presente nel corpo in un determinato momento durante o dopo l'esposizione. Il dose tissutale è la quantità di sostanza in un tessuto specifico e il dose target è la quantità di sostanza (solitamente un metabolita) legata alla molecola critica. La dose target può essere espressa come mg di sostanza chimica legata per mg di una specifica macromolecola nel tessuto. Per applicare questo concetto sono necessarie informazioni sul meccanismo dell'azione tossica a livello molecolare. La dose target è più esattamente associata all'effetto tossico. La dose di esposizione o il carico corporeo possono essere più facilmente disponibili, ma questi sono meno precisamente correlati all'effetto.
Nel concetto di dose è spesso compreso un aspetto temporale, anche se non sempre espresso. La dose teorica secondo la legge di Haber è D = t, where D è la dose, c è la concentrazione dello xenobiotico nell'aria e t la durata dell'esposizione alla sostanza chimica. Se questo concetto viene utilizzato a livello di organo bersaglio o molecolare, può essere utilizzata la quantità per mg di tessuto o molecola in un certo periodo di tempo. L'aspetto temporale è solitamente più importante per comprendere le esposizioni ripetute e gli effetti cronici che per le singole esposizioni e gli effetti acuti.
Effetti additivi si verificano a seguito dell'esposizione a una combinazione di sostanze chimiche, in cui le singole tossicità sono semplicemente sommate l'una all'altra (1+1= 2). Quando le sostanze chimiche agiscono attraverso lo stesso meccanismo, si presume l'additività dei loro effetti, anche se non sempre è così nella realtà. L'interazione tra sostanze chimiche può provocare un'inibizione (antagonismo), con un effetto minore di quello atteso dalla somma degli effetti delle singole sostanze chimiche (1+1 2). In alternativa, una combinazione di sostanze chimiche può produrre un effetto più pronunciato di quanto ci si aspetterebbe dall'aggiunta (aumento della risposta tra gli individui o aumento della frequenza della risposta in una popolazione), questo è chiamato sinergismo (1+1 >2).
Tempo di latenza è il tempo che intercorre tra la prima esposizione e la comparsa di un effetto o di una risposta rilevabile. Il termine è spesso usato per gli effetti cancerogeni, in cui i tumori possono comparire molto tempo dopo l'inizio dell'esposizione e talvolta molto tempo dopo la cessazione dell'esposizione.
A soglia di dose è un livello di dose al di sotto del quale non si verifica alcun effetto osservabile. Si ritiene che esistano soglie per determinati effetti, come gli effetti tossici acuti; ma non per altri, come gli effetti cancerogeni (da parte di iniziatori che formano addotti del DNA). La semplice assenza di una risposta in una data popolazione non dovrebbe, tuttavia, essere considerata come prova dell'esistenza di una soglia. L'assenza di risposta potrebbe essere dovuta a semplici fenomeni statistici: un effetto avverso che si verifica a bassa frequenza potrebbe non essere rilevabile in una piccola popolazione.
LD50 (dose efficace) è la dose che causa il 50% di letalità in una popolazione animale. Il D.L50 è spesso indicato nella letteratura più antica come misura della tossicità acuta delle sostanze chimiche. Maggiore è il LD50, minore è la tossicità acuta. Una sostanza chimica altamente tossica (con un basso LD50) si dice che sia potente. Non esiste una correlazione necessaria tra tossicità acuta e cronica. ED50 (dose efficace) è la dose che provoca un effetto specifico diverso dalla letalità nel 50% degli animali.
NOEL (NOAEL) indica il livello senza effetto (avverso) osservato o la dose più alta che non provoca un effetto tossico. Per stabilire un NOEL sono necessarie dosi multiple, un'ampia popolazione e informazioni aggiuntive per garantire che l'assenza di una risposta non sia un mero fenomeno statistico. LOEL è la dose efficace più bassa osservata su una curva dose-risposta, o la dose più bassa che provoca un effetto.
A fattore sicurezza è un numero formale e arbitrario con cui si divide il NOEL o il LOEL derivato da esperimenti su animali per ottenere una dose ammissibile provvisoria per l'uomo. Questo è spesso utilizzato nell'area della tossicologia alimentare, ma può essere utilizzato anche nella tossicologia occupazionale. Un fattore di sicurezza può anche essere utilizzato per l'estrapolazione dei dati da piccole popolazioni a popolazioni più grandi. I fattori di sicurezza vanno da 100 a 103. Un fattore di sicurezza pari a due può in genere essere sufficiente per proteggere da un effetto meno grave (come l'irritazione) e un fattore pari a 1,000 può essere utilizzato per effetti molto gravi (come il cancro). Il termine fattore sicurezza potrebbe essere meglio sostituito dal termine protezione fattore o anche, fattore di incertezza. L'uso di quest'ultimo termine riflette incertezze scientifiche, ad esempio se i dati dose-risposta esatti possono essere trasferiti dagli animali all'uomo per la particolare sostanza chimica, effetto tossico o situazione di esposizione.
estrapolazioni sono stime teoriche qualitative o quantitative della tossicità (estrapolazioni del rischio) derivate dalla traduzione di dati da una specie a un'altra o da una serie di dati dose-risposta (tipicamente nell'intervallo di dosi elevate) a regioni di dose-risposta in cui non esistono dati. Di solito devono essere effettuate estrapolazioni per prevedere le risposte tossiche al di fuori dell'intervallo di osservazione. La modellazione matematica viene utilizzata per estrapolazioni basate sulla comprensione del comportamento della sostanza chimica nell'organismo (modellazione tossicocinetica) o sulla base della comprensione delle probabilità statistiche che si verificheranno eventi biologici specifici (modelli basati sulla biologia o sulla meccanica). Alcune agenzie nazionali hanno sviluppato sofisticati modelli di estrapolazione come metodo formalizzato per prevedere i rischi a fini normativi. (Vedere la discussione sulla valutazione del rischio più avanti nel capitolo.)
Effetti sistemici sono effetti tossici nei tessuti distanti dalla via di assorbimento.
Organo bersaglio è l'organo principale o più sensibile colpito dopo l'esposizione. La stessa sostanza chimica che entra nel corpo attraverso diverse vie di esposizione dose, rateo di dose, sesso e specie può influenzare diversi organi bersaglio. L'interazione tra sostanze chimiche o tra sostanze chimiche e altri fattori può influenzare anche diversi organi bersaglio.
Effetti acuti si verificano dopo un'esposizione limitata e poco (ore, giorni) dopo l'esposizione e possono essere reversibili o irreversibili.
Effetti cronici si verificano dopo un'esposizione prolungata (mesi, anni, decenni) e/o persistono dopo che l'esposizione è cessata.
acuto esposizione è un'esposizione di breve durata, mentre esposizione cronica è un'esposizione a lungo termine (a volte per tutta la vita).
Tolleranza a una sostanza chimica può verificarsi quando le esposizioni ripetute determinano una risposta inferiore a quella che ci si sarebbe aspettati senza pretrattamento.
Assorbimento e disposizione
Processi di trasporto
Emittente. Per entrare nell'organismo e raggiungere un sito in cui si produce un danno, una sostanza estranea deve superare diverse barriere, comprese le cellule e le loro membrane. La maggior parte delle sostanze tossiche passa attraverso le membrane passivamente per diffusione. Ciò può avvenire per piccole molecole idrosolubili per passaggio attraverso canali acquosi o, per quelle liposolubili, per dissoluzione e diffusione attraverso la parte lipidica della membrana. L'etanolo, una piccola molecola solubile in acqua e grasso, si diffonde rapidamente attraverso le membrane cellulari.
Diffusione di acidi e basi deboli. Gli acidi e le basi deboli possono facilmente attraversare le membrane nella loro forma liposolubile non ionizzata mentre le forme ionizzate sono troppo polari per passare. Il grado di ionizzazione di queste sostanze dipende dal pH. Se esiste un gradiente di pH attraverso una membrana, si accumuleranno quindi su un lato. L'escrezione urinaria di acidi e basi deboli dipende fortemente dal pH urinario. Il pH fetale o embrionale è un po' più alto del pH materno, causando un leggero accumulo di acidi deboli nel feto o nell'embrione.
Diffusione facilitata. Il passaggio di una sostanza può essere facilitato dai trasportatori nella membrana. La diffusione facilitata è simile ai processi enzimatici in quanto è mediata da proteine, altamente selettiva e saturabile. Altre sostanze possono inibire il trasporto facilitato di xenobiotici.
Trasporto attivo. Alcune sostanze vengono trasportate attivamente attraverso le membrane cellulari. Questo trasporto è mediato da proteine trasportatrici in un processo analogo a quello degli enzimi. Il trasporto attivo è simile alla diffusione facilitata, ma può verificarsi contro un gradiente di concentrazione. Richiede apporto di energia e un inibitore metabolico può bloccare il processo. La maggior parte degli inquinanti ambientali non viene trasportata attivamente. Un'eccezione è la secrezione tubulare attiva e il riassorbimento dei metaboliti acidi nei reni.
fagocitosi è un processo in cui cellule specializzate come i macrofagi inghiottono particelle per la successiva digestione. Questo processo di trasporto è importante, ad esempio, per la rimozione di particelle negli alveoli.
Flusso di massa. Le sostanze vengono anche trasportate nel corpo insieme al movimento dell'aria nel sistema respiratorio durante la respirazione e ai movimenti del sangue, della linfa o dell'urina.
Filtrazione. A causa della pressione idrostatica o osmotica, l'acqua scorre alla rinfusa attraverso i pori dell'endotelio. Qualsiasi soluto sufficientemente piccolo verrà filtrato insieme all'acqua. La filtrazione si verifica in una certa misura nel letto capillare di tutti i tessuti, ma è particolarmente importante nella formazione dell'urina primaria nei glomeruli renali.
Assorbimento
L'assorbimento è l'assorbimento di una sostanza dall'ambiente nell'organismo. Il termine di solito include non solo l'ingresso nel tessuto barriera, ma anche l'ulteriore trasporto nel sangue circolante.
Assorbimento polmonare. I polmoni sono la principale via di deposizione e assorbimento di piccole particelle sospese nell'aria, gas, vapori e aerosol. Per gas e vapori altamente solubili in acqua una parte significativa dell'assorbimento avviene nel naso e nell'albero respiratorio, ma per le sostanze meno solubili avviene principalmente negli alveoli polmonari. Gli alveoli hanno una superficie molto ampia (circa 100 m2 negli umani). Inoltre, la barriera di diffusione è estremamente piccola, con solo due sottili strati cellulari e una distanza nell'ordine dei micrometri dall'aria alveolare alla circolazione sanguigna sistemica. Questo rende i polmoni molto efficienti non solo nello scambio di ossigeno e anidride carbonica ma anche di altri gas e vapori. In generale, la diffusione attraverso la parete alveolare è così rapida da non limitare l'assorbimento. La velocità di assorbimento è invece dipendente dal flusso (ventilazione polmonare, gittata cardiaca) e dalla solubilità (sangue:coefficiente di ripartizione dell'aria). Un altro fattore importante è l'eliminazione metabolica. L'importanza relativa di questi fattori per l'assorbimento polmonare varia notevolmente per le diverse sostanze. L'attività fisica comporta un aumento della ventilazione polmonare e della gittata cardiaca e una diminuzione del flusso sanguigno epatico (e, quindi, del tasso di biotrasformazione). Per molte sostanze inalate ciò comporta un marcato aumento dell'assorbimento polmonare.
Assorbimento percutaneo. La pelle è una barriera molto efficiente. Oltre al suo ruolo termoregolatore, ha lo scopo di proteggere l'organismo da microrganismi, radiazioni ultraviolette e altri agenti deleteri, nonché da un'eccessiva perdita di acqua. La distanza di diffusione nel derma è dell'ordine dei decimi di millimetro. Inoltre, lo strato di cheratina ha un'altissima resistenza alla diffusione per la maggior parte delle sostanze. Tuttavia, per alcune sostanze può verificarsi un significativo assorbimento cutaneo con conseguente tossicità, ad esempio sostanze liposolubili altamente tossiche come insetticidi organofosforici e solventi organici. È probabile che si verifichi un assorbimento significativo dopo l'esposizione a sostanze liquide. L'assorbimento percutaneo del vapore può essere importante per i solventi con una tensione di vapore molto bassa e un'elevata affinità per l'acqua e la pelle.
Assorbimento gastrointestinale si verifica dopo l'ingestione accidentale o intenzionale. Le particelle più grandi originariamente inalate e depositate nel tratto respiratorio possono essere ingerite dopo il trasporto mucociliare alla faringe. Praticamente tutte le sostanze solubili vengono efficacemente assorbite nel tratto gastrointestinale. Il basso pH dell'intestino può facilitare l'assorbimento, per esempio, dei metalli.
Altri percorsi. Nei test di tossicità e in altri esperimenti, vengono spesso utilizzate vie di somministrazione speciali per comodità, sebbene queste siano rare e di solito non rilevanti in ambito lavorativo. Queste vie includono iniezioni endovenose (IV), sottocutanee (sc), intraperitoneali (ip) e intramuscolari (im). In generale, le sostanze vengono assorbite a una velocità maggiore e in modo più completo attraverso queste vie, soprattutto dopo l'iniezione endovenosa. Ciò porta a picchi di concentrazione di breve durata ma elevati che possono aumentare la tossicità di una dose.
Distribuzione
La distribuzione di una sostanza all'interno dell'organismo è un processo dinamico che dipende dai tassi di assorbimento ed eliminazione, nonché dal flusso sanguigno ai diversi tessuti e dalle loro affinità per la sostanza. Le molecole idrosolubili, piccole e prive di carica, i cationi univalenti e la maggior parte degli anioni si diffondono facilmente e alla fine raggiungeranno una distribuzione relativamente uniforme nel corpo.
Volume di distribuzione è la quantità di una sostanza nel corpo in un dato momento, divisa per la concentrazione nel sangue, nel plasma o nel siero in quel momento. Il valore non ha significato come volume fisico, poiché molte sostanze non sono distribuite uniformemente nell'organismo. Un volume di distribuzione inferiore a un l/kg di peso corporeo indica una distribuzione preferenziale nel sangue (o siero o plasma), mentre un valore superiore a uno indica una preferenza per i tessuti periferici come il tessuto adiposo per le sostanze liposolubili.
accumulazione è l'accumulo di una sostanza in un tessuto o organo a livelli più elevati che nel sangue o nel plasma. Può anche riferirsi a un graduale accumulo nel tempo nell'organismo. Molti xenobiotici sono altamente liposolubili e tendono ad accumularsi nel tessuto adiposo, mentre altri hanno una speciale affinità per le ossa. Ad esempio, il calcio nelle ossa può essere scambiato con i cationi di piombo, stronzio, bario e radio, e i gruppi idrossilici nelle ossa possono essere scambiati con il fluoruro.
Barriere. I vasi sanguigni nel cervello, nei testicoli e nella placenta hanno caratteristiche anatomiche speciali che inibiscono il passaggio di grandi molecole come le proteine. Queste caratteristiche, spesso chiamate barriere sangue-cervello, sangue-testicoli e sangue-placenta, possono dare la falsa impressione che impediscano il passaggio di qualsiasi sostanza. Queste barriere hanno poca o nessuna importanza per gli xenobiotici che possono diffondersi attraverso le membrane cellulari.
Legatura del sangue. Le sostanze possono essere legate ai globuli rossi o ai componenti del plasma, oppure possono essere presenti non legate nel sangue. Il monossido di carbonio, l'arsenico, il mercurio organico e il cromo esavalente hanno un'elevata affinità per i globuli rossi, mentre il mercurio inorganico e il cromo trivalente mostrano una preferenza per le proteine plasmatiche. Anche numerose altre sostanze si legano alle proteine plasmatiche. Solo la frazione non legata è disponibile per la filtrazione o la diffusione negli organi eliminatori. Il legame con il sangue può quindi aumentare il tempo di permanenza nell'organismo ma diminuire l'assorbimento da parte degli organi bersaglio.
Eliminazione
Eliminazione è la scomparsa di una sostanza nel corpo. L'eliminazione può comportare l'escrezione dal corpo o la trasformazione in altre sostanze non catturate da uno specifico metodo di misurazione. La velocità di scomparsa può essere espressa dalla costante di velocità di eliminazione, dall'emivita biologica o dalla clearance.
Curva concentrazione-tempo. La curva della concentrazione nel sangue (o nel plasma) rispetto al tempo è un modo conveniente per descrivere l'assorbimento e la disposizione di uno xenobiotico.
Area sotto la curva (AUC) è l'integrale della concentrazione nel sangue (plasma) nel tempo. Quando la saturazione metabolica e altri processi non lineari sono assenti, l'AUC è proporzionale alla quantità di sostanza assorbita.
Intervallo biologico (o emivita) è il tempo necessario dopo la fine dell'esposizione per dimezzare la quantità nell'organismo. Poiché è spesso difficile valutare la quantità totale di una sostanza, vengono utilizzate misure come la concentrazione nel sangue (plasma). L'intervallo deve essere utilizzato con cautela, in quanto può cambiare, ad esempio, con la dose e la durata dell'esposizione. Inoltre, molte sostanze hanno curve di decadimento complesse con diversi tempi di dimezzamento.
biodisponibilità è la frazione di una dose somministrata che entra nella circolazione sistemica. In assenza di clearance presistemica, o metabolismo di primo passaggio, la frazione è uno. Nell'esposizione orale la clearance presistemica può essere dovuta al metabolismo all'interno del contenuto gastrointestinale, della parete intestinale o del fegato. Il metabolismo di primo passaggio ridurrà l'assorbimento sistemico della sostanza e aumenterà invece l'assorbimento dei metaboliti. Questo può portare a un diverso modello di tossicità.
Autorizzazione è il volume di sangue (plasma) per unità di tempo completamente ripulito da una sostanza. Per distinguere dalla clearance renale, ad esempio, viene spesso aggiunto il prefisso total, metabolic o blood (plasma).
Gioco intrinseco è la capacità degli enzimi endogeni di trasformare una sostanza, ed è espressa anche in volume per unità di tempo. Se la clearance intrinseca in un organo è molto inferiore al flusso sanguigno, si dice che il metabolismo è a capacità limitata. Al contrario, se la clearance intrinseca è molto più elevata del flusso sanguigno, il metabolismo è limitato dal flusso.
Escrezione
L'escrezione è l'uscita di una sostanza e dei suoi prodotti di biotrasformazione dall'organismo.
Escrezione nelle urine e nella bile. I reni sono gli organi escretori più importanti. Alcune sostanze, in particolare gli acidi ad alto peso molecolare, vengono escrete con la bile. Una frazione delle sostanze escrete dalle vie biliari può essere riassorbita nell'intestino. Questo processo, circolazione enteroepatica, è comune per le sostanze coniugate dopo l'idrolisi intestinale del coniugato.
Altre vie di escrezione. Alcune sostanze, come i solventi organici ei prodotti di decomposizione come l'acetone, sono sufficientemente volatili da poter essere espulse per espirazione dopo l'inalazione in una frazione considerevole. Piccole molecole idrosolubili così come quelle liposolubili vengono prontamente secrete nel feto attraverso la placenta e nel latte nei mammiferi. Per la madre, l'allattamento può essere una via escretoria quantitativamente importante per sostanze chimiche liposolubili persistenti. La prole può essere secondariamente esposta attraverso la madre durante la gravidanza e durante l'allattamento. I composti idrosolubili possono in una certa misura essere escreti nel sudore e nella saliva. Questi percorsi sono generalmente di minore importanza. Tuttavia, poiché viene prodotto e ingerito un grande volume di saliva, l'escrezione salivare può contribuire al riassorbimento del composto. Alcuni metalli come il mercurio vengono escreti legandosi permanentemente ai gruppi sulfidrilici della cheratina nei capelli.
Modelli tossicocinetici
I modelli matematici sono strumenti importanti per comprendere e descrivere l'assorbimento e la disposizione di sostanze estranee. La maggior parte dei modelli sono compartimentali, cioè l'organismo è rappresentato da uno o più compartimenti. Un compartimento è un volume chimicamente e fisicamente teorico in cui si presume che la sostanza si distribuisca in modo omogeneo e istantaneo. I modelli semplici possono essere espressi come somma di termini esponenziali, mentre quelli più complicati richiedono procedure numeriche su un computer per la loro soluzione. I modelli possono essere suddivisi in due categorie, descrittivi e fisiologici.
In descrittivo modelli, l'adattamento ai dati misurati viene eseguito modificando i valori numerici dei parametri del modello o anche la struttura del modello stesso. La struttura del modello normalmente ha poco a che fare con la struttura dell'organismo. I vantaggi dell'approccio descrittivo sono che vengono fatte poche assunzioni e che non sono necessari dati aggiuntivi. Uno svantaggio dei modelli descrittivi è la loro limitata utilità per le estrapolazioni.
Modelli fisiologici sono costruiti da dati fisiologici, anatomici e altri dati indipendenti. Il modello viene quindi perfezionato e validato confrontandolo con i dati sperimentali. Un vantaggio dei modelli fisiologici è che possono essere utilizzati per scopi di estrapolazione. Ad esempio, l'influenza dell'attività fisica sull'assorbimento e la disposizione delle sostanze inalate può essere prevista da aggiustamenti fisiologici noti nella ventilazione e nella gittata cardiaca. Uno svantaggio dei modelli fisiologici è che richiedono una grande quantità di dati indipendenti.
biotrasformazione
biotrasformazione è un processo che porta a una conversione metabolica di composti estranei (xenobiotici) nel corpo. Il processo è spesso indicato come metabolismo degli xenobiotici. Come regola generale, il metabolismo converte gli xenobiotici liposolubili in grandi metaboliti idrosolubili che possono essere efficacemente escreti.
Il fegato è il principale sito di biotrasformazione. Tutti gli xenobiotici prelevati dall'intestino vengono trasportati al fegato da un singolo vaso sanguigno (vena porta). Se assorbita in piccole quantità, una sostanza estranea può essere completamente metabolizzata nel fegato prima di raggiungere la circolazione generale e altri organi (effetto di primo passaggio). Gli xenobiotici inalati vengono distribuiti attraverso la circolazione generale al fegato. In tal caso solo una frazione della dose viene metabolizzata nel fegato prima di raggiungere altri organi.
Le cellule del fegato contengono diversi enzimi che ossidano gli xenobiotici. Questa ossidazione generalmente attiva il composto: diventa più reattivo della molecola madre. Nella maggior parte dei casi il metabolita ossidato viene ulteriormente metabolizzato da altri enzimi in una seconda fase. Questi enzimi coniugano il metabolita con un substrato endogeno, in modo che la molecola diventi più grande e più polare. Questo facilita l'escrezione.
Gli enzimi che metabolizzano gli xenobiotici sono presenti anche in altri organi come polmoni e reni. In questi organi possono svolgere ruoli specifici e qualitativamente importanti nel metabolismo di alcuni xenobiotici. I metaboliti formati in un organo possono essere ulteriormente metabolizzati in un secondo organo. Anche i batteri nell'intestino possono partecipare alla biotrasformazione.
I metaboliti degli xenobiotici possono essere escreti dai reni o attraverso la bile. Possono anche essere espirati attraverso i polmoni o legati a molecole endogene nel corpo.
La relazione tra biotrasformazione e tossicità è complessa. La biotrasformazione può essere vista come un processo necessario per la sopravvivenza. Protegge l'organismo dalla tossicità prevenendo l'accumulo di sostanze nocive nel corpo. Tuttavia, durante la biotrasformazione possono formarsi metaboliti intermedi reattivi e questi sono potenzialmente dannosi. Questo si chiama attivazione metabolica. Pertanto, la biotrasformazione può anche indurre tossicità. I metaboliti intermedi ossidati che non sono coniugati possono legarsi e danneggiare le strutture cellulari. Se, per esempio, un metabolita xenobiotico si lega al DNA, può essere indotta una mutazione (vedi “Tossicologia genetica”). Se il sistema di biotrasformazione è sovraccarico, può verificarsi una massiccia distruzione delle proteine essenziali o delle membrane lipidiche. Ciò può provocare la morte cellulare (vedere "Danno cellulare e morte cellulare").
Metabolismo è una parola spesso usata in modo intercambiabile con biotrasformazione. Denota la rottura chimica o le reazioni di sintesi catalizzate dagli enzimi nel corpo. I nutrienti del cibo, i composti endogeni e gli xenobiotici sono tutti metabolizzati nel corpo.
Attivazione metabolica significa che un composto meno reattivo viene convertito in una molecola più reattiva. Questo di solito si verifica durante le reazioni di Fase 1.
Inattivazione metabolica significa che una molecola attiva o tossica viene convertita in un metabolita meno attivo. Questo di solito si verifica durante le reazioni di fase 2. In alcuni casi un metabolita inattivato potrebbe essere riattivato, ad esempio mediante scissione enzimatica.
Reazione 1 di fase si riferisce al primo passo nel metabolismo xenobiotico. Di solito significa che il composto è ossidato. L'ossidazione di solito rende il composto più solubile in acqua e facilita ulteriori reazioni.
Enzimi del citocromo P450 sono un gruppo di enzimi che ossidano preferenzialmente gli xenobiotici nelle reazioni di fase 1. I diversi enzimi sono specializzati per la gestione di gruppi specifici di xenobiotici con determinate caratteristiche. Anche le molecole endogene sono substrati. Gli enzimi del citocromo P450 sono indotti dagli xenobiotici in modo specifico. L'ottenimento di dati di induzione sul citocromo P450 può essere informativo sulla natura delle esposizioni precedenti (vedere "Determinanti genetici della risposta tossica").
Reazione 2 di fase si riferisce alla seconda fase del metabolismo xenobiotico. Di solito significa che il composto ossidato è coniugato con (accoppiato a) una molecola endogena. Questa reazione aumenta ulteriormente la solubilità in acqua. Molti metaboliti coniugati vengono attivamente escreti attraverso i reni.
Transferasi sono un gruppo di enzimi che catalizzano le reazioni di fase 2. Coniugano gli xenobiotici con composti endogeni come il glutatione, gli amminoacidi, l'acido glucuronico o il solfato.
Glutatione è una molecola endogena, un tripeptide, che viene coniugato con xenobiotici nelle reazioni di Fase 2. È presente in tutte le cellule (e nelle cellule del fegato in alte concentrazioni) e di solito protegge dagli xenobiotici attivati. Quando il glutatione è esaurito, possono verificarsi reazioni tossiche tra metaboliti xenobiotici attivati e proteine, lipidi o DNA.
Induzione significa che gli enzimi coinvolti nella biotrasformazione sono aumentati (in attività o quantità) come risposta all'esposizione xenobiotica. In alcuni casi in pochi giorni l'attività enzimatica può essere aumentata di diverse volte. L'induzione è spesso bilanciata in modo che entrambe le reazioni di Fase 1 e Fase 2 siano aumentate simultaneamente. Ciò può portare a una biotrasformazione più rapida e può spiegare la tolleranza. Al contrario, l'induzione sbilanciata può aumentare la tossicità.
Inibizione di biotrasformazione può verificarsi se due xenobiotici vengono metabolizzati dallo stesso enzima. I due substrati devono competere e di solito uno dei substrati è preferito. In tal caso il secondo substrato non viene metabolizzato o viene metabolizzato solo lentamente. Come con l'induzione, l'inibizione può aumentare così come diminuire la tossicità.
Attivazione dell'ossigeno può essere innescato dai metaboliti di alcuni xenobiotici. Possono auto-ossidarsi sotto la produzione di specie di ossigeno attivato. Queste specie derivate dall'ossigeno, che includono il superossido, il perossido di idrogeno e il radicale idrossile, possono danneggiare il DNA, i lipidi e le proteine nelle cellule. L'attivazione dell'ossigeno è anche coinvolta nei processi infiammatori.
Variabilità genetica tra gli individui è visto in molti geni che codificano per enzimi di fase 1 e fase 2. La variabilità genetica può spiegare perché alcuni individui sono più suscettibili agli effetti tossici degli xenobiotici rispetto ad altri.
L'organismo umano rappresenta un sistema biologico complesso su vari livelli di organizzazione, dal livello molecolare-cellulare ai tessuti e agli organi. L'organismo è un sistema aperto, che scambia materia ed energia con l'ambiente attraverso numerose reazioni biochimiche in equilibrio dinamico. L'ambiente può essere inquinato o contaminato da varie sostanze tossiche.
La penetrazione di molecole o ioni di sostanze tossiche dall'ambiente di lavoro o di vita in un sistema biologico così fortemente coordinato può disturbare in modo reversibile o irreversibile i normali processi biochimici cellulari, o addirittura danneggiare e distruggere la cellula (vedere "Danno cellulare e morte cellulare").
La penetrazione di una sostanza tossica dall'ambiente ai siti del suo effetto tossico all'interno dell'organismo può essere suddivisa in tre fasi:
Qui focalizzeremo la nostra attenzione esclusivamente sui processi tossicocinetici all'interno dell'organismo umano in seguito all'esposizione a sostanze tossiche nell'ambiente.
Le molecole o gli ioni di sostanze tossiche presenti nell'ambiente penetreranno nell'organismo attraverso la pelle e le mucose, o le cellule epiteliali del tratto respiratorio e gastrointestinale, a seconda del punto di ingresso. Ciò significa che le molecole e gli ioni delle sostanze tossiche devono penetrare attraverso le membrane cellulari di questi sistemi biologici, nonché attraverso un intricato sistema di endomembrane all'interno della cellula.
Tutti i processi tossicocinetici e tossicodinamici avvengono a livello molecolare-cellulare. Numerosi fattori influenzano questi processi e questi possono essere suddivisi in due gruppi fondamentali:
Proprietà fisico-chimiche delle sostanze tossiche
Nel 1854 il tossicologo russo EV Pelikan iniziò gli studi sulla relazione tra la struttura chimica di una sostanza e la sua attività biologica: la relazione struttura-attività (SAR). La struttura chimica determina direttamente le proprietà fisico-chimiche, alcune delle quali sono responsabili dell'attività biologica.
Per definire la struttura chimica si possono selezionare numerosi parametri come descrittori, che possono essere suddivisi in vari gruppi:
1. Fisico-chimico:
2. Sterico: volume molecolare, forma e superficie, forma della sottostruttura, reattività molecolare, ecc.
3. Strutturale: numero di legami numero di anelli (nei composti policiclici), estensione della ramificazione, ecc.
Per ogni sostanza tossica è necessario selezionare un insieme di descrittori relativi a un particolare meccanismo di attività. Tuttavia, dal punto di vista tossicocinetico due parametri sono di importanza generale per tutti i tossici:
Per le polveri e gli aerosol inalati, anche la dimensione delle particelle, la forma, l'area superficiale e la densità influenzano la tossicocinetica e la tossicodinamica.
Struttura e proprietà delle membrane
La cellula eucariotica degli organismi umani e animali è circondata da una membrana citoplasmatica che regola il trasporto di sostanze e mantiene l'omeostasi cellulare. Anche gli organelli cellulari (nucleo, mitocondri) possiedono membrane. Il citoplasma cellulare è suddiviso in compartimenti da intricate strutture membranose, il reticolo endoplasmatico e il complesso del Golgi (endomembrane). Tutte queste membrane sono strutturalmente simili, ma variano nel contenuto di lipidi e proteine.
La struttura strutturale delle membrane è un doppio strato di molecole lipidiche (fosfolipidi, sfingolipidi, colesterolo). La spina dorsale di una molecola fosfolipidica è il glicerolo con due dei suoi gruppi -OH esterificati da acidi grassi alifatici con 16-18 atomi di carbonio e il terzo gruppo esterificato da un gruppo fosfato e un composto azotato (colina, etanolamina, serina). Negli sfingolipidi, la sfingosina è la base.
La molecola lipidica è anfipatica perché è costituita da una “testa” idrofila polare (aminoalcol, fosfato, glicerolo) e da una “coda” gemella non polare (acidi grassi). Il doppio strato lipidico è disposto in modo che le teste idrofile costituiscano la superficie esterna e interna della membrana e le code lipofile siano tese verso l'interno della membrana, che contiene acqua, vari ioni e molecole.
Le proteine e le glicoproteine sono inserite nel doppio strato lipidico (proteine intrinseche) o attaccate alla superficie della membrana (proteine estrinseche). Queste proteine contribuiscono all'integrità strutturale della membrana, ma possono anche fungere da enzimi, trasportatori, pareti dei pori o recettori.
La membrana rappresenta una struttura dinamica che può essere disintegrata e ricostruita con una diversa proporzione di lipidi e proteine, a seconda delle esigenze funzionali.
La regolazione del trasporto di sostanze all'interno e all'esterno della cellula rappresenta una delle funzioni fondamentali delle membrane esterne ed interne.
Alcune molecole lipofile passano direttamente attraverso il doppio strato lipidico. Le molecole e gli ioni idrofili vengono trasportati attraverso i pori. Le membrane rispondono alle mutevoli condizioni aprendo o sigillando determinati pori di varie dimensioni.
I seguenti processi e meccanismi sono coinvolti nel trasporto di sostanze, comprese le sostanze tossiche, attraverso le membrane:
Processi attivi:
Emittente
Questo rappresenta il movimento di molecole e ioni attraverso il doppio strato lipidico oi pori da una regione ad alta concentrazione, o ad alto potenziale elettrico, a una regione a bassa concentrazione o potenziale ("downhill"). La differenza di concentrazione o carica elettrica è la forza motrice che influenza l'intensità del flusso in entrambe le direzioni. Nello stato di equilibrio, l'afflusso sarà uguale all'efflusso. La velocità di diffusione segue la legge di Ficke, affermando che è direttamente proporzionale alla superficie disponibile della membrana, alla differenza nel gradiente di concentrazione (carica) e al coefficiente di diffusione caratteristico, e inversamente proporzionale allo spessore della membrana.
Piccole molecole lipofile passano facilmente attraverso lo strato lipidico della membrana, secondo il coefficiente di partizione di Nernst.
Grandi molecole lipofile, molecole idrosolubili e ioni utilizzeranno i canali dei pori acquosi per il loro passaggio. Le dimensioni e la stereoconfigurazione influenzeranno il passaggio delle molecole. Per gli ioni, oltre alle dimensioni, sarà determinante il tipo di carica. Le molecole proteiche delle pareti dei pori possono acquisire carica positiva o negativa. I pori stretti tendono ad essere selettivi: i ligandi caricati negativamente consentiranno il passaggio solo per i cationi e i ligandi caricati positivamente consentiranno il passaggio solo per gli anioni. Con l'aumento del diametro dei pori il flusso idrodinamico è dominante, consentendo il libero passaggio di ioni e molecole, secondo la legge di Poiseuille. Questa filtrazione è una conseguenza del gradiente osmotico. In alcuni casi gli ioni possono penetrare attraverso molecole complesse specifiche:ionofori—che possono essere prodotti da microrganismi con effetti antibiotici (nonactina, valinomicina, gramacidina, ecc.).
Diffusione facilitata o catalizzata
Ciò richiede la presenza di un trasportatore nella membrana, solitamente una molecola proteica (permeasi). Il vettore lega selettivamente le sostanze, assomigliando a un complesso substrato-enzima. Molecole simili (incluse le sostanze tossiche) possono competere per il vettore specifico fino al raggiungimento del suo punto di saturazione. I tossici possono competere per il vettore e quando sono irreversibilmente legati ad esso il trasporto viene bloccato. Il tasso di trasporto è caratteristico per ogni tipo di vettore. Se il trasporto avviene in entrambe le direzioni, si parla di diffusione di scambio.
Trasporto attivo
Per il trasporto di alcune sostanze vitali per la cellula, viene utilizzato un tipo speciale di vettore, che trasporta contro il gradiente di concentrazione o il potenziale elettrico ("in salita"). Il vettore è molto stereospecifico e può essere saturato.
Per il trasporto in salita è necessaria energia. L'energia necessaria è ottenuta dalla scissione catalitica delle molecole di ATP in ADP da parte dell'enzima adenosina trifosfatasi (ATP-asi).
I tossici possono interferire con questo trasporto mediante inibizione competitiva o non competitiva del portatore o mediante inibizione dell'attività ATP-asi.
Endocitosi
Endocitosi è definito come un meccanismo di trasporto in cui la membrana cellulare circonda il materiale avvolgendosi per formare una vescicola che lo trasporta attraverso la cellula. Quando il materiale è liquido, il processo è definito pinocitosi. In alcuni casi il materiale è legato a un recettore e questo complesso è trasportato da una vescicola di membrana. Questo tipo di trasporto è particolarmente utilizzato dalle cellule epiteliali del tratto gastrointestinale e dalle cellule del fegato e dei reni.
Assorbimento di sostanze tossiche
Le persone sono esposte a numerose sostanze tossiche presenti nell'ambiente di lavoro e di vita, che possono penetrare nell'organismo umano attraverso tre principali porte di ingresso:
Nel caso dell'esposizione nell'industria, l'inalazione rappresenta la via dominante di ingresso delle sostanze tossiche, seguita dalla penetrazione cutanea. In agricoltura, l'esposizione ai pesticidi tramite assorbimento cutaneo è quasi uguale ai casi di inalazione combinata e penetrazione cutanea. La popolazione generale è maggiormente esposta per ingestione di cibo, acqua e bevande contaminati, quindi per inalazione e meno spesso per penetrazione cutanea.
Assorbimento attraverso le vie respiratorie
L'assorbimento nei polmoni rappresenta la principale via di assorbimento di numerosi agenti tossici aerodispersi (gas, vapori, fumi, nebbie, fumi, polveri, aerosol, ecc.).
Il tratto respiratorio (RT) rappresenta un ideale sistema di scambio gassoso in possesso di una membrana con una superficie di 30 m2 (scadenza) a 100m2 (ispirazione profonda), dietro la quale si trova una rete di circa 2,000 km di capillari. Il sistema, sviluppato attraverso l'evoluzione, è alloggiato in uno spazio relativamente piccolo (cavità toracica) protetto da costole.
Anatomicamente e fisiologicamente il RT può essere suddiviso in tre compartimenti:
I tossici idrofili sono facilmente assorbiti dall'epitelio della regione nasofaringea. L'intero epitelio delle regioni NP e TB è ricoperto da una pellicola d'acqua. I tossici lipofili sono parzialmente assorbiti nelle NP e TB, ma soprattutto negli alveoli per diffusione attraverso le membrane alveolo-capillari. Il tasso di assorbimento dipende dalla ventilazione polmonare, dalla gittata cardiaca (flusso sanguigno attraverso i polmoni), dalla solubilità del tossico nel sangue e dal suo tasso metabolico.
Negli alveoli avviene lo scambio di gas. La parete alveolare è costituita da un epitelio, una struttura interstiziale di membrana basale, tessuto connettivo e l'endotelio capillare. La diffusione delle sostanze tossiche è molto rapida attraverso questi strati, che hanno uno spessore di circa 0.8 μm. Negli alveoli, il tossico viene trasferito dalla fase aerea alla fase liquida (sangue). La velocità di assorbimento (distribuzione aria-sangue) di una sostanza tossica dipende dalla sua concentrazione nell'aria alveolare e dal coefficiente di partizione di Nernst per il sangue (coefficiente di solubilità).
Nel sangue il tossico può essere disciolto in fase liquida mediante semplici processi fisici oppure legato alle cellule del sangue e/o ai costituenti del plasma secondo affinità chimica o per adsorbimento. Il contenuto di acqua nel sangue è del 75% e, pertanto, gas e vapori idrofili mostrano un'elevata solubilità nel plasma (p. es., alcoli). Le sostanze tossiche lipofile (p. es., il benzene) sono solitamente legate a cellule o macromolecole come l'albume.
Fin dall'inizio dell'esposizione nei polmoni, si verificano due processi opposti: assorbimento e desorbimento. L'equilibrio tra questi processi dipende dalla concentrazione di sostanza tossica nell'aria alveolare e nel sangue. All'inizio dell'esposizione la concentrazione di sostanze tossiche nel sangue è 0 e la ritenzione nel sangue è quasi del 100%. Con il proseguimento dell'esposizione si raggiunge un equilibrio tra assorbimento e desorbimento. I tossici idrofili raggiungeranno rapidamente l'equilibrio e la velocità di assorbimento dipende dalla ventilazione polmonare piuttosto che dal flusso sanguigno. Le sostanze tossiche lipofile hanno bisogno di più tempo per raggiungere l'equilibrio, e qui il flusso di sangue insaturo regola la velocità di assorbimento.
La deposizione di particelle e aerosol nell'RT dipende da fattori fisici e fisiologici, nonché dalla dimensione delle particelle. In breve, più piccola è la particella, più in profondità penetrerà nell'RT.
Una ritenzione relativamente bassa e costante di particelle di polvere nei polmoni di persone altamente esposte (ad esempio, minatori) suggerisce l'esistenza di un sistema molto efficiente per l'eliminazione delle particelle. Nella parte superiore del RT (tracheo-bronchiale) un velo mucociliare compie lo sgombero. Nella parte polmonare sono all'opera tre diversi meccanismi: (1) mantello mucociliare, (2) fagocitosi e (3) penetrazione diretta di particelle attraverso la parete alveolare.
Le prime 17 delle 23 ramificazioni dell'albero tracheo-bronchiale possiedono cellule epiteliali ciliate. Con i loro colpi queste ciglia spostano costantemente una coltre mucosa verso la bocca. Le particelle depositate su questa coltre mucociliare saranno inghiottite in bocca (ingestione). Una coperta mucosa copre anche la superficie dell'epitelio alveolare, spostandosi verso la coperta mucociliare. Inoltre le cellule specializzate in movimento, i fagociti, inghiottono particelle e microrganismi negli alveoli e migrano in due possibili direzioni:
Assorbimento attraverso il tratto gastrointestinale
Le sostanze tossiche possono essere ingerite in caso di ingestione accidentale, assunzione di cibi e bevande contaminati o ingestione di particelle eliminate dall'RT.
L'intero canale alimentare, dall'esofago all'ano, è sostanzialmente costruito allo stesso modo. Uno strato mucoso (epitelio) è sostenuto dal tessuto connettivo e quindi da una rete di capillari e muscoli lisci. L'epitelio superficiale dello stomaco è molto rugoso per aumentare la superficie di assorbimento/secrezione. L'area intestinale contiene numerose piccole sporgenze (villi), che sono in grado di assorbire materiale per “pompaggio”. L'area attiva per l'assorbimento nell'intestino è di circa 100 m2.
Nel tratto gastrointestinale (GIT) tutti i processi di assorbimento sono molto attivi:
Alcuni ioni metallici tossici utilizzano sistemi di trasporto specializzati per elementi essenziali: tallio, cobalto e manganese utilizzano il sistema del ferro, mentre il piombo sembra utilizzare il sistema del calcio.
Molti fattori influenzano il tasso di assorbimento delle sostanze tossiche in varie parti del GIT:
È inoltre necessario menzionare la circolazione enteroepatica. Tossici polari e/o metaboliti (glucuronidi e altri coniugati) vengono escreti con la bile nel duodeno. Qui gli enzimi della microflora effettuano l'idrolisi ei prodotti liberati possono essere riassorbiti e trasportati dalla vena porta nel fegato. Questo meccanismo è molto pericoloso nel caso di sostanze epatotossiche, consentendone l'accumulo temporaneo nel fegato.
Nel caso di sostanze tossiche biotrasformate nel fegato in metaboliti meno tossici o non tossici, l'ingestione può rappresentare una porta di ingresso meno pericolosa. Dopo l'assorbimento nel GIT, queste sostanze tossiche saranno trasportate dalla vena porta al fegato, dove potranno essere parzialmente disintossicate mediante biotrasformazione.
Assorbimento attraverso la pelle (cutanea, percutanea)
La pelle (1.8 m2 di superficie in un essere umano adulto) insieme alle mucose degli orifizi del corpo, ricopre la superficie del corpo. Rappresenta una barriera contro gli agenti fisici, chimici e biologici, mantenendo l'integrità e l'omeostasi del corpo e svolgendo molti altri compiti fisiologici.
Fondamentalmente la pelle è composta da tre strati: epidermide, vera pelle (derma) e tessuto sottocutaneo (ipoderma). Dal punto di vista tossicologico l'epidermide è qui di maggior interesse. È costituito da molti strati di cellule. Una superficie cornea di cellule morte appiattite (strato corneo) è lo strato superiore, sotto il quale si trova uno strato continuo di cellule vive (strato corneo compatto), seguito da una tipica membrana lipidica, e quindi da strato lucido, strato grammoso e strato mucoso. La membrana lipidica rappresenta una barriera protettiva, ma nelle parti pelose della pelle penetrano sia i follicoli piliferi che i canali delle ghiandole sudoripare. Pertanto, l'assorbimento cutaneo può avvenire mediante i seguenti meccanismi:
Il tasso di assorbimento attraverso la pelle dipenderà da molti fattori:
Trasporto di sostanze tossiche da sangue e linfa
Dopo l'assorbimento da parte di uno qualsiasi di questi portali di ingresso, le sostanze tossiche raggiungeranno il sangue, la linfa o altri fluidi corporei. Il sangue rappresenta il principale veicolo di trasporto delle sostanze tossiche e dei loro metaboliti.
Il sangue è un organo a circolazione fluida, che trasporta l'ossigeno necessario e le sostanze vitali alle cellule e rimuove i prodotti di scarto del metabolismo. Il sangue contiene anche componenti cellulari, ormoni e altre molecole coinvolte in molte funzioni fisiologiche. Il sangue scorre all'interno di un sistema circolatorio di vasi sanguigni relativamente ben chiuso e ad alta pressione, spinto dall'attività del cuore. A causa dell'alta pressione, si verifica una perdita di fluido. Il sistema linfatico rappresenta il sistema di drenaggio, sotto forma di una maglia fine di piccoli capillari linfatici a parete sottile che si diramano attraverso i tessuti molli e gli organi.
Il sangue è una miscela di una fase liquida (plasma, 55%) e globuli solidi (45%). Il plasma contiene proteine (albumine, globuline, fibrinogeno), acidi organici (lattico, glutammico, citrico) e molte altre sostanze (lipidi, lipoproteine, glicoproteine, enzimi, sali, xenobiotici, ecc.). Gli elementi delle cellule del sangue includono eritrociti (Er), leucociti, reticolociti, monociti e piastrine.
Le sostanze tossiche vengono assorbite come molecole e ioni. Alcune sostanze tossiche al pH del sangue formano particelle colloidali come terza forma in questo liquido. Molecole, ioni e colloidi di sostanze tossiche hanno varie possibilità di trasporto nel sangue:
La maggior parte delle sostanze tossiche nel sangue esiste parzialmente allo stato libero nel plasma e parzialmente legata agli eritrociti e ai costituenti del plasma. La distribuzione dipende dall'affinità delle sostanze tossiche a questi costituenti. Tutte le frazioni sono in equilibrio dinamico.
Alcune sostanze tossiche sono trasportate dagli elementi del sangue, principalmente dagli eritrociti, molto raramente dai leucociti. Le sostanze tossiche possono essere adsorbite sulla superficie di Er o possono legarsi ai ligandi dello stroma. Se penetrano in Er possono legarsi all'eme (es. monossido di carbonio e selenio) o alla globina (Sb111, Po210). Alcuni tossici trasportati da Er sono arsenico, cesio, torio, radon, piombo e sodio. Il cromo esavalente è legato esclusivamente all'Er e il cromo trivalente alle proteine del plasma. Per lo zinco si verifica competizione tra Er e plasma. Circa il 96% del piombo viene trasportato da Er. Il mercurio organico è principalmente legato a Er e il mercurio inorganico è trasportato principalmente dall'albumina plasmatica. Piccole frazioni di berillio, rame, tellurio e uranio sono trasportate da Er.
La maggior parte delle sostanze tossiche viene trasportata dal plasma o dalle proteine plasmatiche. Molti elettroliti sono presenti come ioni in equilibrio con molecole non dissociate libere o legate alle frazioni plasmatiche. Questa frazione ionica di sostanze tossiche è molto diffusibile, penetrando attraverso le pareti dei capillari nei tessuti e negli organi. Gas e vapori possono essere disciolti nel plasma.
Le proteine plasmatiche possiedono una superficie totale di circa 600-800 km2 offerto per l'assorbimento di sostanze tossiche. Le molecole di albumina possiedono circa 109 ligandi cationici e 120 anionici a disposizione degli ioni. Molti ioni sono parzialmente trasportati dall'albumina (ad es. rame, zinco e cadmio), così come composti come dinitro- e orto-cresoli, derivati nitro e alogenati di idrocarburi aromatici e fenoli.
Le molecole di globuline (alfa e beta) trasportano piccole molecole di sostanze tossiche così come alcuni ioni metallici (rame, zinco e ferro) e particelle colloidali. Il fibrinogeno mostra affinità per alcune piccole molecole. Molti tipi di legami possono essere coinvolti nel legame di sostanze tossiche alle proteine plasmatiche: forze di Van der Waals, attrazione di cariche, associazione tra gruppi polari e apolari, ponti a idrogeno, legami covalenti.
Le lipoproteine plasmatiche trasportano sostanze tossiche lipofile come i PCB. Anche le altre frazioni plasmatiche fungono da veicolo di trasporto. L'affinità delle sostanze tossiche per le proteine plasmatiche suggerisce la loro affinità per le proteine nei tessuti e negli organi durante la distribuzione.
Gli acidi organici (lattico, glutammico, citrico) formano complessi con alcune sostanze tossiche. Le terre alcaline e le terre rare, così come alcuni elementi pesanti sotto forma di cationi, sono complessate anche con ossi- e amminoacidi organici. Tutti questi complessi sono generalmente diffusibili e facilmente distribuibili nei tessuti e negli organi.
Gli agenti chelanti fisiologicamente nel plasma come la transferrina e la metallotioneina competono con gli acidi organici e gli amminoacidi per i cationi per formare chelati stabili.
Gli ioni liberi diffusibili, alcuni complessi e alcune molecole libere vengono facilmente eliminati dal sangue nei tessuti e negli organi. La frazione libera di ioni e molecole è in equilibrio dinamico con la frazione legata. La concentrazione di una sostanza tossica nel sangue governerà la velocità della sua distribuzione nei tessuti e negli organi, o la sua mobilitazione da essi nel sangue.
Distribuzione delle sostanze tossiche nell'organismo
L'organismo umano può essere suddiviso in quanto segue scomparti. (1) organi interni, (2) pelle e muscoli, (3) tessuti adiposi, (4) tessuto connettivo e ossa. Questa classificazione si basa principalmente sul grado di perfusione vascolare (sangue) in ordine decrescente. Ad esempio gli organi interni (incluso il cervello), che rappresentano solo il 12% del peso corporeo totale, ricevono circa il 75% del volume totale del sangue. D'altra parte, i tessuti connettivi e le ossa (15% del peso corporeo totale) ricevono solo l'XNUMX% del volume totale del sangue.
Gli organi interni ben irrorati generalmente raggiungono la più alta concentrazione di sostanze tossiche nel minor tempo, così come un equilibrio tra sangue e questo compartimento. L'assorbimento di sostanze tossiche da parte dei tessuti meno perfusi è molto più lento, ma la ritenzione è maggiore e la durata della degenza molto più lunga (accumulo) a causa della bassa perfusione.
Tre componenti sono di grande importanza per la distribuzione intracellulare delle sostanze tossiche: contenuto di acqua, lipidi e proteine nelle cellule di vari tessuti e organi. Il suddetto ordine di compartimenti segue anche da vicino un contenuto d'acqua decrescente nelle loro cellule. I tossici idrofili saranno distribuiti più rapidamente ai fluidi corporei e alle cellule con un elevato contenuto di acqua e i tossici lipofili alle cellule con un contenuto lipidico più elevato (tessuto adiposo).
L'organismo possiede alcune barriere che ostacolano la penetrazione di alcuni gruppi di sostanze tossiche, per lo più idrofile, in determinati organi e tessuti, quali:
Come notato in precedenza, solo le forme libere di sostanze tossiche nel plasma (molecole, ioni, colloidi) sono disponibili per la penetrazione attraverso le pareti dei capillari che partecipano alla distribuzione. Questa frazione libera è in equilibrio dinamico con la frazione legata. La concentrazione di sostanze tossiche nel sangue è in equilibrio dinamico con la loro concentrazione negli organi e nei tessuti, regolandone la ritenzione (accumulo) o la mobilizzazione.
La condizione dell'organismo, lo stato funzionale degli organi (in particolare la regolazione neuro-umorale), l'equilibrio ormonale e altri fattori giocano un ruolo nella distribuzione.
La ritenzione di sostanze tossiche in un particolare compartimento è generalmente temporanea e può verificarsi la ridistribuzione in altri tessuti. La ritenzione e l'accumulo si basano sulla differenza tra i tassi di assorbimento ed eliminazione. La durata della ritenzione in un compartimento è espressa dall'emivita biologica. Questo è l'intervallo di tempo in cui il 50% del tossico viene eliminato dal tessuto o dall'organo e ridistribuito, traslocato o eliminato dall'organismo.
I processi di biotrasformazione si verificano durante la distribuzione e la ritenzione in vari organi e tessuti. La biotrasformazione produce metaboliti più polari, più idrofili, che vengono eliminati più facilmente. Un basso tasso di biotrasformazione di un tossico lipofilo causerà generalmente il suo accumulo in un compartimento.
Le sostanze tossiche possono essere suddivise in quattro gruppi principali in base alla loro affinità, ritenzione predominante e accumulo in un particolare compartimento:
Accumulo nei tessuti ricchi di lipidi
L '"uomo standard" di 70 kg di peso corporeo contiene circa il 15% del peso corporeo sotto forma di tessuto adiposo, che aumenta con l'obesità fino al 50%. Tuttavia, questa frazione lipidica non è distribuita uniformemente. Il cervello (SNC) è un organo ricco di lipidi e i nervi periferici sono avvolti da una guaina mielinica ricca di lipidi e cellule di Schwann. Tutti questi tessuti offrono possibilità di accumulo di sostanze tossiche lipofile.
In questo compartimento verranno distribuiti numerosi non elettroliti e tossici non polari con un opportuno coefficiente di ripartizione di Nernst, nonché numerosi solventi organici (alcoli, aldeidi, chetoni, ecc.), idrocarburi clorurati (inclusi insetticidi organoclorurati come il DDT), alcuni gas inerti (radon), ecc.
Il tessuto adiposo accumulerà sostanze tossiche a causa della sua bassa vascolarizzazione e del minor tasso di biotrasformazione. Qui l'accumulo di sostanze tossiche può rappresentare una sorta di “neutralizzazione” temporanea a causa della mancanza di bersagli per l'effetto tossico. Tuttavia, il potenziale pericolo per l'organismo è sempre presente a causa della possibilità di mobilizzazione di sostanze tossiche da questo compartimento verso la circolazione.
La deposizione di sostanze tossiche nel cervello (SNC) o nel tessuto ricco di lipidi della guaina mielinica del sistema nervoso periferico è molto pericolosa. I neurotossici vengono depositati qui direttamente accanto ai loro bersagli. Le sostanze tossiche trattenute nel tessuto ricco di lipidi delle ghiandole endocrine possono produrre disturbi ormonali. Nonostante la barriera emato-encefalica giungono al cervello (SNC) numerose sostanze neurotossiche di natura lipofila: anestetici, solventi organici, pesticidi, piombo tetraetile, organomercuriali, ecc.
Ritenzione nel sistema reticoloendoteliale
In ogni tessuto e organo una certa percentuale di cellule è specializzata per l'attività fagocitica, fagocitando microrganismi, particelle, particelle colloidali e così via. Questo sistema è chiamato sistema reticoloendoteliale (RES), comprendente cellule fisse e cellule mobili (fagociti). Queste cellule sono presenti in forma non attiva. Un aumento dei suddetti microbi e particelle attiverà le cellule fino a un punto di saturazione.
I tossici sotto forma di colloidi saranno catturati dalle RES di organi e tessuti. La distribuzione dipende dalla dimensione delle particelle colloidali. Per particelle più grandi, sarà favorita la ritenzione nel fegato. Con particelle colloidali più piccole, si verificherà una distribuzione più o meno uniforme tra milza, midollo osseo e fegato. L'eliminazione dei colloidi dalle RES è molto lenta, sebbene le piccole particelle vengano eliminate relativamente più rapidamente.
Accumulo nelle ossa
Circa 60 elementi possono essere identificati come elementi osteotropi o cercatori di ossa.
Gli elementi osteotropi possono essere suddivisi in tre gruppi:
Lo scheletro di un uomo standard rappresenta dal 10 al 15% del peso corporeo totale, rappresentando un grande deposito potenziale di sostanze tossiche osteotropiche. L'osso è un tessuto altamente specializzato costituito in volume dal 54% di minerali e dal 38% di matrice organica. La matrice minerale dell'osso è idrossiapatite, Ca10(PO4)6(OH)2 , in cui il rapporto tra Ca e P è di circa 1.5 a uno. La superficie di minerale disponibile per l'adsorbimento è di circa 100 m2 per g di osso.
L'attività metabolica delle ossa dello scheletro può essere suddivisa in due categorie:
Nel feto, l'osso metabolico del neonato e del bambino piccolo (vedi “scheletro disponibile”) rappresenta quasi il 100% dello scheletro. Con l'età questa percentuale di osso metabolico diminuisce. L'incorporazione di sostanze tossiche durante l'esposizione appare nell'osso metabolico e nei compartimenti a rotazione più lenta.
L'incorporazione di sostanze tossiche nell'osso avviene in due modi:
Reazioni di scambio ionico
Il minerale osseo, l'idrossiapatite, rappresenta un complesso sistema di scambio ionico. I cationi di calcio possono essere scambiati da vari cationi. Gli anioni presenti nell'osso possono essere scambiati anche da anioni: fosfato con citrati e carbonati, ossidrile con fluoro. Gli ioni che non sono scambiabili possono essere adsorbiti sulla superficie del minerale. Quando gli ioni tossici vengono incorporati nel minerale, un nuovo strato di minerale può ricoprire la superficie del minerale, seppellendo il tossico nella struttura ossea. Lo scambio ionico è un processo reversibile, a seconda della concentrazione di ioni, pH e volume del fluido. Così, per esempio, un aumento del calcio nella dieta può diminuire la deposizione di ioni tossici nel reticolo dei minerali. È stato detto che con l'età la percentuale di osso metabolico diminuisce, sebbene lo scambio ionico continui. Con l'invecchiamento, si verifica il riassorbimento minerale osseo, in cui la densità ossea diminuisce effettivamente. A questo punto, possono essere rilasciate sostanze tossiche nelle ossa (p. es., piombo).
Circa il 30% degli ioni incorporati nei minerali ossei sono debolmente legati e possono essere scambiati, catturati da agenti chelanti naturali ed escreti, con un'emivita biologica di 15 giorni. L'altro 70% è legato più saldamente. La mobilizzazione e l'escrezione di questa frazione mostra un'emivita biologica di 2.5 anni e più a seconda del tipo di osso (processi di rimodellamento).
Gli agenti chelanti (Ca-EDTA, penicillamina, BAL, ecc.) possono mobilizzare quantità considerevoli di alcuni metalli pesanti e la loro escrezione nelle urine aumenta notevolmente.
Adsorbimento colloidale
Le particelle colloidali vengono adsorbite come una pellicola sulla superficie minerale (100 m2 per g) da forze di Van der Waals o chemisorbimento. Questo strato di colloidi sulle superfici minerali è ricoperto dallo strato successivo di minerali formati e le sostanze tossiche sono maggiormente sepolte nella struttura ossea. Il tasso di mobilizzazione ed eliminazione dipende dai processi di rimodellamento.
Accumulo nei capelli e nelle unghie
I capelli e le unghie contengono cheratina, con gruppi sulfidrilici in grado di chelare cationi metallici come mercurio e piombo.
Distribuzione del tossico all'interno della cellula
Recentemente è diventata importante la distribuzione di sostanze tossiche, in particolare alcuni metalli pesanti, all'interno delle cellule di tessuti e organi. Con le tecniche di ultracentrifugazione è possibile separare varie frazioni della cellula per determinarne il contenuto di ioni metallici e altre sostanze tossiche.
Studi sugli animali hanno rivelato che dopo la penetrazione nella cellula, alcuni ioni metallici si legano a una proteina specifica, la metallotioneina. Questa proteina a basso peso molecolare è presente nelle cellule del fegato, dei reni e di altri organi e tessuti. I suoi gruppi sulfidrilici possono legare sei ioni per molecola. L'aumentata presenza di ioni metallici induce la biosintesi di questa proteina. Gli ioni di cadmio sono l'induttore più potente. La metallotioneina serve anche a mantenere l'omeostasi degli ioni vitali rame e zinco. La metallotioneina può legare zinco, rame, cadmio, mercurio, bismuto, oro, cobalto e altri cationi.
Biotrasformazione ed eliminazione di sostanze tossiche
Durante la ritenzione nelle cellule di vari tessuti e organi, le sostanze tossiche sono esposte a enzimi che possono biotrasformarle (metabolizzarle), producendo metaboliti. Ci sono molte vie per l'eliminazione di sostanze tossiche e/o metaboliti: dall'aria espirata attraverso i polmoni, dall'urina attraverso i reni, dalla bile attraverso il GIT, dal sudore attraverso la pelle, dalla saliva attraverso la mucosa della bocca, dal latte attraverso il ghiandole mammarie e da capelli e unghie attraverso la normale crescita e il ricambio cellulare.
L'eliminazione di un tossico assorbito dipende dal portale di ingresso. Nei polmoni il processo di assorbimento/desorbimento inizia immediatamente e le sostanze tossiche vengono parzialmente eliminate dall'aria espirata. L'eliminazione delle sostanze tossiche assorbite da altre vie di ingresso è prolungata e inizia dopo il trasporto attraverso il sangue, per poi essere completata dopo la distribuzione e la biotrasformazione. Durante l'assorbimento esiste un equilibrio tra le concentrazioni di una sostanza tossica nel sangue e nei tessuti e negli organi. L'escrezione diminuisce la concentrazione ematica tossica e può indurre la mobilizzazione di una sostanza tossica dai tessuti nel sangue.
Molti fattori possono influenzare il tasso di eliminazione delle sostanze tossiche e dei loro metaboliti dal corpo:
Qui distinguiamo due gruppi di compartimenti: (1) il sistema di cambio rapido— in questi compartimenti, la concentrazione tissutale di sostanza tossica è simile a quella del sangue; e (2) il sistema di scambio lento, dove la concentrazione tissutale di sostanze tossiche è superiore a quella del sangue a causa del legame e dell'accumulo: il tessuto adiposo, lo scheletro ei reni possono trattenere temporaneamente alcune sostanze tossiche, ad esempio arsenico e zinco.
Una sostanza tossica può essere espulsa simultaneamente da due o più vie di escrezione. Tuttavia, di solito un percorso è dominante.
Gli scienziati stanno sviluppando modelli matematici che descrivono l'escrezione di un particolare tossico. Questi modelli si basano sul movimento da uno o entrambi i compartimenti (sistemi di scambio), biotrasformazione e così via.
Eliminazione dall'aria espirata attraverso i polmoni
L'eliminazione attraverso i polmoni (desorbimento) è tipica delle sostanze tossiche ad alta volatilità (ad es. solventi organici). Gas e vapori a bassa solubilità nel sangue verranno eliminati rapidamente in questo modo, mentre le sostanze tossiche ad alta solubilità nel sangue verranno eliminate per altre vie.
I solventi organici assorbiti dal GIT o dalla pelle vengono escreti parzialmente dall'aria espirata in ogni passaggio di sangue attraverso i polmoni, se hanno una tensione di vapore sufficiente. Il test dell'etilometro utilizzato per i guidatori sospetti in stato di ebbrezza si basa su questo fatto. La concentrazione di CO nell'aria espirata è in equilibrio con il contenuto di CO-Hb nel sangue. Il gas radioattivo radon appare nell'aria espirata a causa del decadimento del radio accumulato nello scheletro.
L'eliminazione di una sostanza tossica dall'aria espirata in relazione al periodo di tempo post-esposizione è generalmente espressa da una curva a tre fasi. La prima fase rappresenta l'eliminazione del tossico dal sangue, mostrando una breve emivita. La seconda fase, più lenta, rappresenta l'eliminazione dovuta allo scambio di sangue con tessuti e organi (sistema di scambio rapido). La terza fase, molto lenta, è dovuta allo scambio di sangue con tessuto adiposo e scheletro. Se in tali compartimenti non si accumula una sostanza tossica, la curva sarà bifase. In alcuni casi è anche possibile una curva a quattro fasi.
La determinazione dei gas e dei vapori nell'aria espirata nel periodo post-esposizione viene talvolta utilizzata per la valutazione delle esposizioni nei lavoratori.
Escrezione renale
Il rene è un organo specializzato nell'escrezione di numerosi tossici e metaboliti idrosolubili, mantenendo l'omeostasi dell'organismo. Ogni rene possiede circa un milione di nefroni in grado di eseguire l'escrezione. L'escrezione renale rappresenta un evento molto complesso che comprende tre diversi meccanismi:
L'escrezione di una sostanza tossica attraverso i reni nelle urine dipende dal coefficiente di partizione di Nernst, dalla costante di dissociazione e dal pH dell'urina, dalla dimensione e forma molecolare, dalla velocità del metabolismo verso metaboliti più idrofili, nonché dallo stato di salute dei reni.
La cinetica dell'escrezione renale di un tossico o del suo metabolita può essere espressa da una curva di escrezione a due, tre o quattro fasi, a seconda della distribuzione del particolare tossico nei vari compartimenti corporei che differiscono nella velocità di scambio con il sangue.
saliva
Alcuni farmaci e ioni metallici possono essere escreti attraverso la mucosa della bocca dalla saliva, ad esempio piombo ("linea di piombo"), mercurio, arsenico, rame, nonché bromuri, ioduri, alcol etilico, alcaloidi e così via. Le sostanze tossiche vengono quindi ingerite, raggiungendo il GIT, dove possono essere riassorbite o eliminate con le feci.
Sudare
Molti non elettroliti possono essere parzialmente eliminati attraverso la pelle attraverso il sudore: alcol etilico, acetone, fenoli, solfuro di carbonio e idrocarburi clorurati.
Latte
Molti metalli, solventi organici e alcuni pesticidi organoclorurati (DDT) vengono secreti attraverso la ghiandola mammaria nel latte materno. Questo percorso può rappresentare un pericolo per i lattanti.
Capelli
L'analisi dei capelli può essere utilizzata come indicatore dell'omeostasi di alcune sostanze fisiologiche. Anche l'esposizione ad alcune sostanze tossiche, in particolare metalli pesanti, può essere valutata mediante questo tipo di saggio biologico.
L'eliminazione delle sostanze tossiche dal corpo può essere aumentata da:
Determinazioni dell'esposizione
La determinazione delle sostanze tossiche e dei metaboliti nel sangue, nell'aria espirata, nelle urine, nel sudore, nelle feci e nei capelli è sempre più utilizzata per la valutazione dell'esposizione umana (test di esposizione) e/o la valutazione del grado di intossicazione. Pertanto sono stati recentemente stabiliti i limiti di esposizione biologica (Biological MAC Values, Biological Exposure Indices—BEI). Questi biodosaggi mostrano "l'esposizione interna" dell'organismo, cioè l'esposizione totale del corpo sia negli ambienti di lavoro che in quelli di vita da tutte le porte di ingresso (vedi "Metodi di test tossicologici: biomarcatori").
Effetti combinati dovuti all'esposizione multipla
Le persone nell'ambiente di lavoro e/o di vita sono solitamente esposte contemporaneamente o consecutivamente a vari agenti fisici e chimici. Inoltre è necessario tenere in considerazione che alcune persone fanno uso di farmaci, fumano, consumano alcolici e cibi contenenti additivi e così via. Ciò significa che di solito si sta verificando un'esposizione multipla. Agenti fisici e chimici possono interagire in ogni fase dei processi tossicocinetici e/o tossicodinamici, producendo tre possibili effetti:
Tuttavia, gli studi sugli effetti combinati sono rari. Questo tipo di studio è molto complesso a causa della combinazione di vari fattori e agenti.
Possiamo concludere che quando l'organismo umano è esposto a due o più sostanze tossiche simultaneamente o consecutivamente, è necessario considerare la possibilità di alcuni effetti combinati, che possono aumentare o diminuire la velocità dei processi tossicocinetici.
L'obiettivo prioritario della tossicologia occupazionale e ambientale è quello di migliorare la prevenzione o la limitazione sostanziale degli effetti sulla salute dell'esposizione ad agenti pericolosi negli ambienti generali e occupazionali. A tal fine sono stati sviluppati sistemi per la valutazione quantitativa del rischio relativo ad una data esposizione (vedi paragrafo “Tossicologia normativa”).
Gli effetti di una sostanza chimica su particolari sistemi e organi sono correlati all'entità dell'esposizione e al fatto che l'esposizione sia acuta o cronica. In considerazione della diversità degli effetti tossici anche all'interno di un sistema o organo, è stata proposta una filosofia uniforme riguardante l'organo critico e l'effetto critico ai fini della valutazione del rischio e dello sviluppo di limiti di concentrazione raccomandati basati sulla salute di sostanze tossiche in diversi ambienti ambientali .
Dal punto di vista della medicina preventiva, è di particolare importanza identificare gli effetti avversi precoci, sulla base del presupposto generale che prevenire o limitare gli effetti precoci può impedire lo sviluppo di effetti più gravi sulla salute.
Tale approccio è stato applicato ai metalli pesanti. Sebbene i metalli pesanti, come piombo, cadmio e mercurio, appartengano a un gruppo specifico di sostanze tossiche in cui l'effetto cronico dell'attività dipende dal loro accumulo negli organi, le definizioni presentate di seguito sono state pubblicate dal Task Group on Metal Toxicity (Nordberg 1976).
La definizione di organo critico proposta dal Task Group on Metal Toxicity è stata adottata con una leggera modifica: la parola metallo è stata sostituita con l'espressione sostanza potenzialmente tossica (Duffus 1993).
Il fatto che un determinato organo o sistema sia considerato critico dipende non solo dalla tossicomeccanica dell'agente pericoloso, ma anche dalla via di assorbimento e dalla popolazione esposta.
Il significato biologico dell'effetto subcritico a volte non è noto; può indicare un biomarcatore di esposizione, un indice di adattamento o un precursore di un effetto critico (vedere “Metodi di test tossicologici: biomarcatori”). Quest'ultima possibilità può essere particolarmente significativa in vista delle attività profilattiche.
La tabella 1 mostra esempi di organi ed effetti critici per diverse sostanze chimiche. Nell'esposizione ambientale cronica al cadmio, dove la via di assorbimento è di minore importanza (le concentrazioni di cadmio nell'aria vanno da 10 a 20 μg/m3 in ambito urbano e da 1 a 2 μg/m3 nelle zone rurali), l'organo critico è il rene. Nell'ambiente lavorativo dove il TLV raggiunge i 50μg/m3 e l'inalazione costituisce la principale via di esposizione, due organi, polmone e rene, sono considerati critici.
Tabella 1. Esempi di organi critici ed effetti critici
Sostanza | Organo critico nell'esposizione cronica | Effetto critico |
Cadmio | Polmoni | Non soglia: Cancro ai polmoni (rischio unitario 4.6 x 10-3) |
Rene | Soglia: Aumento dell'escrezione di proteine a basso peso molecolare (β2 -M, RBP) nelle urine |
|
Polmoni | Enfisema lievi alterazioni funzionali | |
Piombo | Adulti Sistema ematopoietico |
Aumento dell'escrezione di acido delta-aminolevulinico nelle urine (ALA-U); aumento della concentrazione di protoporfirina eritrocitaria libera (FEP) negli eritrociti |
Sistema nervoso periferico | Rallentamento delle velocità di conduzione delle fibre nervose più lente | |
Mercurio (elementale) | Bambini piccoli Sistema nervoso centrale |
Diminuzione del QI e altri effetti sottili; tremore mercuriale (dita, labbra, palpebre) |
Mercurio (mercurio) | Rene | La proteinuria |
Manganese | Adulti Sistema nervoso centrale |
Compromissione delle funzioni psicomotorie |
Bambini Polmoni |
Sintomi respiratori | |
Sistema nervoso centrale | Compromissione delle funzioni psicomotorie | |
toluene | Membrane mucose | Irritazione |
Cloruro di vinile | Fegato | Cancro (rischio unitario di angiosarcoma 1 x 10-6 ) |
Acetato di etile | Membrana mucosa | Irritazione |
Per il piombo, gli organi critici negli adulti sono il sistema emopoietico e il sistema nervoso periferico, dove gli effetti critici (p. es., elevata concentrazione di protoporfirina eritrocitaria libera (FEP), aumento dell'escrezione di acido delta-aminolevulinico nelle urine o ridotta conduzione nervosa periferica) si manifestano quando il livello di piombo nel sangue (un indice di assorbimento di piombo nel sistema) si avvicina a 200-300μg/l. Nei bambini piccoli l'organo critico è il sistema nervoso centrale (SNC), e i sintomi di disfunzione rilevati con l'uso di una batteria di test psicologici sono stati riscontrati nelle popolazioni esaminate anche a concentrazioni nell'ordine di circa 100μg/l Pb nel sangue.
Sono state formulate numerose altre definizioni che possono riflettere meglio il significato della nozione. Secondo l'OMS (1989), l'effetto critico è stato definito come “il primo effetto avverso che compare quando la concentrazione o la dose soglia (critica) viene raggiunta nell'organo critico. Gli effetti avversi, come il cancro, senza una concentrazione soglia definita sono spesso considerati critici. La decisione se un effetto è critico è una questione di giudizio di esperti. Nelle linee guida del programma internazionale sulla sicurezza chimica (IPCS) per lo sviluppo Documenti sui criteri di salute ambientale, l'effetto critico è descritto come "l'effetto avverso ritenuto più appropriato per determinare l'assunzione tollerabile". Quest'ultima definizione è stata formulata direttamente allo scopo di valutare i limiti di esposizione basati sulla salute nell'ambiente generale. In questo contesto, la cosa più essenziale sembra essere determinare quale effetto può essere considerato un effetto negativo. Secondo la terminologia corrente, l'effetto avverso è il "cambiamento nella morfologia, fisiologia, crescita, sviluppo o durata della vita di un organismo che si traduce in una compromissione della capacità di compensare lo stress aggiuntivo o un aumento della suscettibilità agli effetti dannosi di altre influenze ambientali. La decisione se un effetto sia negativo o meno richiede il giudizio di esperti.
La Figura 1 mostra ipotetiche curve dose-risposta per diversi effetti. In caso di esposizione al piombo, A può rappresentare un effetto subcritico (inibizione dell'ALA-deidratasi eritrocitaria), B l'effetto critico (aumento della protoporfirina di zinco eritrocitaria o aumento dell'escrezione di acido delta-aminolevulinico, C l'effetto clinico (anemia) e D l'effetto fatale (la morte). Per l'esposizione al piombo esistono abbondanti evidenze che illustrano come particolari effetti dell'esposizione siano dipendenti dalla concentrazione di piombo nel sangue (pratica controparte della dose), sia sotto forma di relazione dose-risposta sia in relazione a diverse variabili (sesso, età, ecc. .). Determinare gli effetti critici e la relazione dose-risposta per tali effetti nell'uomo rende possibile prevedere la frequenza di un dato effetto per una data dose o la sua controparte (concentrazione nel materiale biologico) in una certa popolazione.
Figura 1. Ipotetiche curve dose-risposta per vari effetti
Gli effetti critici possono essere di due tipi: quelli considerati di soglia e quelli per i quali può sussistere un certo rischio a qualsiasi livello di esposizione (senza soglia, cancerogeni genotossici e germi mutageni). Ove possibile, dovrebbero essere utilizzati dati umani appropriati come base per la valutazione del rischio. Al fine di determinare gli effetti soglia per la popolazione generale, le ipotesi relative al livello di esposizione (assunzione tollerabile, biomarcatori di esposizione) devono essere fatte in modo tale che la frequenza dell'effetto critico nella popolazione esposta a un determinato agente pericoloso corrisponda alla frequenza di tale effetto nella popolazione generale. Nell'esposizione al piombo, la concentrazione massima raccomandata di piombo nel sangue per la popolazione generale (200μg/l, mediana inferiore a 100μg/l) (WHO 1987) è praticamente al di sotto del valore soglia per l'effetto critico presunto: l'elevato livello di protoporfirina libera negli eritrociti, sebbene non sia inferiore al livello associato agli effetti sul sistema nervoso centrale nei bambini o alla pressione arteriosa negli adulti. In generale, se i dati provenienti da studi ben condotti sulla popolazione umana che definiscono un livello senza effetti avversi osservati sono la base per la valutazione della sicurezza, allora il fattore di incertezza di dieci è stato considerato appropriato. Nel caso di esposizione professionale gli effetti critici possono riguardare una certa parte della popolazione (es. 10%). Di conseguenza, nell'esposizione professionale al piombo, la concentrazione di piombo nel sangue raccomandata per la salute è stata adottata per essere di 400 mg/l negli uomini, dove un livello di risposta del 10% per ALA-U di 5 mg/l si è verificato a concentrazioni di PbB di circa 300-400 mg/l . Per l'esposizione professionale al cadmio (assumendo che l'aumento dell'escrezione urinaria di proteine a basso peso sia l'effetto critico), il livello di 200 ppm di cadmio nella corteccia renale è stato considerato come il valore ammissibile, poiché questo effetto è stato osservato nel 10% dei la popolazione esposta. Entrambi questi valori sono allo studio per l'abbassamento, in molti paesi, attualmente (es. 1996).
Non vi è un chiaro consenso sulla metodologia appropriata per la valutazione del rischio delle sostanze chimiche per le quali l'effetto critico potrebbe non avere una soglia, come le sostanze cancerogene genotossiche. Per la valutazione di tali effetti sono stati adottati numerosi approcci basati in gran parte sulla caratterizzazione della relazione dose-risposta. A causa della mancanza di accettazione socio-politica del rischio per la salute causato da agenti cancerogeni in documenti come il Linee guida sulla qualità dell'aria per l'Europa (WHO 1987), solo i valori come il rischio unitario nel corso della vita (ossia, il rischio associato all'esposizione nel corso della vita a 1μg/m3 dell'agente pericoloso) sono presentati per gli effetti senza soglia (vedi “Tossicologia normativa”).
Attualmente, il passo fondamentale nell'intraprendere attività per la valutazione del rischio è determinare l'organo critico e gli effetti critici. Le definizioni sia dell'effetto critico che di quello avverso riflettono la responsabilità di decidere quale degli effetti all'interno di un dato organo o sistema debba essere considerato critico, e ciò è direttamente correlato alla successiva determinazione dei valori raccomandati per una data sostanza chimica nell'ambiente generale -Per esempio, Linee guida sulla qualità dell'aria per l'Europa (WHO 1987) o limiti basati sulla salute nell'esposizione professionale (WHO 1980). Determinare l'effetto critico all'interno della gamma degli effetti subcritici può portare a una situazione in cui i limiti raccomandati sulla concentrazione di sostanze chimiche tossiche nell'ambiente generale o lavorativo possono essere in pratica impossibili da mantenere. Considerare come critico un effetto che può sovrapporsi agli effetti clinici precoci può portare all'adozione dei valori per i quali gli effetti avversi possono svilupparsi in una parte della popolazione. La decisione se un determinato effetto debba o meno essere considerato critico resta di competenza dei gruppi di esperti specializzati nella valutazione della tossicità e del rischio.
Ci sono spesso grandi differenze tra gli esseri umani nell'intensità della risposta alle sostanze chimiche tossiche e variazioni nella suscettibilità di un individuo nel corso della vita. Questi possono essere attribuiti a una varietà di fattori in grado di influenzare il tasso di assorbimento, la distribuzione nel corpo, la biotrasformazione e/o il tasso di escrezione di una particolare sostanza chimica. Oltre ai noti fattori ereditari che è stato chiaramente dimostrato essere collegati all'aumentata suscettibilità alla tossicità chimica nell'uomo (vedi “Determinanti genetici della risposta tossica”), altri fattori includono: caratteristiche costituzionali legate all'età e al sesso; stati patologici preesistenti o riduzione della funzione d'organo (non ereditari, cioè acquisiti); abitudini alimentari, fumo, consumo di alcol e uso di farmaci; concomitante esposizione a biotossine (microrganismi vari) e fattori fisici (radiazioni, umidità, temperature estremamente basse o elevate o pressioni barometriche particolarmente rilevanti per la pressione parziale di un gas), nonché concomitante esercizio fisico o situazioni di stress psicologico; precedente esposizione professionale e/o ambientale a una particolare sostanza chimica, e in particolare esposizione concomitante ad altre sostanze chimiche, non è un necessariamente tossici (p. es., metalli essenziali). I possibili contributi dei suddetti fattori all'aumento o alla diminuzione della suscettibilità agli effetti avversi sulla salute, nonché i meccanismi della loro azione, sono specifici per una particolare sostanza chimica. Pertanto qui verranno presentati solo i fattori più comuni, i meccanismi di base e alcuni esempi caratteristici, mentre le informazioni specifiche relative a ciascuna particolare sostanza chimica possono essere trovate altrove in questo Enciclopedia.
A seconda dello stadio in cui agiscono questi fattori (assorbimento, distribuzione, biotrasformazione o escrezione di una particolare sostanza chimica), i meccanismi possono essere approssimativamente classificati in base a due conseguenze fondamentali dell'interazione: (1) un cambiamento nella quantità della sostanza chimica in un organo bersaglio, cioè nel sito(i) del suo effetto nell'organismo (interazioni tossicocinetiche), o (2) un cambiamento nell'intensità di una risposta specifica alla quantità della sostanza chimica in un organo bersaglio (interazioni tossicodinamiche) . I meccanismi più comuni di entrambi i tipi di interazione sono correlati alla competizione con altre sostanze chimiche per il legame con gli stessi composti coinvolti nel loro trasporto nell'organismo (p. es., proteine sieriche specifiche) e/o per lo stesso percorso di biotrasformazione (p. es., enzimi specifici) determinando un cambiamento nella velocità o nella sequenza tra la reazione iniziale e l'effetto negativo finale sulla salute. Tuttavia, sia le interazioni tossicocinetiche che quelle tossicodinamiche possono influenzare la suscettibilità individuale a una particolare sostanza chimica. L'influenza di diversi fattori concomitanti può risultare in: (a) effetti additivi—l'intensità dell'effetto combinato è uguale alla somma degli effetti prodotti da ciascun fattore separatamente, (b) effetti sinergici— l'intensità dell'effetto combinato è maggiore della somma degli effetti prodotti da ciascun fattore separatamente, o (c) effetti antagonistici—l'intensità dell'effetto combinato è inferiore alla somma degli effetti prodotti da ciascun fattore separatamente.
La quantità di una particolare sostanza chimica tossica o di un metabolita caratteristico nel sito(i) del suo effetto nel corpo umano può essere più o meno valutata mediante monitoraggio biologico, cioè scegliendo il campione biologico corretto e la tempistica ottimale del campionamento del campione, prendendo tiene conto delle emivite biologiche per una particolare sostanza chimica sia nell'organo critico che nel compartimento biologico misurato. Tuttavia, generalmente mancano informazioni affidabili su altri possibili fattori che potrebbero influenzare la suscettibilità individuale negli esseri umani e, di conseguenza, la maggior parte delle conoscenze riguardanti l'influenza di vari fattori si basa su dati sperimentali su animali.
Va sottolineato che in alcuni casi esistono differenze relativamente grandi tra gli esseri umani e altri mammiferi nell'intensità della risposta a un livello equivalente e/o nella durata dell'esposizione a molte sostanze chimiche tossiche; ad esempio, gli esseri umani sembrano essere notevolmente più sensibili agli effetti nocivi sulla salute di diversi metalli tossici rispetto ai ratti (comunemente utilizzati negli studi sugli animali). Alcune di queste differenze possono essere attribuite al fatto che i percorsi di trasporto, distribuzione e biotrasformazione di varie sostanze chimiche dipendono in gran parte da sottili cambiamenti nel pH dei tessuti e dall'equilibrio redox nell'organismo (così come lo sono le attività di vari enzimi), e che il sistema redox dell'uomo differisce notevolmente da quello del topo.
Questo è ovviamente il caso di importanti antiossidanti come la vitamina C e il glutatione (GSH), essenziali per il mantenimento dell'equilibrio redox e che hanno un ruolo protettivo contro gli effetti negativi dei radicali liberi di origine ossigenata o xenobiotica che sono coinvolti in un varietà di condizioni patologiche (Kehrer 1993). Gli esseri umani non possono auto-sintetizzare la vitamina C, contrariamente al ratto, e i livelli e il tasso di turnover del GSH eritrocitario negli esseri umani sono notevolmente inferiori a quelli del ratto. Gli esseri umani mancano anche di alcuni degli enzimi antiossidanti protettivi, rispetto al ratto o ad altri mammiferi (ad esempio, la GSH-perossidasi è considerata scarsamente attiva nello sperma umano). Questi esempi illustrano la potenziale maggiore vulnerabilità allo stress ossidativo negli esseri umani (in particolare nelle cellule sensibili, ad esempio, una vulnerabilità apparentemente maggiore dello sperma umano alle influenze tossiche rispetto a quella del ratto), che può provocare una risposta diversa o una maggiore suscettibilità all'influenza di vari fattori negli esseri umani rispetto ad altri mammiferi (Telišman 1995).
Influenza dell'età
Rispetto agli adulti, i bambini molto piccoli sono spesso più suscettibili alla tossicità chimica a causa dei loro volumi di inalazione relativamente maggiori e del tasso di assorbimento gastrointestinale dovuto alla maggiore permeabilità dell'epitelio intestinale e a causa dei sistemi enzimatici di disintossicazione immaturi e di un tasso di escrezione relativamente inferiore di sostanze chimiche tossiche . Il sistema nervoso centrale sembra essere particolarmente suscettibile nella fase iniziale dello sviluppo per quanto riguarda la neurotossicità di varie sostanze chimiche, ad esempio piombo e metilmercurio. D'altra parte, gli anziani possono essere suscettibili a causa della storia di esposizione chimica e dell'aumento delle riserve corporee di alcuni xenobiotici, o della funzione preesistente compromessa degli organi bersaglio e/o degli enzimi rilevanti, con conseguente riduzione della disintossicazione e del tasso di escrezione. Ciascuno di questi fattori può contribuire all'indebolimento delle difese dell'organismo: una diminuzione della capacità di riserva, che causa una maggiore suscettibilità alla successiva esposizione ad altri pericoli. Ad esempio, gli enzimi del citocromo P450 (coinvolti nei percorsi di biotrasformazione di quasi tutte le sostanze chimiche tossiche) possono essere indotti o avere un'attività ridotta a causa dell'influenza di vari fattori nel corso della vita (comprese le abitudini alimentari, il fumo, l'alcol, l'uso di farmaci e esposizione a xenobiotici ambientali).
Influenza del sesso
Differenze di suscettibilità legate al genere sono state descritte per un gran numero di sostanze chimiche tossiche (circa 200) e tali differenze si riscontrano in molte specie di mammiferi. Sembra che i maschi siano generalmente più suscettibili alle tossine renali e le femmine alle tossine epatiche. Le cause della diversa risposta tra maschi e femmine sono state correlate a differenze in una varietà di processi fisiologici (p. es., le femmine sono capaci di un'ulteriore escrezione di alcune sostanze chimiche tossiche attraverso la perdita di sangue mestruale, il latte materno e/o il trasferimento al feto, ma sperimentano ulteriore stress durante la gravidanza, il parto e l'allattamento), attività enzimatiche, meccanismi di riparazione genetica, fattori ormonali o la presenza di depositi di grasso relativamente più grandi nelle femmine, con conseguente maggiore accumulo di alcune sostanze chimiche tossiche lipofile, come solventi organici e alcuni farmaci .
Influenza delle abitudini alimentari
Le abitudini alimentari hanno un'influenza importante sulla suscettibilità alla tossicità chimica, soprattutto perché un'alimentazione adeguata è essenziale per il funzionamento del sistema di difesa chimica del corpo nel mantenimento di una buona salute. Un'adeguata assunzione di metalli essenziali (compresi i metalloidi) e proteine, in particolare gli amminoacidi contenenti zolfo, è necessaria per la biosintesi di vari enzimi disintossicanti e la fornitura di glicina e glutatione per le reazioni di coniugazione con composti endogeni ed esogeni. I lipidi, in particolare i fosfolipidi, e i lipotropi (donatori di gruppi metilici) sono necessari per la sintesi delle membrane biologiche. I carboidrati forniscono l'energia necessaria per vari processi di disintossicazione e forniscono acido glucuronico per la coniugazione di sostanze chimiche tossiche e dei loro metaboliti. Il selenio (un metalloide essenziale), il glutatione e le vitamine come la vitamina C (solubile in acqua), la vitamina E e la vitamina A (solubile nei lipidi) hanno un ruolo importante come antiossidanti (p. es., nel controllo della perossidazione lipidica e nel mantenimento dell'integrità delle membrane cellulari) e scavenger di radicali liberi per la protezione contro sostanze chimiche tossiche. Inoltre, vari costituenti della dieta (contenuto di proteine e fibre, minerali, fosfati, acido citrico, ecc.) così come la quantità di cibo consumato possono influenzare notevolmente il tasso di assorbimento gastrointestinale di molte sostanze chimiche tossiche (p. es., il tasso medio di assorbimento di sostanze solubili i sali di piombo assunti con i pasti è di circa l'60%, contro il XNUMX% circa dei soggetti a digiuno). Tuttavia, la dieta stessa può essere un'ulteriore fonte di esposizione individuale a varie sostanze chimiche tossiche (p. es., assunzione giornaliera notevolmente aumentata e accumulo di arsenico, mercurio, cadmio e/o piombo nei soggetti che consumano pesce contaminato).
Influenza del fumo
L'abitudine al fumo può influenzare la suscettibilità individuale a molte sostanze chimiche tossiche a causa della varietà di possibili interazioni che coinvolgono il gran numero di composti presenti nel fumo di sigaretta (soprattutto idrocarburi policiclici aromatici, monossido di carbonio, benzene, nicotina, acroleina, alcuni pesticidi, cadmio e , in misura minore, piombo e altri metalli tossici, ecc.), alcuni dei quali sono in grado di accumularsi nel corpo umano nel corso della vita, compresa la vita prenatale (es. piombo e cadmio). Le interazioni si verificano principalmente perché varie sostanze chimiche tossiche competono per gli stessi siti di legame per il trasporto e la distribuzione nell'organismo e/o per lo stesso percorso di biotrasformazione che coinvolge particolari enzimi. Ad esempio, diversi costituenti del fumo di sigaretta possono indurre gli enzimi del citocromo P450, mentre altri possono deprimerne l'attività e quindi influenzare le comuni vie di biotrasformazione di molte altre sostanze chimiche tossiche, come i solventi organici e alcuni farmaci. Il fumo eccessivo di sigarette per un lungo periodo può ridurre considerevolmente i meccanismi di difesa del corpo diminuendo la capacità di riserva per far fronte all'influenza negativa di altri fattori legati allo stile di vita.
Influenza dell'alcol
Il consumo di alcol (etanolo) può influenzare la suscettibilità a molte sostanze chimiche tossiche in diversi modi. Può influenzare il tasso di assorbimento e la distribuzione di alcune sostanze chimiche nel corpo, ad esempio aumentare il tasso di assorbimento gastrointestinale del piombo o diminuire il tasso di assorbimento polmonare del vapore di mercurio inibendo l'ossidazione necessaria per la ritenzione del vapore di mercurio inalato. L'etanolo può anche influenzare la suscettibilità a varie sostanze chimiche attraverso cambiamenti a breve termine nel pH dei tessuti e aumento del potenziale redox derivante dal metabolismo dell'etanolo, poiché sia l'ossidazione dell'etanolo ad acetaldeide che l'ossidazione dell'acetaldeide ad acetato producono un equivalente di nicotinammide adenina dinucleotide (NADH) e idrogeno (h+). Poiché l'affinità di metalli e metalloidi essenziali e tossici per il legame con vari composti e tessuti è influenzata dal pH e dai cambiamenti nel potenziale redox (Telišman 1995), anche un'assunzione moderata di etanolo può comportare una serie di conseguenze quali: ( 1) ridistribuzione del piombo accumulato a lungo termine nell'organismo umano a favore di una frazione di piombo biologicamente attiva, (2) sostituzione dello zinco essenziale con piombo negli enzimi contenenti zinco, influenzando così l'attività enzimatica o l'influenza della mobilità piombo sulla distribuzione di altri metalli e metalloidi essenziali nell'organismo come calcio, ferro, rame e selenio, (3) aumento dell'escrezione urinaria di zinco e così via. L'effetto di possibili eventi di cui sopra può essere aumentato a causa del fatto che le bevande alcoliche possono contenere una quantità apprezzabile di piombo proveniente da recipienti o lavorazioni (Prpic-Majic et al. 1984; Telišman et al. 1984; 1993).
Un altro motivo comune per i cambiamenti di suscettibilità correlati all'etanolo è che molte sostanze chimiche tossiche, ad esempio vari solventi organici, condividono lo stesso percorso di biotrasformazione che coinvolge gli enzimi del citocromo P450. A seconda dell'intensità dell'esposizione ai solventi organici, nonché della quantità e della frequenza dell'ingestione di etanolo (cioè consumo acuto o cronico di alcol), l'etanolo può diminuire o aumentare i tassi di biotrasformazione di vari solventi organici e quindi influenzare la loro tossicità (Sato 1991). .
Influenza dei farmaci
L'uso comune di vari farmaci può influenzare la suscettibilità alle sostanze chimiche tossiche principalmente perché molti farmaci si legano alle proteine del siero e quindi influenzano il trasporto, la distribuzione o il tasso di escrezione di varie sostanze chimiche tossiche, o perché molti farmaci sono in grado di indurre importanti enzimi disintossicanti o deprimerne l'attività (ad esempio, gli enzimi del citocromo P450), influenzando così la tossicità delle sostanze chimiche con lo stesso percorso di biotrasformazione. Caratteristico per entrambi i meccanismi è l'aumento dell'escrezione urinaria di acido tricloroacetico (il metabolita di diversi idrocarburi clorurati) quando si usano salicilati, sulfamidici o fenilbutazone e un'aumentata epato-nefrotossicità del tetracloruro di carbonio quando si usa il fenobarbital. Inoltre, alcuni farmaci contengono una quantità considerevole di una sostanza chimica potenzialmente tossica, ad esempio gli antiacidi contenenti alluminio o le preparazioni utilizzate per la gestione terapeutica dell'iperfosfatemia derivante dall'insufficienza renale cronica.
Influenza dell'esposizione concomitante ad altri prodotti chimici
I cambiamenti nella suscettibilità agli effetti avversi sulla salute dovuti all'interazione di varie sostanze chimiche (ad es. possibili effetti additivi, sinergici o antagonisti) sono stati studiati quasi esclusivamente negli animali da esperimento, principalmente nel ratto. Mancano studi epidemiologici e clinici rilevanti. Ciò è motivo di preoccupazione in particolare considerando l'intensità relativamente maggiore della risposta o la varietà di effetti avversi sulla salute di diverse sostanze chimiche tossiche negli esseri umani rispetto al ratto e ad altri mammiferi. A parte i dati pubblicati nel campo della farmacologia, la maggior parte dei dati si riferisce solo a combinazioni di due diverse sostanze chimiche all'interno di gruppi specifici, come vari pesticidi, solventi organici o metalli e metalloidi essenziali e/o tossici.
L'esposizione combinata a vari solventi organici può provocare vari effetti additivi, sinergici o antagonisti (a seconda della combinazione di alcuni solventi organici, della loro intensità e durata dell'esposizione), principalmente a causa della capacità di influenzare la reciproca biotrasformazione (Sato 1991).
Un altro esempio caratteristico sono le interazioni di metalli e metalloidi essenziali e/o tossici, in quanto questi sono coinvolti nella possibile influenza dell'età (p. es., un accumulo corporeo nel corso della vita di piombo ambientale e cadmio), del sesso (p. es., comune carenza di ferro nelle donne ), abitudini alimentari (p. es., aumento dell'assunzione dietetica di metalli e metalloidi tossici e/o carente assunzione dietetica di metalli e metalloidi essenziali), abitudine al fumo e consumo di alcol (p. es., esposizione aggiuntiva a cadmio, piombo e altri metalli tossici) e uso di farmaci (p. es., una singola dose di antiacido può comportare un aumento di 50 volte dell'assunzione giornaliera media di alluminio attraverso il cibo). La possibilità di vari effetti additivi, sinergici o antagonisti dell'esposizione a vari metalli e metalloidi nell'uomo può essere illustrata da esempi di base relativi ai principali elementi tossici (vedi tabella 1), oltre ai quali possono verificarsi ulteriori interazioni perché gli elementi essenziali possono anche influenzare l'un l'altro (ad esempio, il ben noto effetto antagonista del rame sulla velocità di assorbimento gastrointestinale così come sul metabolismo dello zinco e viceversa). La causa principale di tutte queste interazioni è la competizione di vari metalli e metalloidi per lo stesso sito di legame (in particolare il gruppo sulfidrilico, -SH) in vari enzimi, metalloproteine (in particolare metallotioneina) e tessuti (p. es., membrane cellulari e barriere di organi). Queste interazioni possono avere un ruolo rilevante nello sviluppo di diverse malattie croniche che sono mediate dall'azione dei radicali liberi e dello stress ossidativo (Telišman 1995).
Tabella 1. Effetti fondamentali di possibili interazioni multiple riguardanti i principali metalli e matalloidi tossici e/o essenziali nei mammiferi
Metallo tossico o metalloide | Effetti fondamentali dell'interazione con altri metalli o metalloidi |
Alluminio (Al) | Diminuisce il tasso di assorbimento di Ca e compromette il metabolismo di Ca; una dieta carente di Ca aumenta il tasso di assorbimento di Al. Altera il metabolismo dei fosfati. I dati sulle interazioni con Fe, Zn e Cu sono equivoci (cioè il possibile ruolo di un altro metallo come mediatore). |
Arsenico (As) | Influisce sulla distribuzione di Cu (un aumento di Cu nel rene e una diminuzione di Cu nel fegato, nel siero e nelle urine). Altera il metabolismo di Fe (un aumento di Fe nel fegato con concomitante diminuzione dell'ematocrito). Zn diminuisce il tasso di assorbimento dell'As inorganico e diminuisce la tossicità dell'As. Se diminuisce la tossicità di As e viceversa. |
Cadmio (Cd) | Diminuisce il tasso di assorbimento di Ca e compromette il metabolismo di Ca; una dieta carente di Ca aumenta il tasso di assorbimento di Cd. Altera il metabolismo dei fosfati, cioè aumenta l'escrezione urinaria di fosfati. Altera il metabolismo di Fe; una dieta carente di Fe aumenta il tasso di assorbimento di Cd. Influisce sulla distribuzione di Zn; Zn diminuisce la tossicità del Cd, mentre la sua influenza sul tasso di assorbimento del Cd è equivoca. Se diminuisce la tossicità del Cd. Mn diminuisce la tossicità del Cd a bassi livelli di esposizione al Cd. I dati sull'interazione con Cu sono equivoci (cioè, il possibile ruolo di Zn, o di un altro metallo, come mediatore). Alti livelli dietetici di Pb, Ni, Sr, Mg o Cr(III) possono diminuire il tasso di assorbimento di Cd. |
Mercurio (Hg) | Colpisce la distribuzione di Cu (un aumento di Cu nel fegato). Zn diminuisce il tasso di assorbimento di Hg inorganico e diminuisce la tossicità di Hg. Se diminuisce la tossicità del Hg. Il Cd aumenta la concentrazione di Hg nel rene, ma allo stesso tempo diminuisce la tossicità del Hg nel rene (l'influenza della sintesi di metallotioneina indotta dal Cd). |
Piombo (Pb) | Altera il metabolismo del Ca; una dieta carente di Ca aumenta il tasso di assorbimento del Pb inorganico e aumenta la tossicità del Pb. Altera il metabolismo di Fe; una carenza di Fe nella dieta aumenta la tossicità del Pb, mentre la sua influenza sul tasso di assorbimento del Pb è equivoca. Altera il metabolismo di Zn e aumenta l'escrezione urinaria di Zn; una carenza di Zn nella dieta aumenta il tasso di assorbimento del Pb inorganico e aumenta la tossicità del Pb. Se diminuisce la tossicità del Pb. I dati sulle interazioni con Cu e Mg sono equivoci (cioè, il possibile ruolo di Zn, o di un altro metallo, come mediatore). |
Nota: i dati sono per lo più relativi a studi sperimentali nel ratto, mentre mancano dati clinici ed epidemiologici rilevanti (in particolare per quanto riguarda le relazioni quantitative dose-risposta) (Elsenhans et al. 1991; Fergusson 1990; Telišman et al. 1993).
È stato a lungo riconosciuto che la risposta di ogni persona alle sostanze chimiche ambientali è diversa. La recente esplosione della biologia molecolare e della genetica ha portato a una comprensione più chiara delle basi molecolari di tale variabilità. I principali determinanti della risposta individuale alle sostanze chimiche comprendono importanti differenze tra più di una dozzina di superfamiglie di enzimi, collettivamente denominate xenobiotico- (estraneo al corpo) o metabolizzazione del farmaco enzimi. Sebbene il ruolo di questi enzimi sia stato classicamente considerato quello della disintossicazione, questi stessi enzimi convertono anche un certo numero di composti inerti in intermedi altamente tossici. Recentemente, sono state identificate molte differenze sottili e grossolane nei geni che codificano questi enzimi, che hanno dimostrato di provocare variazioni marcate nell'attività enzimatica. È ormai chiaro che ogni individuo possiede un complemento distinto di attività enzimatiche di metabolizzazione degli xenobiotici; questa diversità potrebbe essere pensata come una "impronta digitale metabolica". È la complessa interazione di queste molte diverse superfamiglie di enzimi che alla fine determina non solo il destino e il potenziale di tossicità di una sostanza chimica in un dato individuo, ma anche la valutazione dell'esposizione. In questo articolo abbiamo scelto di utilizzare la superfamiglia degli enzimi del citocromo P450 per illustrare i notevoli progressi compiuti nella comprensione della risposta individuale alle sostanze chimiche. Lo sviluppo di test basati sul DNA relativamente semplici, progettati per identificare specifiche alterazioni geniche in questi enzimi, sta ora fornendo previsioni più accurate della risposta individuale all'esposizione chimica. Speriamo che il risultato sia una tossicologia preventiva. In altre parole, ogni individuo potrebbe venire a conoscenza di quelle sostanze chimiche alle quali è particolarmente sensibile, evitando così tossicità o tumori precedentemente imprevedibili.
Sebbene non sia generalmente apprezzato, gli esseri umani sono esposti quotidianamente a una raffica di innumerevoli sostanze chimiche diverse. Molte di queste sostanze chimiche sono altamente tossiche e derivano da un'ampia varietà di fonti ambientali e alimentari. La relazione tra tali esposizioni e la salute umana è stata, e continua ad essere, uno dei principali obiettivi degli sforzi della ricerca biomedica in tutto il mondo.
Quali sono alcuni esempi di questo bombardamento chimico? Più di 400 sostanze chimiche del vino rosso sono state isolate e caratterizzate. Si stima che almeno 1,000 sostanze chimiche vengano prodotte da una sigaretta accesa. Ci sono innumerevoli sostanze chimiche nei cosmetici e nei saponi profumati. Un'altra importante fonte di esposizione chimica è l'agricoltura: solo negli Stati Uniti, i terreni agricoli ricevono più di 75,000 sostanze chimiche ogni anno sotto forma di pesticidi, erbicidi e agenti fertilizzanti; dopo l'assorbimento da parte delle piante e degli animali al pascolo, così come dei pesci nei corsi d'acqua vicini, gli esseri umani (alla fine della catena alimentare) ingeriscono queste sostanze chimiche. Altre due fonti di grandi concentrazioni di sostanze chimiche introdotte nel corpo includono (a) droghe assunte cronicamente e (b) esposizione a sostanze pericolose sul posto di lavoro per tutta la vita lavorativa.
È ormai accertato che l'esposizione chimica può influire negativamente su molti aspetti della salute umana, causando malattie croniche e lo sviluppo di molti tipi di cancro. Nell'ultimo decennio circa, le basi molecolari di molte di queste relazioni hanno cominciato a essere svelate. Inoltre, è emersa la consapevolezza che gli esseri umani differiscono notevolmente nella loro suscettibilità agli effetti dannosi dell'esposizione chimica.
Gli attuali sforzi per prevedere la risposta umana all'esposizione chimica combinano due approcci fondamentali (figura 1): monitorare l'entità dell'esposizione umana attraverso marcatori biologici (biomarcatori) e prevedere la probabile risposta di un individuo a un dato livello di esposizione. Sebbene entrambi questi approcci siano estremamente importanti, va sottolineato che i due sono nettamente diversi l'uno dall'altro. Questo articolo si concentrerà sul fattori genetici sottostante suscettibilità individuale a qualsiasi particolare esposizione chimica. Questo campo di ricerca è ampiamente definito ecogenetica, o farmacogenetica (vedi Kalow 1962 e 1992). Molti dei recenti progressi nella determinazione della suscettibilità individuale alla tossicità chimica si sono evoluti da un maggiore apprezzamento dei processi mediante i quali gli esseri umani e altri mammiferi disintossicano le sostanze chimiche e la notevole complessità dei sistemi enzimatici coinvolti.
Figura 1. Le interrelazioni tra la valutazione dell'esposizione, le differenze etniche, l'età, la dieta, la nutrizione e la valutazione della suscettibilità genetica, che giocano tutte un ruolo nel rischio individuale di tossicità e cancro
Per prima cosa descriveremo la variabilità delle risposte tossiche negli esseri umani. Introdurremo quindi alcuni degli enzimi responsabili di tale variazione nella risposta, dovuta a differenze nel metabolismo di sostanze chimiche estranee. Successivamente, verranno dettagliate la storia e la nomenclatura della superfamiglia del citocromo P450. Verranno brevemente descritti cinque polimorfismi P450 umani e diversi polimorfismi non P450; questi sono responsabili delle differenze umane nella risposta tossica. Discuteremo quindi un esempio per sottolineare il fatto che le differenze genetiche negli individui possono influenzare la valutazione dell'esposizione, come determinato dal monitoraggio ambientale. Infine, discuteremo il ruolo di questi enzimi metabolizzanti xenobiotici nelle funzioni vitali critiche.
Variazione nella risposta tossica tra la popolazione umana
Tossicologi e farmacologi parlano comunemente di dose letale media per il 50% della popolazione (LD50), la dose massima media tollerata per il 50% della popolazione (MTD50), e la dose media efficace di un particolare farmaco per il 50% della popolazione (ED50). Tuttavia, in che modo queste dosi influiscono su ciascuno di noi su base individuale? In altre parole, un individuo altamente sensibile può essere 500 volte più colpito o 500 volte più probabilità di essere colpito rispetto all'individuo più resistente in una popolazione; per queste persone il D.L50 (e MTD50 e ED50) i valori avrebbero poco significato. L.D50, MTD50 e ED50 i valori sono rilevanti solo se riferiti alla popolazione nel suo complesso.
Figure 2 illustra un'ipotetica relazione dose-risposta per una risposta tossica da parte di individui in una data popolazione. Questo diagramma generico potrebbe rappresentare il carcinoma broncogeno in risposta al numero di sigarette fumate, la cloracne in funzione dei livelli di diossina sul posto di lavoro, l'asma in funzione delle concentrazioni atmosferiche di ozono o aldeide, le scottature solari in risposta alla luce ultravioletta, la diminuzione del tempo di coagulazione come una funzione di assunzione di aspirina, o disturbi gastrointestinali in risposta al numero di jalapeno peperoni consumati. Generalmente, in ciascuno di questi casi, maggiore è l'esposizione, maggiore è la risposta tossica. La maggior parte della popolazione mostrerà la media e la deviazione standard della risposta tossica in funzione della dose. Il "valore anomalo resistente" (in basso a destra nella figura 2) è un individuo che ha una risposta minore a dosi o esposizioni più elevate. Un "valore anomalo sensibile" (in alto a sinistra) è un individuo che ha una risposta esagerata a una dose o esposizione relativamente piccola. Questi valori anomali, con differenze estreme nella risposta rispetto alla maggior parte degli individui nella popolazione, possono rappresentare importanti varianti genetiche che possono aiutare gli scienziati nel tentativo di comprendere i meccanismi molecolari alla base di una risposta tossica.
Figura 2. Relazione generica tra qualsiasi risposta tossica e la dose di qualsiasi agente ambientale, chimico o fisico
Utilizzando questi valori anomali negli studi sulla famiglia, gli scienziati di numerosi laboratori hanno iniziato ad apprezzare l'importanza dell'ereditarietà mendeliana per una data risposta tossica. Successivamente, si può quindi rivolgersi alla biologia molecolare e agli studi genetici per individuare il meccanismo sottostante a livello genico (genotipo) responsabile della malattia causata dall'ambiente (fenotipo).
Enzimi che metabolizzano farmaci e xenobiotici
Come risponde il corpo alla miriade di sostanze chimiche esogene a cui siamo esposti? Gli esseri umani e altri mammiferi hanno sviluppato sistemi enzimatici metabolici altamente complessi che comprendono più di una dozzina di superfamiglie distinte di enzimi. Quasi tutte le sostanze chimiche a cui gli esseri umani sono esposti saranno modificate da questi enzimi, al fine di facilitare la rimozione della sostanza estranea dal corpo. Collettivamente, questi enzimi sono spesso indicati come enzimi che metabolizzano i farmaci or enzimi metabolizzanti xenobiotici. In realtà, entrambi i termini sono termini impropri. In primo luogo, molti di questi enzimi non solo metabolizzano i farmaci, ma centinaia di migliaia di sostanze chimiche ambientali e dietetiche. In secondo luogo, tutti questi enzimi hanno anche normali composti corporei come substrati; nessuno di questi enzimi metabolizza solo sostanze chimiche estranee.
Per più di quattro decenni, i processi metabolici mediati da questi enzimi sono stati comunemente classificati come reazioni di Fase I o di Fase II (figura 3). Le reazioni di fase I ("funzionalizzazione") generalmente comportano modifiche strutturali relativamente minori della sostanza chimica madre tramite ossidazione, riduzione o idrolisi al fine di produrre un metabolita più solubile in acqua. Spesso le reazioni di Fase I forniscono una "maniglia" per ulteriori modifiche di un composto mediante successive reazioni di Fase II. Le reazioni di fase I sono principalmente mediate da una superfamiglia di enzimi altamente versatili, denominati collettivamente citocromi P450, sebbene possano essere coinvolte anche altre superfamiglie di enzimi (figura 4).
Figura 3. La designazione classica degli enzimi di fase I e di fase II che metabolizzano xenobiotici o farmaci
Figura 4. Esempi di enzimi che metabolizzano i farmaci
Le reazioni di fase II comportano l'accoppiamento di una molecola endogena idrosolubile a una sostanza chimica (sostanza chimica madre o metabolita di fase I) per facilitare l'escrezione. Le reazioni di fase II sono spesso chiamate reazioni di "coniugazione" o "derivatizzazione". Le superfamiglie di enzimi che catalizzano le reazioni di Fase II sono generalmente denominate in base alla porzione di coniugazione endogena coinvolta: ad esempio, acetilazione da parte delle N-acetiltransferasi, solfatazione da parte delle sulfotransferasi, coniugazione del glutatione da parte delle glutatione transferasi e glucuronidazione da parte delle UDP glucuronosiltransferasi (figura 4) . Sebbene l'organo principale del metabolismo dei farmaci sia il fegato, i livelli di alcuni enzimi che metabolizzano i farmaci sono piuttosto elevati nel tratto gastrointestinale, nelle gonadi, nei polmoni, nel cervello e nei reni, e tali enzimi sono indubbiamente presenti in una certa misura in ogni cellula vivente.
Gli enzimi che metabolizzano gli xenobiotici rappresentano un doppio taglio Swords
Man mano che apprendiamo di più sui processi biologici e chimici che portano alle aberrazioni della salute umana, è diventato sempre più evidente che gli enzimi che metabolizzano i farmaci funzionano in modo ambivalente (figura 3). Nella maggior parte dei casi, le sostanze chimiche liposolubili vengono convertite in metaboliti idrosolubili più facilmente escreti. Tuttavia, è chiaro che in molte occasioni gli stessi enzimi sono in grado di trasformare altri prodotti chimici inerti in molecole altamente reattive. Questi intermedi possono quindi interagire con macromolecole cellulari come proteine e DNA. Pertanto, per ogni sostanza chimica a cui gli esseri umani sono esposti, esiste il potenziale per i percorsi concorrenti di attivazione metabolica e a disintossicazione.
Breve rassegna di genetica
Nella genetica umana, ogni gene (luogo) si trova su una delle 23 coppie di cromosomi. Il due alleli (uno presente su ogni cromosoma della coppia) possono essere uguali, oppure possono essere diversi tra loro. Ad esempio, il B e a b alleli, in cui B (occhi marroni) è dominante b (occhi azzurri): gli individui del fenotipo occhi marroni possono avere sia il BB or Bb genotipi, mentre gli individui del fenotipo occhi azzurri possono avere solo il bb genotipo.
A polimorfismo è definito come due o più fenotipi ereditati stabilmente (tratti) - derivati dallo stesso gene (s) - che sono mantenuti nella popolazione, spesso per ragioni non necessariamente ovvie. Affinché un gene sia polimorfico, il prodotto genico non deve essere essenziale per lo sviluppo, il vigore riproduttivo o altri processi vitali critici. Infatti, un "polimorfismo bilanciato", in cui l'eterozigote ha un netto vantaggio di sopravvivenza rispetto all'uno o all'altro omozigote (ad esempio, la resistenza alla malaria e l'allele dell'emoglobina falciforme) è una spiegazione comune per il mantenimento di un allele nella popolazione a livelli altrimenti inspiegabili frequenze (cfr González e Nebert 1990).
Polimorfismi umani di enzimi metabolizzanti xenobiotici
Le differenze genetiche nel metabolismo di vari farmaci e sostanze chimiche ambientali sono note da più di quattro decenni (Kalow 1962 e 1992). Queste differenze sono spesso indicate come farmacogenetica o, più in generale, polimorfismi ecogenetici. Questi polimorfismi rappresentano alleli varianti che si verificano con una frequenza relativamente alta nella popolazione e sono generalmente associati ad aberrazioni nell'espressione o nella funzione dell'enzima. Storicamente, i polimorfismi venivano solitamente identificati a seguito di risposte inaspettate agli agenti terapeutici. Più di recente, la tecnologia del DNA ricombinante ha consentito agli scienziati di identificare le precise alterazioni nei geni responsabili di alcuni di questi polimorfismi. I polimorfismi sono stati ora caratterizzati in molti enzimi che metabolizzano i farmaci, inclusi gli enzimi sia di fase I che di fase II. Man mano che vengono identificati sempre più polimorfismi, diventa sempre più evidente che ogni individuo può possedere un complemento distinto di enzimi che metabolizzano i farmaci. Questa diversità potrebbe essere descritta come una "impronta digitale metabolica". È la complessa interazione delle varie superfamiglie di enzimi che metabolizzano i farmaci all'interno di ogni individuo che alla fine determinerà la sua particolare risposta a una data sostanza chimica (Kalow 1962 e 1992; Nebert 1988; Gonzalez e Nebert 1990; Nebert e Weber 1990).
Esprimere gli enzimi metabolizzanti xenobiotici umani nella cellula Cultura
Come potremmo sviluppare migliori predittori delle risposte tossiche umane alle sostanze chimiche? I progressi nella definizione della molteplicità degli enzimi che metabolizzano i farmaci devono essere accompagnati da una conoscenza precisa di quali enzimi determinano il destino metabolico delle singole sostanze chimiche. I dati raccolti dagli studi di laboratorio sui roditori hanno sicuramente fornito informazioni utili. Tuttavia, significative differenze interspecie negli enzimi metabolizzanti xenobiotici richiedono cautela nell'estrapolare i dati alle popolazioni umane. Per superare questa difficoltà, molti laboratori hanno sviluppato sistemi in cui varie linee cellulari in coltura possono essere ingegnerizzate per produrre enzimi umani funzionali che sono stabili e in alte concentrazioni (Gonzalez, Crespi e Gelboin 1991). La riuscita produzione di enzimi umani è stata raggiunta in una varietà di diverse linee cellulari da fonti che includono batteri, lieviti, insetti e mammiferi.
Per definire il metabolismo delle sostanze chimiche in modo ancora più accurato, più enzimi sono stati anche prodotti con successo in una singola linea cellulare (Gonzalez, Crespi e Gelboin 1991). Tali linee cellulari forniscono preziose informazioni sui precisi enzimi coinvolti nell'elaborazione metabolica di un dato composto e sui probabili metaboliti tossici. Se queste informazioni possono poi essere combinate con le conoscenze riguardanti la presenza e il livello di un enzima nei tessuti umani, questi dati dovrebbero fornire preziosi predittori di risposta.
Citocromo P450
Storia e nomenclatura
La superfamiglia del citocromo P450 è una delle superfamiglie di enzimi che metabolizzano i farmaci più studiate, con una grande variabilità individuale in risposta alle sostanze chimiche. Il citocromo P450 è un termine generico conveniente usato per descrivere una grande superfamiglia di enzimi fondamentali nel metabolismo di innumerevoli substrati endogeni ed esogeni. Il termine citocromo P450 fu coniato per la prima volta nel 1962 per descrivere uno sconosciuto pigmento nelle cellule che, quando ridotte e legate con monossido di carbonio, producevano un caratteristico picco di assorbimento a 450 nm. Dall'inizio degli anni '1980, la tecnologia di clonazione del cDNA ha portato a notevoli intuizioni sulla molteplicità degli enzimi del citocromo P450. Ad oggi, sono stati identificati più di 400 geni distinti del citocromo P450 in animali, piante, batteri e lieviti. È stato stimato che qualsiasi specie di mammifero, come l'uomo, può possedere 60 o più geni P450 distinti (Nebert e Nelson 1991). La molteplicità dei geni P450 ha reso necessario lo sviluppo di un sistema di nomenclatura standardizzato (Nebert et al. 1987; Nelson et al. 1993). Proposto per la prima volta nel 1987 e aggiornato su base semestrale, il sistema di nomenclatura si basa sull'evoluzione divergente dei confronti delle sequenze di amminoacidi tra le proteine P450. I geni P450 sono divisi in famiglie e sottofamiglie: gli enzimi all'interno di una famiglia mostrano una somiglianza aminoacidica superiore al 40% e quelli all'interno della stessa sottofamiglia mostrano una somiglianza del 55%. I geni P450 sono denominati con il simbolo della radice CYP seguito da un numero arabo che designa la famiglia P450, una lettera che indica la sottofamiglia e un ulteriore numero arabo che designa il singolo gene (Nelson et al. 1993; Nebert et al. 1991). Così, CYP1A1 rappresenta il gene P450 1 nella famiglia 1 e nella sottofamiglia A.
Nel febbraio 1995, ce ne sono 403 CYP geni nel database, composto da 59 famiglie e 105 sottofamiglie. Questi includono otto famiglie eucariotiche inferiori, 15 famiglie di piante e 19 famiglie batteriche. Le 15 famiglie di geni umani P450 comprendono 26 sottofamiglie, 22 delle quali sono state mappate in posizioni cromosomiche nella maggior parte del genoma. Alcune sequenze sono chiaramente ortologhe in molte specie, ad esempio solo una CYP17 (steroide 17α-idrossilasi) è stato trovato in tutti i vertebrati esaminati fino ad oggi; altre sequenze all'interno di una sottofamiglia sono altamente duplicate, rendendo impossibile l'identificazione di coppie ortologhe (ad es. CYP2C sottofamiglia). È interessante notare che l'uomo e il lievito condividono un gene ortologo nel CYP51 famiglia. Numerose recensioni complete sono disponibili per i lettori che cercano ulteriori informazioni sulla superfamiglia P450 (Nelson et al. 1993; Nebert et al. 1991; Nebert e McKinnon 1994; Guengerich 1993; Gonzalez 1992).
Il successo del sistema di nomenclatura P450 ha portato allo sviluppo di sistemi terminologici simili per le glucuronosiltransferasi UDP (Burchell et al. 1991) e le monoossigenasi contenenti flavina (Lawton et al. 1994). Sistemi di nomenclatura simili basati sull'evoluzione divergente sono in fase di sviluppo anche per diverse altre superfamiglie di enzimi che metabolizzano i farmaci (p. es., sulfotransferasi, epossido idrolasi e aldeide deidrogenasi).
Recentemente, abbiamo diviso la superfamiglia del gene P450 dei mammiferi in tre gruppi (Nebert e McKinnon 1994): quelli coinvolti principalmente nel metabolismo chimico estraneo, quelli coinvolti nella sintesi di vari ormoni steroidei e quelli che partecipano ad altre importanti funzioni endogene. Sono gli enzimi P450 che metabolizzano gli xenobiotici ad assumere il maggior significato per la previsione della tossicità.
Enzimi P450 metabolizzanti xenobiotici
Gli enzimi P450 coinvolti nel metabolismo di composti e farmaci estranei si trovano quasi sempre all'interno delle famiglie CYP1, CYP2, CYP3 e a CYP4. Questi enzimi P450 catalizzano un'ampia varietà di reazioni metaboliche, con un singolo P450 spesso in grado di metabolizzare molti composti diversi. Inoltre, più enzimi P450 possono metabolizzare un singolo composto in siti diversi. Inoltre, un composto può essere metabolizzato nello stesso singolo sito da diversi P450, sebbene a velocità variabili.
Una delle proprietà più importanti degli enzimi P450 che metabolizzano i farmaci è che molti di questi geni sono inducibili dalle stesse sostanze che fungono da loro substrati. D'altra parte, altri geni P450 sono indotti da non substrati. Questo fenomeno di induzione enzimatica è alla base di molte interazioni farmacologiche di importanza terapeutica.
Sebbene presenti in molti tessuti, questi particolari enzimi P450 si trovano a livelli relativamente elevati nel fegato, il sito primario del metabolismo dei farmaci. Alcuni degli enzimi P450 che metabolizzano gli xenobiotici mostrano attività verso certi substrati endogeni (p. es., l'acido arachidonico). Tuttavia, si ritiene generalmente che la maggior parte di questi enzimi P450 che metabolizzano gli xenobiotici non svolga ruoli fisiologici importanti, sebbene ciò non sia stato ancora stabilito sperimentalmente. La rottura omozigote selettiva, o "knock-out", dei singoli geni P450 che metabolizzano gli xenobiotici mediante metodologie di gene targeting nei topi è probabile che fornisca presto informazioni inequivocabili per quanto riguarda i ruoli fisiologici dei P450 che metabolizzano gli xenobiotici (per una rassegna di gene targeting, vedi Capecchi 1994).
Contrariamente alle famiglie P450 che codificano enzimi coinvolti principalmente nei processi fisiologici, le famiglie che codificano enzimi P450 metabolizzanti xenobiotici mostrano una marcata specificità di specie e spesso contengono molti geni attivi per sottofamiglia (Nelson et al. 1993; Nebert et al. 1991). Data l'apparente mancanza di substrati fisiologici, è possibile che gli enzimi P450 siano presenti nelle famiglie CYP1, CYP2, CYP3 e a CYP4 che sono apparsi in passato diverse centinaia di milioni di anni si sono evoluti come mezzo per disintossicare le sostanze chimiche estranee incontrate nell'ambiente e nella dieta. Chiaramente, l'evoluzione dei P450 che metabolizzano gli xenobiotici si sarebbe verificata in un periodo di tempo che precede di gran lunga la sintesi della maggior parte delle sostanze chimiche sintetiche a cui gli esseri umani sono ora esposti. I geni di queste quattro famiglie di geni potrebbero essersi evoluti e divergere negli animali a causa della loro esposizione ai metaboliti delle piante durante gli ultimi 1.2 miliardi di anni, un processo chiamato descrittivamente "guerra animale-pianta" (Gonzalez e Nebert 1990). La guerra animale-pianta è il fenomeno in cui le piante hanno sviluppato nuove sostanze chimiche (fitoalessine) come meccanismo di difesa per prevenire l'ingestione da parte degli animali e gli animali, a loro volta, hanno risposto sviluppando nuovi geni P450 per accogliere i substrati diversificati. A fornire ulteriore slancio a questa proposta sono gli esempi recentemente descritti di guerra chimica pianta-insetto e pianta-fungo che coinvolge la disintossicazione P450 di substrati tossici (Nebert 1994).
Quella che segue è una breve introduzione a molti dei polimorfismi dell'enzima P450 che metabolizzano gli xenobiotici umani in cui si ritiene che i determinanti genetici della risposta tossica siano di grande importanza. Fino a poco tempo fa, i polimorfismi P450 erano generalmente suggeriti da una varianza inaspettata nella risposta del paziente agli agenti terapeutici somministrati. Diversi polimorfismi P450 sono infatti denominati in base al farmaco con cui il polimorfismo è stato identificato per la prima volta. Più recentemente, gli sforzi di ricerca si sono concentrati sull'identificazione degli enzimi P450 precisi coinvolti nel metabolismo delle sostanze chimiche per le quali si osserva la varianza e la caratterizzazione precisa dei geni P450 coinvolti. Come descritto in precedenza, l'attività misurabile di un enzima P450 nei confronti di una sostanza chimica modello può essere chiamata fenotipo. Le differenze alleliche in un gene P450 per ciascun individuo sono chiamate genotipo P450. Poiché sempre più controlli vengono applicati all'analisi dei geni P450, la precisa base molecolare della varianza fenotipica precedentemente documentata sta diventando più chiara.
La sottofamiglia CYP1A
Le CYP1A sottofamiglia comprende due enzimi nell'uomo e in tutti gli altri mammiferi: questi sono designati CYP1A1 e CYP1A2 nella nomenclatura standard P450. Questi enzimi sono di notevole interesse, perché sono coinvolti nell'attivazione metabolica di molti procarcinogeni e sono anche indotti da diversi composti di interesse tossicologico, tra cui la diossina. Ad esempio, il CYP1A1 attiva metabolicamente molti composti presenti nel fumo di sigaretta. Il CYP1A2 attiva metabolicamente molte arilammine, associate al cancro della vescica urinaria, che si trovano nell'industria dei coloranti chimici. Il CYP1A2 attiva anche metabolicamente il 4-(metilnitrosamino)-1-(3-piridil)-1-butanone (NNK), una nitrosamina derivata dal tabacco. CYP1A1 e CYP1A2 si trovano anche a livelli più elevati nei polmoni dei fumatori di sigarette, a causa dell'induzione da parte degli idrocarburi policiclici presenti nel fumo. I livelli di attività di CYP1A1 e CYP1A2 sono quindi considerati importanti determinanti della risposta individuale a molte sostanze chimiche potenzialmente tossiche.
Interesse tossicologico per il CYP1A sottofamiglia è stata notevolmente intensificata da un rapporto del 1973 che correlava il livello di inducibilità del CYP1A1 nei fumatori di sigarette con la suscettibilità individuale al cancro del polmone (Kellermann, Shaw e Luyten-Kellermann 1973). Le basi molecolari dell'induzione di CYP1A1 e CYP1A2 sono state al centro dell'attenzione di numerosi laboratori. Il processo di induzione è mediato da una proteina chiamata recettore Ah a cui si legano le diossine e le sostanze chimiche strutturalmente correlate. Il nome Ah è derivato dal aryl hnatura idrocarburica di molti induttori del CYP1A. È interessante notare che le differenze nel gene che codifica per il recettore Ah tra ceppi di topi determinano marcate differenze nella risposta chimica e nella tossicità. Un polimorfismo nel gene del recettore Ah sembra verificarsi anche negli esseri umani: circa un decimo della popolazione mostra un'elevata induzione del CYP1A1 e può essere a maggior rischio rispetto agli altri nove decimi della popolazione per lo sviluppo di alcuni tumori indotti chimicamente. Il ruolo del recettore Ah nel controllo degli enzimi nel CYP1A sottofamiglia, e il suo ruolo come determinante della risposta umana all'esposizione chimica, è stata oggetto di diverse revisioni recenti (Nebert, Petersen e Puga 1991; Nebert, Puga e Vasiliou 1993).
Esistono altri polimorfismi che potrebbero controllare il livello delle proteine CYP1A in una cellula? Un polimorfismo in CYP1A1 è stato identificato anche il gene, e questo sembra influenzare il rischio di cancro al polmone tra i fumatori di sigarette giapponesi, sebbene questo stesso polimorfismo non sembri influenzare il rischio in altri gruppi etnici (Nebert e McKinnon 1994).
CYP2C19
Variazioni nella velocità con cui gli individui metabolizzano il farmaco anticonvulsivante (S)-mefenitoina sono state ben documentate da molti anni (Guengerich 1989). Tra il 2% e il 5% dei caucasici e fino al 25% degli asiatici sono carenti di questa attività e possono essere maggiormente a rischio di tossicità dal farmaco. È noto da tempo che questo difetto enzimatico coinvolge un membro dell'essere umano CYP2C sottofamiglia, ma la precisa base molecolare di questa carenza è stata oggetto di notevoli controversie. La ragione principale di questa difficoltà erano i sei o più geni nell'essere umano CYP2C sottofamiglia. È stato recentemente dimostrato, tuttavia, che una mutazione a base singola nel CYP2C19 gene è la causa primaria di questa deficienza (Goldstein e de Morais 1994). È stato anche sviluppato un semplice test del DNA, basato sulla reazione a catena della polimerasi (PCR), per identificare rapidamente questa mutazione nelle popolazioni umane (Goldstein e de Morais 1994).
CYP2D6
Forse la variazione più ampiamente caratterizzata in un gene P450 è quella che coinvolge il CYP2D6 gene. Sono stati descritti più di una dozzina di esempi di mutazioni, riarrangiamenti e delezioni che colpiscono questo gene (Meyer 1994). Questo polimorfismo è stato suggerito per la prima volta 20 anni fa dalla variabilità clinica nella risposta dei pazienti all'agente antiipertensivo detritiochina. Alterazioni nel CYP2D6 gene che dà origine all'attività enzimatica alterata sono quindi definiti collettivamente polimorfismo della detriticochina.
Prima dell'avvento degli studi basati sul DNA, gli individui erano stati classificati come metabolizzatori scarsi o estesi (PM, EM) di detritiochina in base alle concentrazioni di metaboliti nei campioni di urina. Ora è chiaro che le alterazioni nel CYP2D6 gene può portare a individui che mostrano non solo un metabolismo scarso o esteso della detritiochina, ma anche un metabolismo ultrarapido. La maggior parte delle alterazioni nel CYP2D6 gene sono associati a carenza parziale o totale della funzione enzimatica; tuttavia, recentemente sono stati descritti individui in due famiglie che possiedono più copie funzionali di CYP2D6 gene, dando origine al metabolismo ultrarapido dei substrati del CYP2D6 (Meyer 1994). Questa notevole osservazione fornisce nuove informazioni sull'ampio spettro di attività del CYP2D6 precedentemente osservato negli studi sulla popolazione. Le alterazioni nella funzione del CYP2D6 sono di particolare importanza, dati gli oltre 30 farmaci comunemente prescritti metabolizzati da questo enzima. La funzione del CYP2D6 di un individuo è quindi un fattore determinante della risposta sia terapeutica che tossica alla terapia somministrata. In effetti, è stato recentemente affermato che la considerazione dello stato del CYP2D6 di un paziente è necessaria per l'uso sicuro di farmaci sia psichiatrici che cardiovascolari.
Il ruolo del CYP2D6 anche il polimorfismo come determinante della suscettibilità individuale a malattie umane come il cancro del polmone e il morbo di Parkinson è stato oggetto di intensi studi (Nebert e McKinnon 1994; Meyer 1994). Sebbene le conclusioni siano difficili da definire data la diversa natura dei protocolli di studio utilizzati, la maggior parte degli studi sembra indicare un'associazione tra estensivi metabolizzatori della detriticochina (fenotipo EM) e cancro del polmone. Le ragioni di tale associazione sono attualmente poco chiare. Tuttavia, è stato dimostrato che l'enzima CYP2D6 metabolizza NNK, una nitrosamina derivata dal tabacco.
Man mano che i test basati sul DNA migliorano, consentendo una valutazione ancora più accurata dello stato del CYP2D6, si prevede che verrà chiarita la relazione precisa del CYP2D6 con il rischio di malattia. Mentre il forte metabolizzatore può essere collegato alla suscettibilità al cancro del polmone, il lento metabolizzatore (fenotipo PM) sembra essere associato al morbo di Parkinson di causa sconosciuta. Anche se questi studi sono difficili da confrontare, sembra che gli individui PM che hanno una ridotta capacità di metabolizzare i substrati del CYP2D6 (ad es.
CYP2E1
Le CYP2E1 gene codifica un enzima che metabolizza molte sostanze chimiche, compresi i farmaci e molti agenti cancerogeni a basso peso molecolare. Questo enzima è interessante anche perché è altamente inducibile dall'alcol e può svolgere un ruolo nel danno epatico indotto da sostanze chimiche come cloroformio, cloruro di vinile e tetracloruro di carbonio. L'enzima si trova principalmente nel fegato e il livello dell'enzima varia notevolmente tra gli individui. Attento esame del CYP2E1 gene ha portato all'identificazione di diversi polimorfismi (Nebert e McKinnon 1994). È stata segnalata una relazione tra la presenza di alcune variazioni strutturali nel CYP2E1 gene e rischio di cancro al polmone apparentemente ridotto in alcuni studi; tuttavia, ci sono chiare differenze interetniche che richiedono chiarimenti su questa possibile relazione.
La sottofamiglia CYP3A
Negli esseri umani, quattro enzimi sono stati identificati come membri del CYP3A sottofamiglia a causa della loro somiglianza nella sequenza degli amminoacidi. Gli enzimi CYP3A metabolizzano molti farmaci comunemente prescritti come l'eritromicina e la ciclosporina. Il contaminante alimentare cancerogeno aflatossina B1 è anche un substrato del CYP3A. Un membro dell'umano CYP3A sottofamiglia, designato CYP3A4, è il principale P450 nel fegato umano oltre ad essere presente nel tratto gastrointestinale. Come è vero per molti altri enzimi P450, il livello di CYP3A4 è molto variabile tra gli individui. Un secondo enzima, denominato CYP3A5, si trova solo nel 25% circa dei fegati; la base genetica di questa scoperta non è stata chiarita. L'importanza della variabilità del CYP3A4 o del CYP3A5 come fattore nei determinanti genetici della risposta tossica non è stata ancora stabilita (Nebert e McKinnon 1994).
Polimorfismi non P450
Numerosi polimorfismi esistono anche all'interno di altre superfamiglie di enzimi metabolizzanti xenobiotici (p. es., glutatione transferasi, UDP glucuronosiltransferasi, para-ossonasi, deidrogenasi, N-acetiltransferasi e mono-ossigenasi contenenti flavina). Poiché la tossicità finale di qualsiasi intermedio generato da P450 dipende dall'efficienza delle successive reazioni di disintossicazione di fase II, il ruolo combinato di più polimorfismi enzimatici è importante nel determinare la suscettibilità alle malattie indotte chimicamente. L'equilibrio metabolico tra le reazioni di Fase I e Fase II (figura 3) è quindi probabilmente un fattore importante nelle malattie umane indotte chimicamente e nei determinanti genetici della risposta tossica.
Il polimorfismo del gene GSTM1
Un esempio ben studiato di un polimorfismo in un enzima di fase II è quello che coinvolge un membro della superfamiglia degli enzimi glutatione S-transferasi, denominato GST mu o GSTM1. Questo particolare enzima è di notevole interesse tossicologico perché sembra essere coinvolto nella successiva disintossicazione dei metaboliti tossici prodotti dalle sostanze chimiche presenti nel fumo di sigaretta da parte dell'enzima CYP1A1. Il polimorfismo identificato in questo gene della glutatione transferasi implica una totale assenza di enzima funzionale in almeno la metà di tutti i caucasici studiati. Questa mancanza di un enzima di fase II sembra essere associata a una maggiore suscettibilità al cancro del polmone. Raggruppando gli individui sulla base di entrambe le varianti CYP1A1 geni e la delezione o la presenza di un funzionale GSM1 gene, è stato dimostrato che il rischio di sviluppare il cancro del polmone indotto dal fumo varia significativamente (Kawajiri, Watanabe e Hayashi 1994). In particolare, gli individui che ne espongono uno raro CYP1A1 alterazione genica, in combinazione con l'assenza del GSM1 gene, erano a più alto rischio (fino a nove volte) di sviluppare il cancro ai polmoni se esposti a un livello relativamente basso di fumo di sigaretta. È interessante notare che sembrano esserci differenze interetniche nel significato dei geni varianti che richiedono ulteriori studi per chiarire il ruolo preciso di tali alterazioni nella suscettibilità alle malattie (Kalow 1962; Nebert e McKinnon 1994; Kawajiri, Watanabe e Hayashi 1994).
Effetto sinergico di due o più polimorfismi sul tossico risposta
Una risposta tossica a un agente ambientale può essere notevolmente esagerata dalla combinazione di due difetti farmacogenetici nello stesso individuo, ad esempio, gli effetti combinati del polimorfismo della N-acetiltransferasi (NAT2) e del polimorfismo della glucosio-6-fosfato deidrogenasi (G6PD) .
L'esposizione occupazionale alle arilammine costituisce un grave rischio di cancro della vescica urinaria. Dopo gli eleganti studi di Cartwright nel 1954, è diventato chiaro che lo stato di N-acetilatore è un determinante del cancro alla vescica indotto da coloranti azoici. Esiste una correlazione altamente significativa tra il fenotipo dell'acetilatore lento e l'insorgenza del cancro della vescica, nonché il grado di invasività di questo cancro nella parete della vescica. Al contrario, esiste un'associazione significativa tra il fenotipo dell'acetilatore rapido e l'incidenza del carcinoma del colon-retto. La N-acetiltransferasi (NAT1, NAT2) sono stati clonati e sequenziati e le analisi basate sul DNA sono ora in grado di rilevare più di una dozzina di varianti alleliche che spiegano il fenotipo dell'acetilatore lento. Il NAT2 il gene è polimorfico e responsabile della maggior parte della variabilità nella risposta tossica alle sostanze chimiche ambientali (Weber 1987; Grant 1993).
La glucosio-6-fosfato deidrogenasi (G6PD) è un enzima critico nella generazione e nel mantenimento del NADPH. Un'attività G6PD bassa o assente può portare a una grave emolisi indotta da farmaci o xenobiotici, a causa dell'assenza di livelli normali di glutatione ridotto (GSH) nei globuli rossi. La carenza di G6PD colpisce almeno 300 milioni di persone in tutto il mondo. Più del 10% dei maschi afroamericani mostra il fenotipo meno grave, mentre alcune comunità sarde mostrano il "tipo mediterraneo" più grave con frequenze che raggiungono una persona su tre. Il G6PD gene è stato clonato e localizzato nel cromosoma X, e numerose diverse mutazioni puntiformi spiegano l'elevato grado di eterogeneità fenotipica osservata negli individui con deficit di G6PD (Beutler 1992).
Il tiozalsulfone, un farmaco arilammina sulfa, è risultato causare una distribuzione bimodale dell'anemia emolitica nella popolazione trattata. Quando vengono trattati con determinati farmaci, gli individui con la combinazione del deficit di G6PD più il fenotipo dell'acetilatore lento sono più colpiti rispetto a quelli con il solo deficit di G6PD o il solo fenotipo dell'acetilatore lento. Gli acetilatori lenti carenti di G6PD sono almeno 40 volte più suscettibili rispetto agli acetilatori rapidi G6PD normali all'emolisi indotta da tiozalsulfone.
Effetto dei polimorfismi genetici sulla valutazione dell'esposizione
La valutazione dell'esposizione e il biomonitoraggio (figura 1) richiedono anche informazioni sulla composizione genetica di ciascun individuo. Data un'esposizione identica a una sostanza chimica pericolosa, il livello di addotti dell'emoglobina (o altri biomarcatori) potrebbe variare di due o tre ordini di grandezza tra gli individui, a seconda dell'impronta metabolica di ciascuna persona.
La stessa farmacogenetica combinata è stata studiata negli operai delle fabbriche chimiche in Germania (tabella 1). Gli addotti dell'emoglobina tra i lavoratori esposti all'anilina e all'acetanilide sono di gran lunga i più alti negli acetilatori lenti carenti di G6PD, rispetto agli altri possibili fenotipi farmacogenetici combinati. Questo studio ha importanti implicazioni per la valutazione dell'esposizione. Questi dati dimostrano che, sebbene due individui possano essere esposti allo stesso livello ambientale di sostanze chimiche pericolose sul posto di lavoro, la quantità di esposizione (tramite biomarcatori come gli addotti dell'emoglobina) potrebbe essere stimata essere inferiore di due o più ordini di grandezza, a causa alla predisposizione genetica sottostante dell'individuo. Allo stesso modo, il rischio risultante di un effetto negativo sulla salute può variare di due o più ordini di grandezza.
Tabella 1: addotti emoglobinici nei lavoratori esposti ad anilina e acetanilide
Stato dell'acetilatore | Carenza di G6PD | |||
Connessione | Rallentare | Non | Si | Addotti Hgb |
+ | + | 2 | ||
+ | + | 30 | ||
+ | + | 20 | ||
+ | + | 100 |
Fonte: adattato da Lewalter e Korallus 1985.
Differenze genetiche nel legame e nel metabolismo
Va sottolineato che lo stesso caso fatto qui per il metabolismo può essere fatto anche per il legame. Le differenze ereditarie nel legame degli agenti ambientali influenzeranno notevolmente la risposta tossica. Ad esempio, le differenze nel mouse cdm gene può influenzare profondamente la sensibilità individuale alla necrosi testicolare indotta da cadmio (Taylor, Heiniger e Meier 1973). Le differenze nell'affinità di legame del recettore Ah probabilmente influenzano la tossicità e il cancro indotti dalla diossina (Nebert, Petersen e Puga 1991; Nebert, Puga e Vasiliou 1993).
La Figura 5 riassume il ruolo del metabolismo e del legame nella tossicità e nel cancro. Gli agenti tossici, così come esistono nell'ambiente o in seguito al metabolismo o al legame, provocano i loro effetti tramite un percorso genotossico (in cui si verifica un danno al DNA) o un percorso non genotossico (in cui non è necessario che si verifichino danni al DNA e mutagenesi). È interessante notare che recentemente è diventato chiaro che gli agenti "classici" che danneggiano il DNA possono operare attraverso un percorso di trasduzione del segnale non genotossico dipendente dal glutatione ridotto (GSH), che viene avviato sopra o vicino alla superficie cellulare in assenza di DNA e al di fuori del nucleo cellulare (Devary et al. 1993). Le differenze genetiche nel metabolismo e nel legame rimangono, tuttavia, come i principali determinanti nel controllo delle diverse risposte tossiche individuali.
Figura 5. I mezzi generali con cui si verifica la tossicità
Ruolo della funzione cellulare degli enzimi che metabolizzano i farmaci
La variazione su base genetica nella funzione enzimatica che metabolizza i farmaci è di grande importanza nel determinare la risposta individuale alle sostanze chimiche. Questi enzimi sono fondamentali nel determinare il destino e il decorso temporale di una sostanza chimica estranea dopo l'esposizione.
Come illustrato nella figura 5, l'importanza degli enzimi che metabolizzano i farmaci nella suscettibilità individuale all'esposizione chimica può in effetti presentare un problema molto più complesso di quanto sia evidente da questa semplice discussione del metabolismo xenobiotico. In altre parole, negli ultimi due decenni, i meccanismi genotossici (misurazione degli addotti del DNA e degli addotti proteici) sono stati fortemente enfatizzati. Tuttavia, cosa succede se i meccanismi non genotossici sono importanti almeno quanto i meccanismi genotossici nel causare risposte tossiche?
Come accennato in precedenza, i ruoli fisiologici di molti enzimi che metabolizzano i farmaci coinvolti nel metabolismo degli xenobiotici non sono stati definiti con precisione. Nebert (1994) ha proposto che, a causa della loro presenza su questo pianeta per più di 3.5 miliardi di anni, gli enzimi che metabolizzano i farmaci fossero originariamente (e sono ancora oggi principalmente) responsabili della regolazione dei livelli cellulari di molti ligandi non peptidici importanti nell'attivazione trascrizionale di geni che influenzano la crescita, il differenziamento, l'apoptosi, l'omeostasi e le funzioni neuroendocrine. Inoltre, la tossicità della maggior parte, se non di tutti, gli agenti ambientali avviene per mezzo di agonista or antagonista azione su queste vie di trasduzione del segnale (Nebert 1994). Sulla base di questa ipotesi, la variabilità genetica negli enzimi che metabolizzano i farmaci può avere effetti piuttosto drammatici su molti processi biochimici critici all'interno della cellula, portando così a differenze importanti nella risposta tossica. È infatti possibile che un tale scenario possa anche essere alla base di molte reazioni avverse idiosincratiche riscontrate in pazienti che usano farmaci comunemente prescritti.
Conclusioni
L'ultimo decennio ha visto notevoli progressi nella nostra comprensione delle basi genetiche della risposta differenziale alle sostanze chimiche nei farmaci, negli alimenti e negli inquinanti ambientali. Gli enzimi che metabolizzano i farmaci hanno una profonda influenza sul modo in cui gli esseri umani rispondono alle sostanze chimiche. Man mano che la nostra consapevolezza della molteplicità degli enzimi che metabolizzano i farmaci continua ad evolversi, siamo sempre più in grado di effettuare valutazioni migliori del rischio tossico per molti farmaci e sostanze chimiche ambientali. Questo è forse più chiaramente illustrato nel caso dell'enzima CYP2D6 citocromo P450. Utilizzando test basati sul DNA relativamente semplici, è possibile prevedere la probabile risposta di qualsiasi farmaco prevalentemente metabolizzato da questo enzima; questa previsione garantirà l'uso più sicuro di farmaci preziosi, ma potenzialmente tossici.
Il futuro vedrà senza dubbio un'esplosione nell'identificazione di ulteriori polimorfismi (fenotipi) che coinvolgono gli enzimi che metabolizzano i farmaci. Queste informazioni saranno accompagnate da test basati sul DNA migliorati e minimamente invasivi per identificare i genotipi nelle popolazioni umane.
Tali studi dovrebbero essere particolarmente istruttivi nella valutazione del ruolo delle sostanze chimiche nelle numerose malattie ambientali di origine attualmente sconosciuta. Anche la considerazione di molteplici polimorfismi enzimatici che metabolizzano farmaci, in combinazione (ad esempio, tabella 1), rappresenta probabilmente un'area di ricerca particolarmente fertile. Tali studi chiariranno il ruolo delle sostanze chimiche nella causa dei tumori. Collettivamente, queste informazioni dovrebbero consentire la formulazione di consigli sempre più personalizzati sull'evitamento di sostanze chimiche che possono essere di interesse individuale. Questo è il campo della tossicologia preventiva. Tali consigli saranno senza dubbio di grande aiuto per tutti gli individui nell'affrontare il carico chimico sempre crescente a cui siamo esposti.
La tossicologia meccanicistica è lo studio di come gli agenti chimici o fisici interagiscono con gli organismi viventi per causare tossicità. La conoscenza del meccanismo di tossicità di una sostanza migliora la capacità di prevenire la tossicità e progettare sostanze chimiche più desiderabili; costituisce la base per la terapia in caso di sovraesposizione e spesso consente un'ulteriore comprensione dei processi biologici fondamentali. Ai fini di questo Enciclopedia l'accento sarà posto sugli animali per prevedere la tossicità umana. Diverse aree della tossicologia includono la tossicologia meccanicistica, descrittiva, normativa, forense e ambientale (Klaassen, Amdur e Doull 1991). Tutti questi traggono vantaggio dalla comprensione dei meccanismi fondamentali della tossicità.
Perché comprendere i meccanismi di tossicità?
Comprendere il meccanismo mediante il quale una sostanza provoca tossicità migliora diverse aree della tossicologia in modi diversi. La comprensione meccanicistica aiuta il regolatore governativo a stabilire limiti di sicurezza legalmente vincolanti per l'esposizione umana. Aiuta i tossicologi a raccomandare linee d'azione riguardanti la bonifica o la bonifica di siti contaminati e, insieme alle proprietà fisiche e chimiche della sostanza o miscela, può essere utilizzato per selezionare il grado di equipaggiamento protettivo richiesto. La conoscenza meccanicistica è utile anche per formare le basi per la terapia e la progettazione di nuovi farmaci per il trattamento delle malattie umane. Per il tossicologo forense il meccanismo della tossicità spesso fornisce informazioni su come un agente chimico o fisico può causare la morte o l'incapacità.
Se si comprende il meccanismo della tossicità, la tossicologia descrittiva diventa utile per prevedere gli effetti tossici delle sostanze chimiche correlate. È importante comprendere, tuttavia, che la mancanza di informazioni meccanicistiche non dissuade gli operatori sanitari dal proteggere la salute umana. Decisioni prudenti basate su studi sugli animali e sull'esperienza umana vengono utilizzate per stabilire livelli di esposizione sicuri. Tradizionalmente, un margine di sicurezza è stato stabilito utilizzando il "livello senza effetti avversi" o un "livello di effetti avversi più basso" da studi sugli animali (utilizzando disegni di esposizione ripetuta) e dividendo tale livello per un fattore di 100 per l'esposizione professionale o 1,000 per altra esposizione ambientale umana. Il successo di questo processo è evidente dai pochi casi di effetti nocivi per la salute attribuiti all'esposizione chimica nei lavoratori in cui in passato erano stati fissati e rispettati limiti di esposizione appropriati. Inoltre, la durata della vita umana continua ad aumentare, così come la qualità della vita. In generale, l'uso dei dati sulla tossicità ha portato a un efficace controllo normativo e volontario. La conoscenza dettagliata dei meccanismi tossici migliorerà la prevedibilità dei nuovi modelli di rischio attualmente in fase di sviluppo e si tradurrà in un miglioramento continuo.
La comprensione dei meccanismi ambientali è complessa e presuppone una conoscenza della perturbazione dell'ecosistema e dell'omeostasi (equilibrio). Anche se non discusso in questo articolo, una migliore comprensione dei meccanismi tossici e delle loro conseguenze finali in un ecosistema aiuterebbe gli scienziati a prendere decisioni prudenti in merito alla gestione dei rifiuti urbani e industriali. La gestione dei rifiuti è un'area di ricerca in crescita e continuerà ad essere molto importante in futuro.
Tecniche per lo studio dei meccanismi di tossicità
La maggior parte degli studi meccanicistici inizia con uno studio tossicologico descrittivo sugli animali o osservazioni cliniche sugli esseri umani. Idealmente, gli studi sugli animali includono attente osservazioni comportamentali e cliniche, attento esame biochimico di elementi del sangue e dell'urina per segni di funzione avversa dei principali sistemi biologici nel corpo e una valutazione post mortem di tutti i sistemi di organi mediante esame microscopico per verificare la presenza di lesioni (vedere le linee guida sui test dell'OCSE; le direttive CE sulla valutazione delle sostanze chimiche; le regole sui test dell'EPA degli Stati Uniti; i regolamenti sui prodotti chimici del Giappone). Questo è analogo a un esame fisico umano approfondito che si svolgerebbe in un ospedale per un periodo di tempo di due o tre giorni, ad eccezione dell'autopsia.
Comprendere i meccanismi della tossicità è l'arte e la scienza dell'osservazione, la creatività nella selezione delle tecniche per testare varie ipotesi e l'integrazione innovativa di segni e sintomi in una relazione causale. Gli studi meccanicistici iniziano con l'esposizione, seguono la distribuzione correlata al tempo e il destino nel corpo (farmacocinetica) e misurano l'effetto tossico risultante a un certo livello del sistema ea un certo livello di dose. Sostanze diverse possono agire a diversi livelli del sistema biologico causando tossicità.
Esposizione
La via di esposizione negli studi meccanicistici è solitamente la stessa dell'esposizione umana. La via è importante perché possono esserci effetti che si verificano localmente nel sito di esposizione oltre agli effetti sistemici dopo che la sostanza chimica è stata assorbita nel sangue e distribuita in tutto il corpo. Un esempio semplice ma convincente di un effetto locale sarebbe l'irritazione e l'eventuale corrosione della pelle in seguito all'applicazione di forti soluzioni acide o alcaline progettate per la pulizia di superfici dure. Allo stesso modo, l'irritazione e la morte cellulare possono verificarsi nelle cellule che rivestono il naso e/oi polmoni in seguito all'esposizione a vapori o gas irritanti come ossidi di azoto o ozono. (Entrambi sono costituenti dell'inquinamento atmosferico, o smog). Dopo l'assorbimento di una sostanza chimica nel sangue attraverso la pelle, i polmoni o il tratto gastrointestinale, la concentrazione in qualsiasi organo o tessuto è controllata da molti fattori che determinano la farmacocinetica della sostanza chimica nel corpo. Il corpo ha la capacità di attivare e disintossicare varie sostanze chimiche come indicato di seguito.
Ruolo della farmacocinetica nella tossicità
La farmacocinetica descrive le relazioni temporali per l'assorbimento chimico, la distribuzione, il metabolismo (alterazioni biochimiche nel corpo) e l'eliminazione o l'escrezione dal corpo. Relativamente ai meccanismi di tossicità, queste variabili farmacocinetiche possono essere molto importanti e in alcuni casi determinare se la tossicità si verificherà o meno. Ad esempio, se un materiale non viene assorbito in quantità sufficiente, non si verificherà tossicità sistemica (all'interno del corpo). Al contrario, una sostanza chimica altamente reattiva che viene disintossicata rapidamente (secondi o minuti) dagli enzimi digestivi o epatici potrebbe non avere il tempo di causare tossicità. Alcune sostanze e miscele alogenate policicliche così come alcuni metalli come il piombo non causerebbero una tossicità significativa se l'escrezione fosse rapida; ma l'accumulo a livelli sufficientemente elevati ne determina la tossicità poiché l'escrezione non è rapida (talvolta misurata in anni). Fortunatamente, la maggior parte delle sostanze chimiche non ha una ritenzione così lunga nel corpo. L'accumulo di un materiale innocuo non indurrebbe ancora tossicità. Il tasso di eliminazione dal corpo e disintossicazione è spesso indicato come l'emivita della sostanza chimica, che è il tempo in cui il 50% della sostanza chimica viene espulso o alterato in una forma non tossica.
Tuttavia, se una sostanza chimica si accumula in una particolare cellula o organo, ciò potrebbe segnalare un motivo per esaminare ulteriormente la sua potenziale tossicità in quell'organo. Più recentemente, sono stati sviluppati modelli matematici per estrapolare le variabili farmacocinetiche dagli animali all'uomo. Questi modelli farmacocinetici sono estremamente utili per generare ipotesi e verificare se l'animale sperimentale può essere una buona rappresentazione per l'uomo. Su questo argomento sono stati scritti numerosi capitoli e testi (Gehring et al. 1976; Reitz et al. 1987; Nolan et al. 1995). Un esempio semplificato di un modello fisiologico è rappresentato in figura 1.
Figura 1. Un modello farmacocinetico semplificato
Diversi livelli e sistemi possono essere influenzati negativamente
La tossicità può essere descritta a diversi livelli biologici. La lesione può essere valutata nell'intera persona (o animale), nel sistema di organi, nella cellula o nella molecola. I sistemi di organi includono il sistema immunitario, respiratorio, cardiovascolare, renale, endocrino, digestivo, muscolo-scheletrico, sanguigno, riproduttivo e nervoso centrale. Alcuni organi chiave includono fegato, reni, polmoni, cervello, pelle, occhi, cuore, testicoli o ovaie e altri organi importanti. A livello cellulare/biochimico, gli effetti avversi includono l'interferenza con la normale funzione proteica, la funzione del recettore endocrino, l'inibizione dell'energia metabolica o l'inibizione o l'induzione di enzimi xenobiotici (sostanze estranee). Gli effetti avversi a livello molecolare comprendono l'alterazione della normale funzione della trascrizione del DNA-RNA, del legame specifico del recettore citoplasmatico e nucleare e dei geni o dei prodotti genici. In definitiva, la disfunzione in un sistema di organi principali è probabilmente causata da un'alterazione molecolare in una particolare cellula bersaglio all'interno di quell'organo. Tuttavia, non sempre è possibile ricondurre un meccanismo a un'origine molecolare della causalità, né è necessario. L'intervento e la terapia possono essere progettati senza una completa comprensione del bersaglio molecolare. Tuttavia, la conoscenza del meccanismo specifico della tossicità aumenta il valore predittivo e l'accuratezza dell'estrapolazione ad altre sostanze chimiche. La figura 2 è una rappresentazione schematica dei vari livelli in cui è possibile rilevare l'interferenza dei normali processi fisiologici. Le frecce indicano che le conseguenze per un individuo possono essere determinate dall'alto verso il basso (esposizione, farmacocinetica a tossicità sistemica/organo) o dal basso verso l'alto (cambiamento molecolare, effetto cellulare/biochimico a tossicità sistemica/organo).
Figura 2. Rappresentazione dei meccanismi di tossicità
Esempi di meccanismi di tossicità
I meccanismi di tossicità possono essere semplici o molto complessi. Spesso c'è una differenza tra il tipo di tossicità, il meccanismo di tossicità e il livello dell'effetto, in relazione al fatto che gli effetti avversi siano dovuti a una singola dose elevata acuta (come un avvelenamento accidentale) o a una dose inferiore esposizione ripetuta (da esposizione professionale o ambientale). Classicamente, a scopo di test, una singola dose elevata acuta viene somministrata mediante intubazione diretta nello stomaco di un roditore o esposizione a un'atmosfera di gas o vapore per due o quattro ore, a seconda di quale sia meglio simile all'esposizione umana. Gli animali vengono osservati per un periodo di due settimane dopo l'esposizione e quindi i principali organi esterni e interni vengono esaminati per rilevare lesioni. I test a dose ripetuta vanno da mesi ad anni. Per le specie di roditori, due anni sono considerati uno studio cronico (durata della vita) sufficiente per valutare la tossicità e la cancerogenicità, mentre per i primati non umani, due anni sarebbero considerati uno studio subcronico (meno della vita) per valutare la tossicità a dose ripetuta. Dopo l'esposizione viene condotto un esame completo di tutti i tessuti, organi e fluidi per determinare eventuali effetti avversi.
Meccanismi di tossicità acuta
I seguenti esempi sono specifici per effetti acuti ad alte dosi che possono portare alla morte o a gravi inabilitazioni. Tuttavia, in alcuni casi, l'intervento comporterà effetti transitori e completamente reversibili. La dose o la gravità dell'esposizione determineranno il risultato.
Asfissianti semplici. Il meccanismo di tossicità dei gas inerti e di alcune altre sostanze non reattive è la mancanza di ossigeno (anossia). Queste sostanze chimiche, che causano la privazione di ossigeno al sistema nervoso centrale (SNC), sono chiamate semplici asfissianti. Se una persona entra in uno spazio chiuso che contiene azoto senza ossigeno sufficiente, si verifica un'immediata deplezione di ossigeno nel cervello che porta all'incoscienza e infine alla morte se la persona non viene rimossa rapidamente. In casi estremi (quasi zero ossigeno) l'incoscienza può verificarsi in pochi secondi. Il salvataggio dipende dalla rapida rimozione in un ambiente ossigenato. La sopravvivenza con danno cerebrale irreversibile può verificarsi a causa di un salvataggio ritardato, a causa della morte dei neuroni, che non possono rigenerarsi.
Asfissianti chimici. Il monossido di carbonio (CO) compete con l'ossigeno per legarsi all'emoglobina (nei globuli rossi) e quindi priva i tessuti dell'ossigeno per il metabolismo energetico; ne può derivare la morte cellulare. L'intervento comprende la rimozione dalla fonte di CO e il trattamento con ossigeno. L'uso diretto dell'ossigeno si basa sull'azione tossica del CO. Un altro potente asfissiante chimico è il cianuro. Lo ione cianuro interferisce con il metabolismo cellulare e l'utilizzo dell'ossigeno per produrre energia. Il trattamento con nitrito di sodio provoca un cambiamento dell'emoglobina nei globuli rossi in metaemoglobina. La metaemoglobina ha una maggiore affinità di legame con lo ione cianuro rispetto al bersaglio cellulare del cianuro. Di conseguenza, la metaemoglobina lega il cianuro e tiene il cianuro lontano dalle cellule bersaglio. Questo costituisce la base per la terapia antidotica.
Depressori del sistema nervoso centrale (SNC).. La tossicità acuta è caratterizzata da sedazione o incoscienza per una serie di materiali come solventi che non sono reattivi o che si trasformano in intermedi reattivi. Si ipotizza che la sedazione/anestesia sia dovuta a un'interazione del solvente con le membrane delle cellule del SNC, che compromette la loro capacità di trasmettere segnali elettrici e chimici. Mentre la sedazione può sembrare una lieve forma di tossicità ed è stata la base per lo sviluppo dei primi anestetici, "la dose fa ancora il veleno". Se viene somministrata una dose sufficiente per ingestione o inalazione, l'animale può morire per arresto respiratorio. Se non si verifica la morte per anestesia, questo tipo di tossicità è solitamente facilmente reversibile quando il soggetto viene rimosso dall'ambiente o la sostanza chimica viene ridistribuita o eliminata dal corpo.
Effetti sulla pelle. Gli effetti negativi sulla pelle possono variare dall'irritazione alla corrosione, a seconda della sostanza incontrata. Gli acidi forti e le soluzioni alcaline sono incompatibili con i tessuti viventi e sono corrosivi, causando ustioni chimiche e possibili cicatrici. La cicatrizzazione è dovuta alla morte delle cellule dermiche profonde della pelle responsabili della rigenerazione. Concentrazioni inferiori possono solo causare irritazione del primo strato di pelle.
Un altro meccanismo tossico specifico della pelle è quello della sensibilizzazione chimica. Ad esempio, la sensibilizzazione si verifica quando il 2,4-dinitroclorobenzene si lega alle proteine naturali della pelle e il sistema immunitario riconosce il complesso alterato legato alle proteine come materiale estraneo. In risposta a questo materiale estraneo, il sistema immunitario attiva cellule speciali per eliminare la sostanza estranea mediante il rilascio di mediatori (citochine) che causano eruzioni cutanee o dermatiti (vedi “Immunotossicologia”). Questa è la stessa reazione del sistema immunitario quando si verifica l'esposizione all'edera velenosa. La sensibilizzazione immunitaria è molto specifica per la particolare sostanza chimica e richiede almeno due esposizioni prima che venga suscitata una risposta. La prima esposizione sensibilizza (prepara le cellule a riconoscere la sostanza chimica) e le successive esposizioni innescano la risposta del sistema immunitario. La rimozione dal contatto e la terapia sintomatica con creme antinfiammatorie contenenti steroidi sono generalmente efficaci nel trattamento di individui sensibilizzati. Nei casi gravi o refrattari viene utilizzato un immunosoppressore ad azione sistemica come il prednisone in combinazione con il trattamento topico.
Sensibilizzazione polmonare. Una risposta di sensibilizzazione immunitaria è provocata dal toluene diisocianato (TDI), ma il sito bersaglio sono i polmoni. La sovraesposizione al TDI in soggetti predisposti provoca edema polmonare (accumulo di liquidi), costrizione bronchiale e respirazione compromessa. Questa è una condizione grave e richiede la rimozione dell'individuo da potenziali esposizioni successive. Il trattamento è principalmente sintomatico. La sensibilizzazione della pelle e dei polmoni segue una risposta alla dose. Il superamento del livello fissato per l'esposizione professionale può causare effetti negativi.
Effetti sugli occhi. Le lesioni agli occhi vanno dall'arrossamento dello strato esterno (arrossamento da piscina) alla formazione di cataratta della cornea fino al danneggiamento dell'iride (parte colorata dell'occhio). I test di irritazione oculare vengono condotti quando si ritiene che non si verificheranno lesioni gravi. Molti dei meccanismi che causano la corrosione della pelle possono anche causare lesioni agli occhi. I materiali corrosivi per la pelle, come gli acidi forti (pH inferiore a 2) e gli alcali (pH superiore a 11.5), non sono testati sugli occhi degli animali perché la maggior parte causerà corrosione e cecità a causa di un meccanismo simile a quello che provoca la corrosione della pelle . Inoltre, agenti tensioattivi come detergenti e tensioattivi possono causare lesioni agli occhi che vanno dall'irritazione alla corrosione. Un gruppo di materiali che richiede cautela sono i tensioattivi caricati positivamente (cationici), che possono causare ustioni, opacità permanente della cornea e vascolarizzazione (formazione di vasi sanguigni). Un'altra sostanza chimica, il dinitrofenolo, ha un effetto specifico sulla formazione della cataratta. Ciò sembra essere correlato alla concentrazione di questa sostanza chimica nell'occhio, che è un esempio di specificità distributiva farmacocinetica.
Sebbene l'elenco di cui sopra sia lungi dall'essere esaustivo, è progettato per dare al lettore un apprezzamento per vari meccanismi di tossicità acuta.
Meccanismi di tossicità subcronica e cronica
Quando vengono somministrati come singola dose elevata, alcuni prodotti chimici non hanno lo stesso meccanismo di tossicità di quando vengono somministrati ripetutamente come dose inferiore ma comunque tossica. Quando viene somministrata una singola dose elevata, c'è sempre la possibilità di superare la capacità della persona di disintossicare o espellere la sostanza chimica, e questo può portare a una risposta tossica diversa rispetto a quando vengono somministrate dosi ripetitive inferiori. L'alcol è un buon esempio. Alte dosi di alcol portano a effetti primari sul sistema nervoso centrale, mentre dosi ripetute inferiori provocano danni al fegato.
Inibizione anticolinesterasica. La maggior parte dei pesticidi organofosfati, ad esempio, ha poca tossicità per i mammiferi fino a quando non viene attivata metabolicamente, principalmente nel fegato. Il principale meccanismo d'azione degli organofosfati è l'inibizione dell'acetilcolinesterasi (AChE) nel cervello e nel sistema nervoso periferico. AChE è l'enzima normale che termina la stimolazione del neurotrasmettitore acetilcolina. Una lieve inibizione dell'AChE per un periodo prolungato non è stata associata a effetti avversi. A livelli elevati di esposizione, l'incapacità di terminare questa stimolazione neuronale provoca una sovrastimolazione del sistema nervoso colinergico. La sovrastimolazione colinergica alla fine si traduce in una serie di sintomi, incluso l'arresto respiratorio, seguito dalla morte se non trattata. Il trattamento primario è la somministrazione di atropina, che blocca gli effetti dell'acetilcolina, e la somministrazione di cloruro di pralidossima, che riattiva l'AChE inibito. Pertanto, sia la causa che il trattamento della tossicità da organofosfati vengono affrontati comprendendo le basi biochimiche della tossicità.
Attivazione metabolica. Molte sostanze chimiche, tra cui il tetracloruro di carbonio, il cloroformio, l'acetilamminofluorene, le nitrosammine e il paraquat sono metabolicamente attivate a radicali liberi o altri intermedi reattivi che inibiscono e interferiscono con la normale funzione cellulare. Ad alti livelli di esposizione ciò provoca la morte cellulare (vedi “Danno cellulare e morte cellulare”). Mentre le interazioni specifiche ei bersagli cellulari rimangono sconosciuti, i sistemi di organi che hanno la capacità di attivare queste sostanze chimiche, come fegato, reni e polmoni, sono tutti potenziali bersagli di lesioni. Nello specifico, particolari cellule all'interno di un organo hanno una capacità maggiore o minore di attivare o disintossicare questi intermedi, e questa capacità determina la suscettibilità intracellulare all'interno di un organo. Il metabolismo è uno dei motivi per cui la comprensione della farmacocinetica, che descrive questi tipi di trasformazioni e la distribuzione e l'eliminazione di questi intermedi, è importante per riconoscere il meccanismo d'azione di queste sostanze chimiche.
Meccanismi del cancro. Il cancro è una molteplicità di malattie e mentre la comprensione di alcuni tipi di cancro sta aumentando rapidamente a causa delle numerose tecniche biologiche molecolari che sono state sviluppate dal 1980, c'è ancora molto da imparare. Tuttavia, è chiaro che lo sviluppo del cancro è un processo in più fasi e che i geni critici sono fondamentali per diversi tipi di cancro. Le alterazioni del DNA (mutazioni somatiche) in alcuni di questi geni critici possono causare un aumento della suscettibilità o lesioni cancerose (vedi “Tossicologia genetica”). L'esposizione a sostanze chimiche naturali (nei cibi cotti come manzo e pesce) o chimiche sintetiche (come la benzidina, usata come colorante) o agenti fisici (luce ultravioletta del sole, radon dal suolo, radiazioni gamma da procedure mediche o attività industriale) sono tutte contributori alle mutazioni geniche somatiche. Tuttavia, esistono sostanze naturali e sintetiche (come gli antiossidanti) e processi di riparazione del DNA che sono protettivi e mantengono l'omeostasi. È chiaro che la genetica è un fattore importante nel cancro, poiché sindromi di malattie genetiche come lo xeroderma pigmentoso, in cui manca la normale riparazione del DNA, aumentano notevolmente la suscettibilità al cancro della pelle dall'esposizione alla luce ultravioletta del sole.
Meccanismi riproduttivi. Analogamente al cancro, sono noti molti meccanismi di tossicità riproduttiva e/o dello sviluppo, ma c'è ancora molto da imparare. È noto che alcuni virus (come la rosolia), infezioni batteriche e farmaci (come talidomide e vitamina A) influiranno negativamente sullo sviluppo. Recentemente, il lavoro di Khera (1991), rivisto da Carney (1994), mostra una buona evidenza che gli effetti sullo sviluppo anormali nei test sugli animali con glicole etilenico sono attribuibili ai metaboliti acidi metabolici materni. Ciò si verifica quando il glicole etilenico viene metabolizzato in metaboliti acidi tra cui acido glicolico e ossalico. I successivi effetti sulla placenta e sul feto sembrano essere dovuti a questo processo di tossicità metabolica.
Conclusione
L'intento di questo articolo è quello di fornire una prospettiva su diversi meccanismi noti di tossicità e la necessità di studi futuri. È importante capire che la conoscenza meccanicistica non è assolutamente necessaria per proteggere la salute umana o ambientale. Questa conoscenza migliorerà la capacità del professionista di prevedere e gestire meglio la tossicità. Le effettive tecniche utilizzate per chiarire qualsiasi particolare meccanismo dipendono dalla conoscenza collettiva degli scienziati e dal pensiero di coloro che prendono decisioni riguardanti la salute umana.
Praticamente tutta la medicina è dedicata a prevenire la morte cellulare, in malattie come l'infarto miocardico, l'ictus, il trauma e lo shock, oa provocarla, come nel caso delle malattie infettive e del cancro. È quindi essenziale comprenderne la natura ei meccanismi coinvolti. La morte cellulare è stata classificata come “accidentale”, cioè causata da agenti tossici, ischemia e così via, oppure “programmata”, come avviene durante lo sviluppo embriologico, compresa la formazione delle dita, e il riassorbimento della coda del girino.
Il danno cellulare e la morte cellulare sono, quindi, importanti sia in fisiologia che in fisiopatologia. La morte cellulare fisiologica è estremamente importante durante l'embriogenesi e lo sviluppo embrionale. Lo studio della morte cellulare durante lo sviluppo ha portato a importanti e nuove informazioni sulla genetica molecolare coinvolta, in particolare attraverso lo studio dello sviluppo negli animali invertebrati. In questi animali è stata attentamente studiata la localizzazione precisa e il significato delle cellule destinate a subire la morte cellulare e, con l'utilizzo delle classiche tecniche di mutagenesi, sono stati ora individuati diversi geni coinvolti. Negli organi adulti, l'equilibrio tra morte cellulare e proliferazione cellulare controlla le dimensioni dell'organo. In alcuni organi, come la pelle e l'intestino, c'è un ricambio continuo di cellule. Nella pelle, ad esempio, le cellule si differenziano quando raggiungono la superficie e infine subiscono la differenziazione terminale e la morte cellulare man mano che la cheratinizzazione procede con la formazione di involucri reticolati.
Molte classi di sostanze chimiche tossiche sono in grado di indurre un danno cellulare acuto seguito dalla morte. Questi includono anossia e ischemia e loro analoghi chimici come il cianuro di potassio; agenti cancerogeni chimici, che formano elettrofili che si legano covalentemente alle proteine negli acidi nucleici; sostanze chimiche ossidanti, con conseguente formazione di radicali liberi e danno ossidante; attivazione del complemento; e una varietà di ionofori di calcio. La morte cellulare è anche una componente importante della carcinogenesi chimica; molti cancerogeni chimici completi, a dosi cancerogene, producono necrosi acuta e infiammazione seguite da rigenerazione e preneoplasia.
Definizioni
Danno cellulare
Il danno cellulare è definito come un evento o uno stimolo, come una sostanza chimica tossica, che perturba la normale omeostasi della cellula, causando così il verificarsi di una serie di eventi (figura 1). I principali bersagli della lesione letale illustrati sono l'inibizione della sintesi di ATP, l'interruzione dell'integrità della membrana plasmatica o il ritiro di fattori di crescita essenziali.
Le lesioni letali provocano la morte di una cellula dopo un periodo di tempo variabile, a seconda della temperatura, del tipo di cellula e dello stimolo; oppure possono essere subletali o cronici, cioè la lesione risulta in uno stato omeostatico alterato che, sebbene anormale, non provoca morte cellulare (Trump e Arstila 1971; Trump e Berezesky 1992; Trump e Berezesky 1995; Trump, Berezesky e Osornio-Vargas 1981). Nel caso di una lesione letale, c'è una fase precedente al momento della morte cellulare
durante questo periodo, la cellula si riprenderà; tuttavia, dopo un determinato momento (il “punto di non ritorno” o punto di morte cellulare), la rimozione della lesione non comporta la guarigione ma la cellula subisce degradazione e idrolisi, raggiungendo infine l'equilibrio fisico-chimico con il ambiente. Questa è la fase nota come necrosi. Durante la fase preletale si verificano diversi tipi principali di cambiamento, a seconda della cellula e del tipo di lesione. Questi sono noti come apoptosi e oncosi.
Apoptosis
L'apoptosi deriva dalle parole greche apo, che significa lontano da, e ptosi, che significa cadere. Il termine allontanarsi da deriva dal fatto che, durante questo tipo di cambiamento preletale, le cellule si restringono e subiscono un marcato blebbing alla periferia. Le macchie poi si staccano e volano via. L'apoptosi si verifica in una varietà di tipi cellulari in seguito a vari tipi di danno tossico (Wyllie, Kerr e Currie 1980). È particolarmente importante nei linfociti, dove è il meccanismo predominante per il turnover dei cloni linfocitari. I frammenti risultanti risultano nei corpi basofili visti all'interno dei macrofagi nei linfonodi. In altri organi, l'apoptosi si verifica tipicamente in singole cellule che vengono rapidamente eliminate prima e dopo la morte per fagocitosi dei frammenti da parte delle cellule parenchimali adiacenti o dei macrofagi. L'apoptosi che si verifica in singole cellule con successiva fagocitosi in genere non provoca infiammazione. Prima della morte, le cellule apoptotiche mostrano un citosol molto denso con mitocondri normali o condensati. Il reticolo endoplasmatico (ER) è normale o solo leggermente dilatato. La cromatina nucleare è marcatamente raggruppata lungo l'involucro nucleare e attorno al nucleolo. Anche il contorno nucleare è irregolare e si verifica la frammentazione nucleare. La condensazione della cromatina è associata alla frammentazione del DNA che, in molti casi, si verifica tra i nucleosomi, conferendo all'elettroforesi un caratteristico aspetto a scala.
Nell'apoptosi, l'aumento di [Ca2+]i può stimolare K+ efflusso con conseguente restringimento cellulare, che probabilmente richiede ATP. Le lesioni che inibiscono totalmente la sintesi di ATP, quindi, hanno maggiori probabilità di provocare l'apoptosi. Un aumento sostenuto di [Ca2+]i ha una serie di effetti deleteri tra cui l'attivazione di proteasi, endonucleasi e fosfolipasi. L'attivazione dell'endonucleasi si traduce in rotture del singolo e doppio filamento di DNA che, a loro volta, stimolano livelli aumentati di p53 e nella ribosilazione di poli-ADP e di proteine nucleari che sono essenziali nella riparazione del DNA. L'attivazione delle proteasi modifica una serie di substrati tra cui l'actina e le proteine correlate che portano alla formazione di bleb. Un altro substrato importante è la poli(ADP-ribosio) polimerasi (PARP), che inibisce la riparazione del DNA. Aumentato [Ca2+]i è anche associato all'attivazione di una serie di protein chinasi, come MAP chinasi, calmodulina chinasi e altre. Tali chinasi sono coinvolte nell'attivazione di fattori di trascrizione che avviano la trascrizione di geni immediatamente precoci, ad esempio c-fos, c-jun e c-myc, e nell'attivazione della fosfolipasi A2 che si traduce in permeabilizzazione della membrana plasmatica e delle membrane intracellulari come la membrana interna dei mitocondri.
Oncosi
Oncosi, derivato dalla parola greca È s, gonfiarsi, è così chiamato perché in questo tipo di mutamento preletale la cellula inizia a gonfiarsi quasi immediatamente dopo la lesione (Majno e Joris 1995). La ragione del gonfiore è un aumento dei cationi nell'acqua all'interno della cellula. Il principale catione responsabile è il sodio, che normalmente è regolato per mantenere il volume cellulare. Tuttavia, in assenza di ATP o se la Na-ATPasi del plasmalemma è inibita, il controllo del volume viene perso a causa delle proteine intracellulari e il sodio nell'acqua continua ad aumentare. Tra gli eventi precoci in oncosi sono, quindi, aumentati [Na+]i che porta al rigonfiamento cellulare e all'aumento di [Ca2+]i derivanti dall'afflusso dallo spazio extracellulare o dal rilascio dai depositi intracellulari. Ciò si traduce in gonfiore del citosol, gonfiore del reticolo endoplasmatico e dell'apparato di Golgi e formazione di bolle acquose attorno alla superficie cellulare. I mitocondri inizialmente subiscono la condensazione, ma in seguito anch'essi mostrano un rigonfiamento ad alta ampiezza a causa del danno alla membrana mitocondriale interna. In questo tipo di mutamento preletale, la cromatina subisce condensazione e infine degradazione; tuttavia, non si vede il caratteristico schema a scala dell'apoptosi.
Necrosi
La necrosi si riferisce alla serie di cambiamenti che si verificano dopo la morte cellulare quando la cellula viene convertita in detriti che vengono tipicamente rimossi dalla risposta infiammatoria. Si possono distinguere due tipi: necrosi oncotica e necrosi apoptotica. La necrosi oncotica si verifica tipicamente in ampie zone, ad esempio, in un infarto del miocardio o a livello regionale in un organo dopo tossicità chimica, come il tubulo prossimale renale in seguito alla somministrazione di HgCl2. Sono interessate ampie zone di un organo e le cellule necrotiche inducono rapidamente una reazione infiammatoria, prima acuta e poi cronica. Nel caso in cui l'organismo sopravviva, in molti organi la necrosi è seguita dall'eliminazione delle cellule morte e dalla rigenerazione, ad esempio, nel fegato o nel rene a seguito di tossicità chimica. Al contrario, la necrosi apoptotica si verifica tipicamente su una singola cellula ei detriti necrotici si formano all'interno dei fagociti dei macrofagi o delle cellule parenchimali adiacenti. Le prime caratteristiche delle cellule necrotiche includono interruzioni nella continuità della membrana plasmatica e la comparsa di densità flocculanti, che rappresentano proteine denaturate all'interno della matrice mitocondriale. In alcune forme di lesione che inizialmente non interferiscono con l'accumulo di calcio mitocondriale, si possono osservare depositi di fosfato di calcio all'interno dei mitocondri. Altri sistemi di membrana si stanno frammentando in modo simile, come l'ER, i lisosomi e l'apparato di Golgi. Infine, la cromatina nucleare subisce la lisi, risultante dall'attacco delle idrolasi lisosomiali. Dopo la morte cellulare, le idrolasi lisosomiali svolgono un ruolo importante nell'eliminazione dei detriti con catepsine, nucleolasi e lipasi poiché queste hanno un pH acido ottimale e possono sopravvivere al basso pH delle cellule necrotiche mentre altri enzimi cellulari sono denaturati e inattivati.
meccanismi
Stimolo iniziale
Nel caso di lesioni letali, le interazioni iniziali più comuni che provocano lesioni che portano alla morte cellulare sono l'interferenza con il metabolismo energetico, come anossia, ischemia o inibitori della respirazione, e la glicolisi come cianuro di potassio, monossido di carbonio, iodo-acetato e presto. Come accennato in precedenza, alte dosi di composti che inibiscono il metabolismo energetico provocano tipicamente oncosi. L'altro tipo comune di lesione iniziale con conseguente morte cellulare acuta è la modifica della funzione della membrana plasmatica (Trump e Arstila 1971; Trump, Berezesky e Osornio-Vargas 1981). Questo può essere danno diretto e permeabilizzazione, come nel caso di trauma o attivazione del complesso C5b-C9 del complemento, danno meccanico alla membrana cellulare o inibizione del sodio-potassio (Na+-K+) pompa con glicosidi come ouabain. Ionofori di calcio come ionomicina o A23187, che trasportano rapidamente [Ca2+] lungo il gradiente nella cellula, causano anche lesioni letali acute. In alcuni casi, lo schema del cambiamento preletale è l'apoptosi; in altri, è oncosi.
Vie di segnalazione
Con molti tipi di lesioni, la respirazione mitocondriale e la fosforilazione ossidativa vengono rapidamente colpite. In alcune cellule, questo stimola la glicolisi anaerobica, che è in grado di mantenere l'ATP, ma con molte lesioni questa viene inibita. La mancanza di ATP si traduce nella mancata attivazione di una serie di importanti processi omeostatici, in particolare il controllo dell'omeostasi ionica intracellulare (Trump e Berezesky 1992; Trump, Berezesky e Osornio-Vargas 1981). Ciò si traduce in un rapido aumento di [Ca2+]i, e aumentato [Na+] e [cl-] si traduce in gonfiore delle cellule. Aumenti di [Ca2+]i comportano l'attivazione di una serie di altri meccanismi di segnalazione discussi di seguito, inclusa una serie di chinasi, che possono provocare un aumento immediato della trascrizione genica precoce. Aumentato [Ca2+]i modifica anche la funzione citoscheletrica, determinando in parte la formazione di bolle e l'attivazione di endonucleasi, proteasi e fosfolipasi. Questi sembrano innescare molti degli effetti importanti discussi sopra, come il danno alla membrana attraverso l'attivazione di proteasi e lipasi, la degradazione diretta del DNA dall'attivazione dell'endonucleasi e l'attivazione di chinasi come MAP chinasi e calmodulina chinasi, che agiscono come fattori di trascrizione.
Attraverso un ampio lavoro sullo sviluppo negli invertebrati C. elegans e a Drosophila, oltre alle cellule umane e animali, sono stati identificati una serie di geni pro-morte. È stato scoperto che alcuni di questi geni degli invertebrati hanno controparti nei mammiferi. Ad esempio, il gene ced-3, che è essenziale per la morte cellulare programmata in C. elegans, ha attività proteasica e una forte omologia con l'enzima di conversione dell'interleuchina dei mammiferi (ICE). Un gene strettamente correlato chiamato apopain o prICE è stato recentemente identificato con un'omologia ancora più stretta (Nicholson et al. 1995). In Drosophila, il gene reaper sembra essere coinvolto in un segnale che porta alla morte cellulare programmata. Altri geni pro-morte includono la proteina di membrana Fas e l'importante gene soppressore del tumore, p53, che è ampiamente conservato. p53 è indotto a livello proteico in seguito a danno al DNA e quando fosforilato agisce come fattore di trascrizione per altri geni come gadd45 e waf-1, che sono coinvolti nella segnalazione di morte cellulare. Anche altri geni precoci immediati come c-fos, c-jun e c-myc sembrano essere coinvolti in alcuni sistemi.
Allo stesso tempo, ci sono geni anti-morte che sembrano contrastare i geni pro-morte. Il primo di questi ad essere identificato è stato ced-9 from C. elegans, che è omologa a bcl-2 negli esseri umani. Questi geni agiscono in un modo ancora sconosciuto per prevenire l'uccisione cellulare da parte di tossine genetiche o chimiche. Alcune prove recenti indicano che bcl-2 può agire come antiossidante. Attualmente, sono in corso molti sforzi per sviluppare una comprensione dei geni coinvolti e per sviluppare modi per attivare o inibire questi geni, a seconda della situazione.
La tossicologia genetica, per definizione, è lo studio di come gli agenti chimici o fisici influenzano l'intricato processo dell'ereditarietà. Le sostanze chimiche genotossiche sono definite come composti in grado di modificare il materiale ereditario delle cellule viventi. La probabilità che una particolare sostanza chimica causi un danno genetico dipende inevitabilmente da diverse variabili, tra cui il livello di esposizione dell'organismo alla sostanza chimica, la distribuzione e la ritenzione della sostanza chimica una volta entrata nell'organismo, l'efficienza dell'attivazione metabolica e/o dei sistemi di disintossicazione in tessuti bersaglio e la reattività della sostanza chimica o dei suoi metaboliti con le macromolecole critiche all'interno delle cellule. La probabilità che il danno genetico causi la malattia dipende in ultima analisi dalla natura del danno, dalla capacità della cellula di riparare o amplificare il danno genetico, dall'opportunità di esprimere qualunque alterazione sia stata indotta e dalla capacità del corpo di riconoscere e sopprimere la moltiplicazione di cellule aberranti.
Negli organismi superiori, le informazioni ereditarie sono organizzate nei cromosomi. I cromosomi sono costituiti da filamenti strettamente condensati di DNA associato a proteine. All'interno di un singolo cromosoma, ogni molecola di DNA esiste come una coppia di lunghe catene non ramificate di subunità nucleotidiche collegate tra loro da legami fosfodiestere che uniscono il carbonio 5 di una porzione di desossiribosio al carbonio 3 della successiva (figura 1). Inoltre, una delle quattro diverse basi nucleotidiche (adenina, citosina, guanina o timina) è attaccata a ciascuna subunità di desossiribosio come perline su un filo. Tridimensionalmente, ogni coppia di filamenti di DNA forma una doppia elica con tutte le basi orientate verso l'interno della spirale. All'interno dell'elica, ogni base è associata alla sua base complementare sul filamento di DNA opposto; il legame idrogeno determina un accoppiamento forte e non covalente di adenina con timina e guanina con citosina (figura 1). Poiché la sequenza delle basi nucleotidiche è complementare per l'intera lunghezza della molecola di DNA duplex, entrambi i filamenti portano essenzialmente la stessa informazione genetica. Infatti, durante la replicazione del DNA ogni filamento funge da stampo per la produzione di un nuovo filamento partner.
Figura 1. L'organizzazione (a) primaria, (b) secondaria e (c) terziaria delle informazioni ereditarie umane
Utilizzando l'RNA e una serie di diverse proteine, la cellula alla fine decifra le informazioni codificate dalla sequenza lineare di basi all'interno di regioni specifiche del DNA (geni) e produce proteine essenziali per la sopravvivenza cellulare di base, nonché per la normale crescita e differenziazione. In sostanza, i nucleotidi funzionano come un alfabeto biologico utilizzato per codificare gli amminoacidi, i mattoni delle proteine.
Quando vengono inseriti nucleotidi errati o i nucleotidi vengono persi, o quando vengono aggiunti nucleotidi non necessari durante la sintesi del DNA, l'errore viene chiamato mutazione. È stato stimato che si verifica meno di una mutazione ogni 109 nucleotidi incorporati durante la normale replicazione delle cellule. Sebbene le mutazioni non siano necessariamente dannose, le alterazioni che causano l'inattivazione o la sovraespressione di geni importanti possono provocare una varietà di disturbi, tra cui cancro, malattie ereditarie, anomalie dello sviluppo, infertilità e morte embrionale o perinatale. Molto raramente, una mutazione può portare a una maggiore sopravvivenza; tali occorrenze sono la base della selezione naturale.
Sebbene alcune sostanze chimiche reagiscano direttamente con il DNA, la maggior parte richiede l'attivazione metabolica. In quest'ultimo caso, gli intermedi elettrofili come gli epossidi o gli ioni di carbonio sono in ultima analisi responsabili dell'induzione di lesioni in una varietà di siti nucleofili all'interno del materiale genetico (figura 2). In altri casi, la genotossicità è mediata da sottoprodotti dell'interazione dei composti con lipidi intracellulari, proteine o ossigeno.
Figura 2. Bioattivazione di: a) benzo(a)pirene; e b) N-nitrosodimetilammina
A causa della loro relativa abbondanza nelle cellule, le proteine sono il bersaglio più frequente dell'interazione tossica. Tuttavia, la modifica del DNA è di maggiore preoccupazione a causa del ruolo centrale di questa molecola nella regolazione della crescita e della differenziazione attraverso più generazioni di cellule.
A livello molecolare, i composti elettrofili tendono ad attaccare l'ossigeno e l'azoto nel DNA. I siti che sono più inclini alla modifica sono illustrati nella figura 3. Sebbene gli ossigeni all'interno dei gruppi fosfato nella spina dorsale del DNA siano anche bersagli per la modificazione chimica, si ritiene che il danno alle basi sia biologicamente più rilevante poiché questi gruppi sono considerati i principali elementi nella molecola del DNA.
Figura 3. Siti primari di danno al DNA indotto chimicamente
I composti che contengono una porzione elettrofila tipicamente esercitano genotossicità producendo mono-addotti nel DNA. Allo stesso modo, i composti che contengono due o più frazioni reattive possono reagire con due diversi centri nucleofili e quindi produrre legami incrociati intra o intermolecolari nel materiale genetico (figura 4). I legami incrociati tra DNA-DNA e DNA-proteina possono essere particolarmente citotossici poiché possono formare blocchi completi alla replicazione del DNA. Per ovvie ragioni, la morte di una cellula elimina la possibilità che venga mutata o trasformata neoplasticamente. Gli agenti genotossici possono anche agire inducendo rotture nello scheletro del fosfodiestere o tra basi e zuccheri (producendo siti abasici) nel DNA. Tali rotture possono essere un risultato diretto della reattività chimica nel sito del danno o possono verificarsi durante la riparazione di uno dei suddetti tipi di lesione del DNA.
Figura 4. Vari tipi di danno al complesso proteina-DNA
Negli ultimi trenta o quarant'anni sono state sviluppate diverse tecniche per monitorare il tipo di danno genetico indotto da varie sostanze chimiche. Tali saggi sono descritti in dettaglio altrove in questo capitolo e Enciclopedia.
L'errata replicazione di "microlesioni" come mono-addotti, siti abasici o rotture a singolo filamento può in ultima analisi provocare sostituzioni di coppie di basi nucleotidiche o l'inserimento o la delezione di brevi frammenti polinucleotidici nel DNA cromosomico. Al contrario, le "macrolesioni", come addotti voluminosi, collegamenti incrociati o rotture a doppio filamento possono innescare l'acquisizione, la perdita o il riarrangiamento di pezzi relativamente grandi di cromosomi. In ogni caso, le conseguenze possono essere devastanti per l'organismo poiché ognuno di questi eventi può portare alla morte cellulare, alla perdita di funzione o alla trasformazione maligna delle cellule. Il modo esatto in cui il danno al DNA provoca il cancro è in gran parte sconosciuto. Attualmente si ritiene che il processo possa comportare un'attivazione inappropriata di proto-oncogeni come il mio c e a ras, e/o inattivazione di geni soppressori tumorali recentemente identificati come p53. L'espressione anormale di entrambi i tipi di geni abroga i normali meccanismi cellulari per controllare la proliferazione e/o la differenziazione cellulare.
La preponderanza di prove sperimentali indica che lo sviluppo del cancro in seguito all'esposizione a composti elettrofili è un evento relativamente raro. Ciò può essere spiegato, in parte, dalla capacità intrinseca della cellula di riconoscere e riparare il DNA danneggiato o dall'incapacità delle cellule con DNA danneggiato di sopravvivere. Durante la riparazione, la base danneggiata, il nucleotide o il breve tratto di nucleotidi che circonda il sito del danno viene rimosso e (usando il filamento opposto come modello) viene sintetizzato e inserito in posizione un nuovo pezzo di DNA. Per essere efficace, la riparazione del DNA deve avvenire con grande accuratezza prima della divisione cellulare, prima delle opportunità di propagazione della mutazione.
Studi clinici hanno dimostrato che le persone con difetti ereditari nella capacità di riparare il DNA danneggiato spesso sviluppano tumori e/o anomalie dello sviluppo in tenera età (tabella 1). Tali esempi forniscono una forte evidenza che collega l'accumulo di danni al DNA alla malattia umana. Allo stesso modo, gli agenti che promuovono la proliferazione cellulare (come il tetradecanoilforbolo acetato) spesso aumentano la carcinogenesi. Per questi composti, l'aumentata probabilità di trasformazione neoplastica può essere una diretta conseguenza di una diminuzione del tempo a disposizione della cellula per effettuare un'adeguata riparazione del DNA.
Tabella 1. Malattie ereditarie a rischio di cancro che sembrano comportare difetti nella riparazione del DNA
Sindrome | Sintomi | Fenotipo cellulare |
Atassia teleangectasia | Deterioramento neurologico immunodeficienza Elevata incidenza di linfomi |
Ipersensibilità alle radiazioni ionizzanti e ad alcuni agenti alchilanti. Replicazione disregolata del DNA danneggiato (può indicare un tempo ridotto per la riparazione del DNA) |
Sindrome di Bloom | Anomalie dello sviluppo Lesioni sulla pelle esposta Alta incidenza di tumori del sistema immunitario e del tratto gastrointestinale |
Alta frequenza di aberrazioni cromosomiche Legatura difettosa di rotture associate alla riparazione del DNA |
Anemia di Fanconi | Ritardo della crescita Alta incidenza di leucemia |
Ipersensibilità agli agenti reticolanti Alta frequenza di aberrazioni cromosomiche Riparazione difettosa dei collegamenti incrociati nel DNA |
Cancro del colon ereditario non poliposico | Alta incidenza di cancro al colon | Difetto nella riparazione del mismatch del DNA (quando si verifica l'inserimento di un nucleotide errato durante la replicazione) |
Xeroderma pigmentoso | Alta incidenza di epitelioma sulle aree esposte della pelle Compromissione neurologica (in molti casi) |
Ipersensibilità ai raggi UV e a molti agenti cancerogeni chimici Difetti nella riparazione dell'escissione e/o nella replicazione del DNA danneggiato |
Le prime teorie su come le sostanze chimiche interagiscono con il DNA possono essere fatte risalire a studi condotti durante lo sviluppo del gas mostarda per l'uso in guerra. Un'ulteriore comprensione è nata dagli sforzi per identificare agenti antitumorali che arrestassero selettivamente la replicazione delle cellule tumorali in rapida divisione. La crescente preoccupazione del pubblico per i pericoli nel nostro ambiente ha stimolato ulteriori ricerche sui meccanismi e le conseguenze dell'interazione chimica con il materiale genetico. Esempi di vari tipi di sostanze chimiche che esercitano genotossicità sono presentati nella tabella 2.
Tabella 2. Esempi di sostanze chimiche che presentano genotossicità nelle cellule umane
Classe di sostanza chimica | Esempio | Fonte di esposizione | Probabile lesione genotossica |
Le aflatossine | Aflatossina B1 | Alimenti contaminati | Addotti voluminosi del DNA |
Ammine aromatiche | 2-acetilamminofluorene | Ambientali | Addotti voluminosi del DNA |
Chinoni di aziridina | Mitomicina C | Chemioterapia contro il cancro | Mono-addotti, reticolazioni interfilari e rotture a singolo filamento nel DNA. |
Idrocarburi clorurati | Cloruro di vinile | Ambientali | Mono-addotti nel DNA |
Metalli e composti metallici | cisplatino | Chemioterapia contro il cancro | Entrambi i collegamenti incrociati intra e inter filamento nel DNA |
Composti di nichel | Ambientali | Mono-addotti e rotture a singolo filamento nel DNA | |
Mostarde di azoto | Ciclofosfamide | Chemioterapia contro il cancro | Mono-addotti e reticolazioni interfilari nel DNA |
Le nitrosammine | N-nitrosodimetilammina | Alimenti contaminati | Mono-addotti nel DNA |
Idrocarburi policiclici aromatici | Il benzo (a) pirene | Ambientali | Addotti voluminosi del DNA |
Le funzioni del sistema immunitario sono di proteggere il corpo dagli agenti infettivi invasori e di fornire una sorveglianza immunitaria contro le cellule tumorali insorgenti. Ha una prima linea di difesa aspecifica, che può avviare esso stesso reazioni effettrici, e un ramo specifico acquisito, in cui i linfociti e gli anticorpi portano la specificità del riconoscimento e la successiva reattività verso l'antigene.
L'immunotossicologia è stata definita come “la disciplina che si occupa dello studio degli eventi che possono determinare effetti indesiderati a seguito dell'interazione degli xenobiotici con il sistema immunitario. Questi eventi indesiderati possono derivare da (1) un effetto diretto e/o indiretto dello xenobiotico (e/o del suo prodotto di biotrasformazione) sul sistema immunitario, o (2) una risposta dell'ospite su base immunologica al composto e/o i suoi metaboliti o antigeni ospiti modificati dal composto o dai suoi metaboliti” (Berlin et al. 1987).
Quando il sistema immunitario agisce come un bersaglio passivo di insulti chimici, il risultato può essere una ridotta resistenza alle infezioni e alcune forme di neoplasia, o una disregolazione/stimolazione immunitaria che può esacerbare l'allergia o l'autoimmunità. Nel caso in cui il sistema immunitario risponda alla specificità antigenica dello xenobiotico o dell'antigene dell'ospite modificato dal composto, la tossicità può manifestarsi come allergie o malattie autoimmuni.
Sono stati sviluppati modelli animali per indagare sulla soppressione immunitaria indotta da sostanze chimiche e un certo numero di questi metodi è stato convalidato (Burleson, Munson e Dean 1995; IPCS 1996). A scopo di test, viene seguito un approccio a più livelli per effettuare una selezione adeguata dal numero schiacciante di test disponibili. In generale, l'obiettivo del primo livello è identificare potenziali immunotossici. Se viene identificata una potenziale immunotossicità, viene eseguito un secondo livello di test per confermare e caratterizzare ulteriormente i cambiamenti osservati. Le indagini di terzo livello includono studi speciali sul meccanismo d'azione del composto. Diversi xenobiotici sono stati identificati come immunotossici che causano immunosoppressione in tali studi con animali da laboratorio.
Il database sui disturbi della funzione immunitaria negli esseri umani da sostanze chimiche ambientali è limitato (Descotes 1986; NRC Subcommittee on Immunotoxicology 1992). L'uso di marcatori di immunotossicità ha ricevuto poca attenzione negli studi clinici ed epidemiologici per studiare l'effetto di queste sostanze chimiche sulla salute umana. Tali studi non sono stati eseguiti frequentemente e la loro interpretazione spesso non consente di trarre conclusioni univoche, ad esempio a causa della natura incontrollata dell'esposizione. Pertanto, allo stato attuale, la valutazione dell'immunotossicità nei roditori, con successiva estrapolazione all'uomo, costituisce la base delle decisioni in merito al pericolo e al rischio.
Le reazioni di ipersensibilità, in particolare l'asma allergico e la dermatite da contatto, sono importanti problemi di salute sul lavoro nei paesi industrializzati (Vos, Younes e Smith 1995). Il fenomeno della sensibilizzazione da contatto è stato studiato per primo nella cavia (Andersen e Maibach 1985). Fino a poco tempo fa questa era la specie scelta per i test predittivi. Sono disponibili molti metodi di test sui porcellini d'India, i più frequentemente impiegati sono il test di massimizzazione dei porcellini d'India e il patch test occluso di Buehler. I test sui porcellini d'India e gli approcci più recenti sviluppati nei topi, come i test di gonfiore dell'orecchio e il test dei linfonodi locali, forniscono al tossicologo gli strumenti per valutare il rischio di sensibilizzazione cutanea. La situazione rispetto alla sensibilizzazione delle vie respiratorie è molto diversa. Non sono ancora disponibili metodi ben convalidati o ampiamente accettati per l'identificazione di allergeni respiratori chimici, sebbene nella cavia e nel topo siano stati compiuti progressi nello sviluppo di modelli animali per lo studio dell'allergia respiratoria chimica.
I dati sull'uomo mostrano che gli agenti chimici, in particolare i farmaci, possono causare malattie autoimmuni (Kammüller, Bloksma e Seinen 1989). Esistono numerosi modelli animali sperimentali di malattie autoimmuni umane. Tali comprendono sia la patologia spontanea (ad esempio il lupus eritematoso sistemico nei topi neri della Nuova Zelanda) sia i fenomeni autoimmuni indotti dall'immunizzazione sperimentale con un autoantigene cross-reattivo (ad esempio l'artrite indotta dall'adiuvante H37Ra nei ratti del ceppo Lewis). Questi modelli sono applicati nella valutazione preclinica dei farmaci immunosoppressori. Pochissimi studi hanno affrontato il potenziale di questi modelli per valutare se uno xenobiotico aggrava l'autoimmunità indotta o congenita. Mancano praticamente modelli animali adatti a studiare la capacità delle sostanze chimiche di indurre malattie autoimmuni. Un modello utilizzato in misura limitata è il test del linfonodo popliteo nei topi. Come la situazione negli esseri umani, i fattori genetici svolgono un ruolo cruciale nello sviluppo della malattia autoimmune (AD) negli animali da laboratorio, il che limiterà il valore predittivo di tali test.
Il sistema immunitario
La principale funzione del sistema immunitario è la difesa contro batteri, virus, parassiti, funghi e cellule neoplastiche. Ciò è ottenuto dalle azioni di vari tipi di cellule e dei loro mediatori solubili in un concerto finemente sintonizzato. La difesa dell'ospite può essere approssimativamente suddivisa in resistenza non specifica o innata e immunità specifica o acquisita mediata dai linfociti (Roitt, Brostoff e Male 1989).
Componenti del sistema immunitario sono presenti in tutto il corpo (Jones et al. 1990). Il compartimento dei linfociti si trova all'interno degli organi linfoidi (figura 1). Il midollo osseo e il timo sono classificati come organi linfoidi primari o centrali; gli organi linfoidi secondari o periferici comprendono i linfonodi, la milza e il tessuto linfoide lungo le superfici secretorie come il tratto gastrointestinale e respiratorio, il cosiddetto tessuto linfoide associato alla mucosa (MALT). Circa la metà dei linfociti del corpo si trova in qualsiasi momento nel MALT. Inoltre la pelle è un organo importante per l'induzione di risposte immunitarie agli antigeni presenti sulla pelle. Importanti in questo processo sono le cellule di Langerhans epidermiche che hanno una funzione di presentazione dell'antigene.
Figura 1. Organi e tessuti linfoidi primari e secondari
Le cellule fagocitiche del lignaggio monocitico/macrofagico, chiamate sistema fagocitario mononucleare (MPS), si trovano negli organi linfoidi e anche nei siti extranodali; i fagociti extranodali includono le cellule di Kupffer nel fegato, i macrofagi alveolari nel polmone, i macrofagi mesangiali nel rene e le cellule gliali nel cervello. I leucociti polimorfonucleati (PMN) sono presenti principalmente nel sangue e nel midollo osseo, ma si accumulano nei siti di infiammazione.
Difesa non specifica
Una prima linea di difesa contro i microrganismi viene eseguita da una barriera fisica e chimica, come quella della pelle, delle vie respiratorie e del tubo digerente. Questa barriera è aiutata da meccanismi protettivi non specifici tra cui cellule fagocitiche, come macrofagi e leucociti polimorfonucleati, che sono in grado di uccidere i patogeni, e cellule natural killer, che possono lisare cellule tumorali e cellule infettate da virus. Anche il sistema del complemento e alcuni inibitori microbici (p. es., il lisozima) prendono parte alla risposta aspecifica.
Immunità specifica
Dopo il contatto iniziale dell'ospite con l'agente patogeno, vengono indotte risposte immunitarie specifiche. Il segno distintivo di questa seconda linea di difesa è il riconoscimento specifico dei determinanti, i cosiddetti antigeni o epitopi, dei patogeni da parte dei recettori sulla superficie cellulare dei linfociti B e T. In seguito all'interazione con l'antigene specifico, la cellula portatrice del recettore viene stimolata a subire proliferazione e differenziazione, producendo un clone di cellule progenie specifiche per l'antigene stimolante. Le risposte immunitarie specifiche aiutano la difesa aspecifica presentata ai patogeni stimolando l'efficacia delle risposte aspecifiche. Una caratteristica fondamentale dell'immunità specifica è lo sviluppo della memoria. Il contatto secondario con lo stesso antigene provoca una risposta più rapida e vigorosa ma ben regolata.
Il genoma non ha la capacità di trasportare i codici di una matrice di recettori per l'antigene sufficiente a riconoscere il numero di antigeni che possono essere incontrati. Il repertorio di specificità si sviluppa attraverso un processo di riarrangiamenti genici. Si tratta di un processo casuale, durante il quale si determinano varie specificità. Ciò include specificità per componenti self, che sono indesiderabili. Un processo di selezione che avviene nel timo (cellule T) o nel midollo osseo (cellule B) opera per eliminare queste specificità indesiderate.
La normale funzione immunitaria effettrice e la regolazione omeostatica della risposta immunitaria dipendono da una varietà di prodotti solubili, noti collettivamente come citochine, che sono sintetizzati e secreti dai linfociti e da altri tipi di cellule. Le citochine hanno effetti pleiotropici sulle risposte immunitarie e infiammatorie. La cooperazione tra diverse popolazioni cellulari è necessaria per la risposta immunitaria: la regolazione delle risposte anticorpali, l'accumulo di cellule e molecole immunitarie nei siti infiammatori, l'inizio delle risposte della fase acuta, il controllo della funzione citotossica dei macrofagi e molti altri processi centrali per la resistenza dell'ospite . Questi sono influenzati da, e in molti casi dipendono da, citochine che agiscono singolarmente o in concerto.
Vengono riconosciuti due bracci di immunità specifica: immunità umorale e immunità cellulo-mediata o cellulare:
Immunità umorale. Nel braccio umorale i linfociti B vengono stimolati in seguito al riconoscimento dell'antigene da parte dei recettori della superficie cellulare. I recettori dell'antigene sui linfociti B sono immunoglobuline (Ig). Le cellule B mature (plasmacellule) iniziano la produzione di immunoglobuline antigene-specifiche che agiscono come anticorpi nel siero o lungo le superfici della mucosa. Esistono cinque classi principali di immunoglobuline: (1) IgM, pentamerica Ig con capacità agglutinante ottimale, che viene prodotta per la prima volta dopo la stimolazione antigenica; (2) IgG, le principali Ig in circolazione, che possono attraversare la placenta; (3) IgA, Ig secretoria per la protezione delle superfici mucose; (4) IgE, Ig che si fissano ai mastociti o ai granulociti basofili coinvolti nelle reazioni di ipersensibilità immediata e (5) IgD, la cui funzione principale è quella di recettore sui linfociti B.
Immunità cellulo-mediata. Il braccio cellulare del sistema immunitario specifico è mediato dai linfociti T. Queste cellule hanno anche recettori per l'antigene sulle loro membrane. Riconoscono l'antigene se presentato da cellule presentanti l'antigene nel contesto degli antigeni di istocompatibilità. Quindi, queste cellule hanno una restrizione oltre alla specificità dell'antigene. Le cellule T funzionano come cellule helper per varie risposte immunitarie (incluse quelle umorali), mediano il reclutamento di cellule infiammatorie e possono, come cellule T citotossiche, uccidere le cellule bersaglio dopo il riconoscimento specifico dell'antigene.
Meccanismi di immunotossicità
Immunosoppressione
L'effettiva resistenza dell'ospite dipende dall'integrità funzionale del sistema immunitario, che a sua volta richiede che le cellule e le molecole componenti che orchestrano le risposte immunitarie siano disponibili in numero sufficiente e in una forma operativa. Le immunodeficienze congenite nell'uomo sono spesso caratterizzate da difetti in alcune linee di cellule staminali, con conseguente produzione ridotta o assente di cellule immunitarie. Per analogia con le malattie da immunodeficienza umana congenita e acquisita, l'immunosoppressione chimica indotta può derivare semplicemente da un numero ridotto di cellule funzionali (IPCS 1996). L'assenza o il numero ridotto di linfociti può avere effetti più o meno profondi sullo stato immunitario. Alcuni stati di immunodeficienza e grave immunosoppressione, come possono verificarsi nel trapianto o nella terapia citostatica, sono stati associati in particolare ad un aumento dell'incidenza di infezioni opportunistiche e di alcune malattie neoplastiche. Le infezioni possono essere batteriche, virali, fungine o protozoarie e il tipo predominante di infezione dipende dall'immunodeficienza associata. Ci si può aspettare che l'esposizione a sostanze chimiche ambientali immunosoppressive provochi forme più sottili di immunosoppressione, che possono essere difficili da rilevare. Questi possono portare, ad esempio, a un aumento dell'incidenza di infezioni come l'influenza o il comune raffreddore.
Data la complessità del sistema immunitario, con l'ampia varietà di cellule, mediatori e funzioni che formano una rete complicata e interattiva, i composti immunotossici hanno numerose possibilità di esercitare un effetto. Sebbene la natura delle lesioni iniziali indotte da molte sostanze chimiche immunotossiche non sia stata ancora chiarita, sono disponibili informazioni crescenti, per lo più derivate da studi su animali da laboratorio, riguardanti i cambiamenti immunobiologici che provocano la depressione della funzione immunitaria (Dean et al. 1994). . Gli effetti tossici potrebbero verificarsi nelle seguenti funzioni critiche (e vengono forniti alcuni esempi di composti immunotossici che influenzano queste funzioni):
Allergia
Allergia possono essere definiti come gli effetti avversi sulla salute che derivano dall'induzione e dall'attivazione di specifiche risposte immunitarie. Quando le reazioni di ipersensibilità si verificano senza il coinvolgimento del sistema immunitario il termine pseudo-allergia viene usato. Nel contesto dell'immunotossicologia, l'allergia deriva da una specifica risposta immunitaria a sostanze chimiche e farmaci di interesse. La capacità di una sostanza chimica di sensibilizzare gli individui è generalmente correlata alla sua capacità di legarsi in modo covalente alle proteine del corpo. Le reazioni allergiche possono assumere una varietà di forme e queste differiscono rispetto sia ai meccanismi immunologici sottostanti che alla velocità della reazione. Sono stati riconosciuti quattro tipi principali di reazioni allergiche: Reazioni di ipersensibilità di tipo I, che sono effettuate dall'anticorpo IgE e dove i sintomi si manifestano entro pochi minuti dall'esposizione dell'individuo sensibilizzato. Le reazioni di ipersensibilità di tipo II derivano dal danno o dalla distruzione delle cellule ospiti da parte dell'anticorpo. In questo caso i sintomi diventano evidenti entro poche ore. Anche le reazioni di ipersensibilità di tipo III, o di Arthus, sono mediate da anticorpi, ma contro antigeni solubili, e derivano dall'azione locale o sistemica di complessi immunitari. Le reazioni di tipo IV, o di ipersensibilità di tipo ritardato, sono effettuate dai linfociti T e normalmente i sintomi si sviluppano da 24 a 48 ore dopo l'esposizione dell'individuo sensibilizzato.
I due tipi di allergia chimica di maggiore rilevanza per la salute sul lavoro sono la sensibilità da contatto o allergia cutanea e l'allergia delle vie respiratorie.
Ipersensibilità da contatto. Un gran numero di sostanze chimiche è in grado di provocare sensibilizzazione cutanea. In seguito all'esposizione topica di un individuo suscettibile a un allergene chimico, viene indotta una risposta dei linfociti T nei linfonodi drenanti. Nella pelle l'allergene interagisce direttamente o indirettamente con le cellule di Langerhans epidermiche, che trasportano la sostanza chimica ai linfonodi e la presentano in forma immunogenica ai linfociti T reattivi. I linfociti T attivati dagli allergeni proliferano, con conseguente espansione clonale. L'individuo è ora sensibilizzato e risponderà a una seconda esposizione cutanea alla stessa sostanza chimica con una risposta immunitaria più aggressiva, con conseguente dermatite allergica da contatto. La reazione infiammatoria cutanea che caratterizza la dermatite allergica da contatto è secondaria al riconoscimento dell'allergene nella cute da parte di specifici linfociti T. Questi linfociti si attivano, rilasciano citochine e causano l'accumulo locale di altri leucociti mononucleati. I sintomi si sviluppano da 24 a 48 ore dopo l'esposizione dell'individuo sensibilizzato e la dermatite allergica da contatto rappresenta quindi una forma di ipersensibilità di tipo ritardato. Le cause comuni di dermatite allergica da contatto includono sostanze chimiche organiche (come il 2,4-dinitroclorobenzene), metalli (come nichel e cromo) e prodotti vegetali (come l'urushiolo dell'edera velenosa).
Ipersensibilità respiratoria. L'ipersensibilità respiratoria è generalmente considerata una reazione di ipersensibilità di tipo I. Tuttavia, le reazioni di fase tardiva ei sintomi più cronici associati all'asma possono coinvolgere processi immunitari cellulo-mediati (Tipo IV). I sintomi acuti associati all'allergia respiratoria sono influenzati dall'anticorpo IgE, la cui produzione è provocata a seguito dell'esposizione dell'individuo suscettibile all'allergene chimico inducente. L'anticorpo IgE si distribuisce a livello sistemico e si lega, tramite i recettori di membrana, ai mastociti che si trovano nei tessuti vascolarizzati, compreso il tratto respiratorio. In seguito all'inalazione della stessa sostanza chimica, verrà provocata una reazione di ipersensibilità respiratoria. L'allergene si associa alle proteine e si lega e crea legami incrociati con l'anticorpo IgE legato ai mastociti. Questo a sua volta provoca la degranulazione dei mastociti e il rilascio di mediatori dell'infiammazione come istamina e leucotrieni. Tali mediatori causano broncocostrizione e vasodilatazione, con conseguenti sintomi di allergia respiratoria; asma e/o rinite. Le sostanze chimiche note per causare ipersensibilità respiratoria nell'uomo includono le anidridi acide (come l'anidride trimellitica), alcuni diisocianati (come il toluene diisocianato), i sali di platino e alcuni coloranti reattivi. Inoltre, l'esposizione cronica al berillio è nota per causare malattie polmonari da ipersensibilità.
autoimmunità
autoimmunità può essere definita come la stimolazione di specifiche risposte immunitarie dirette contro antigeni “self” endogeni. L'autoimmunità indotta può derivare sia da alterazioni dell'equilibrio dei linfociti T regolatori sia dall'associazione di uno xenobiotico con componenti tissutali normali tale da renderli immunogenici (“sé alterato”). I farmaci e le sostanze chimiche note per indurre o esacerbare accidentalmente effetti come quelli della malattia autoimmune (AD) in individui suscettibili sono composti a basso peso molecolare (peso molecolare da 100 a 500) che sono generalmente considerati di per sé non immunogenici. Il meccanismo dell'AD per esposizione chimica è per lo più sconosciuto. La malattia può essere prodotta direttamente per mezzo di anticorpi circolanti, indirettamente attraverso la formazione di immunocomplessi o come conseguenza dell'immunità cellulo-mediata, ma probabilmente si verifica attraverso una combinazione di meccanismi. La patogenesi è meglio conosciuta nei disturbi emolitici immunitari indotti da farmaci:
È stato scoperto che una varietà di sostanze chimiche e farmaci, in particolare questi ultimi, inducono risposte di tipo autoimmune (Kamüller, Bloksma e Seinen 1989). L'esposizione professionale a sostanze chimiche può incidentalmente portare a sindromi simili all'AD. L'esposizione a cloruro di vinile monomerico, tricloroetilene, percloroetilene, resine epossidiche e polvere di silice può indurre sindromi simili alla sclerodermia. Una sindrome simile al lupus eritematoso sistemico (LES) è stata descritta dopo l'esposizione all'idrazina. L'esposizione al toluene diisocianato è stata associata all'induzione della porpora trombocitopenica. Metalli pesanti come il mercurio sono stati implicati in alcuni casi di glomerulonefrite da immunocomplessi.
Valutazione del rischio umano
La valutazione dello stato immunitario umano viene eseguita principalmente utilizzando il sangue periferico per l'analisi di sostanze umorali come immunoglobuline e complemento e dei leucociti del sangue per la composizione di sottoinsiemi e la funzionalità delle sottopopolazioni. Questi metodi sono generalmente gli stessi utilizzati per studiare l'immunità umorale e cellulo-mediata, nonché la resistenza aspecifica dei pazienti con sospetta malattia da immunodeficienza congenita. Per gli studi epidemiologici (ad es. su popolazioni professionalmente esposte) i parametri dovrebbero essere selezionati sulla base del loro valore predittivo nelle popolazioni umane, modelli animali convalidati e la sottostante biologia dei marcatori (vedi tabella 1). La strategia di screening per gli effetti immunotossici dopo l'esposizione (accidentale) a inquinanti ambientali o altre sostanze tossiche dipende molto dalle circostanze, come il tipo di immunodeficienza prevedibile, il tempo che intercorre tra l'esposizione e la valutazione dello stato immunitario, il grado di esposizione e il numero di individui esposti. Il processo di valutazione del rischio immunotossico di un particolare xenobiotico nell'uomo è estremamente difficile e spesso impossibile, in gran parte a causa della presenza di vari fattori confondenti di origine endogena o esogena che influenzano la risposta degli individui al danno tossico. Ciò è particolarmente vero per gli studi che indagano il ruolo dell'esposizione chimica nelle malattie autoimmuni, in cui i fattori genetici giocano un ruolo cruciale.
Tabella 1. Classificazione dei test per i marcatori immunitari
Categoria di prova | Caratteristiche | Test specifici |
Base-generale Dovrebbe essere incluso con i pannelli generali |
Indicatori di salute generale e stato del sistema degli organi | Azoto ureico nel sangue, glicemia, ecc. |
Immune di base Dovrebbe essere incluso con i pannelli generali |
Indicatori generali dello stato immunitario Costo relativamente basso I metodi di analisi sono standardizzati tra i laboratori I risultati al di fuori degli intervalli di riferimento sono interpretabili clinicamente |
Emocromo completo Livelli sierici di IgG, IgA, IgM Fenotipi dei marker di superficie per i principali sottoinsiemi di linfociti |
Focalizzato/riflesso Dovrebbe essere incluso quando indicato da riscontri clinici, esposizioni sospette o risultati di test precedenti |
Indicatori di funzioni/eventi immunitari specifici Il costo varia I metodi di analisi sono standardizzati tra i laboratori I risultati al di fuori degli intervalli di riferimento sono interpretabili clinicamente |
Genotipo di istocompatibilità Anticorpi contro agenti infettivi IgE sieriche totali IgE allergene-specifiche Gli autoanticorpi Test cutanei per l'ipersensibilità Burst ossidativo dei granulociti Istopatologia (biopsia tissutale) |
Ricerca Dovrebbe essere incluso solo con popolazioni di controllo e un'attenta progettazione dello studio |
Indicatori di funzioni/eventi immunitari generali o specifici Il costo varia; spesso costoso I metodi di analisi di solito non sono standardizzati tra i laboratori I risultati al di fuori degli intervalli di riferimento spesso non sono interpretabili clinicamente |
Saggi di stimolazione in vitro Marcatori di superficie di attivazione cellulare Concentrazioni sieriche di citochine Test di clonalità (anticorpale, cellulare, genetico) Test di citotossicità |
Poiché raramente sono disponibili dati sull'uomo adeguati, la valutazione del rischio di immunosoppressione indotta da sostanze chimiche nell'uomo si basa nella maggior parte dei casi su studi sugli animali. L'identificazione di potenziali xenobiotici immunotossici viene effettuata principalmente in studi controllati sui roditori. Gli studi di esposizione in vivo presentano, a questo proposito, l'approccio ottimale per stimare il potenziale immunotossico di un composto. Ciò è dovuto alla natura multifattoriale e complessa del sistema immunitario e delle risposte immunitarie. Gli studi in vitro hanno un valore crescente nella delucidazione dei meccanismi di immunotossicità. Inoltre, studiando gli effetti del composto utilizzando cellule di origine animale e umana, è possibile generare dati per il confronto delle specie, che possono essere utilizzati nell'approccio del "parallelogramma" per migliorare il processo di valutazione del rischio. Se i dati sono disponibili per tre pietre angolari del parallelogramma (animale in vivo e animale e uomo in vitro) potrebbe essere più facile prevedere l'esito della pietra angolare rimanente, ovvero il rischio nell'uomo.
Quando la valutazione del rischio di immunosoppressione indotta da sostanze chimiche deve basarsi esclusivamente su dati provenienti da studi su animali, nell'estrapolazione all'uomo può essere seguito un approccio mediante l'applicazione di fattori di incertezza al livello senza effetti avversi osservati (NOAEL). Questo livello può essere basato su parametri determinati in modelli pertinenti, come i test di resistenza dell'ospite e la valutazione in vivo delle reazioni di ipersensibilità e della produzione di anticorpi. Idealmente, la rilevanza di questo approccio alla valutazione del rischio richiede una conferma da parte di studi sull'uomo. Tali studi dovrebbero combinare l'identificazione e la misurazione della sostanza tossica, i dati epidemiologici e le valutazioni dello stato immunitario.
Per prevedere l'ipersensibilità da contatto, sono disponibili modelli di cavia che sono stati utilizzati nella valutazione del rischio sin dagli anni '1970. Sebbene sensibili e riproducibili, questi test hanno dei limiti in quanto dipendono dalla valutazione soggettiva; questo può essere superato con metodi più nuovi e più quantitativi sviluppati nel topo. Per quanto riguarda l'ipersensibilità chimica indotta dall'inalazione o dall'ingestione di allergeni, i test dovrebbero essere sviluppati e valutati in termini di valore predittivo nell'uomo. Quando si tratta di stabilire livelli di esposizione professionale sicuri di potenziali allergeni, è necessario considerare la natura bifasica dell'allergia: la fase di sensibilizzazione e la fase di elicitazione. La concentrazione richiesta per provocare una reazione allergica in un individuo precedentemente sensibilizzato è considerevolmente inferiore alla concentrazione necessaria per indurre la sensibilizzazione nell'individuo immunologicamente naïve ma suscettibile.
Poiché i modelli animali per prevedere l'autoimmunità indotta da sostanze chimiche sono praticamente assenti, si dovrebbe dare enfasi allo sviluppo di tali modelli. Per lo sviluppo di tali modelli, la nostra conoscenza dell'autoimmunità indotta da sostanze chimiche negli esseri umani dovrebbe essere avanzata, compreso lo studio dei marcatori genetici e del sistema immunitario per identificare gli individui suscettibili. Gli esseri umani che sono esposti a farmaci che inducono l'autoimmunità offrono tale opportunità.
Lo studio e la caratterizzazione di sostanze chimiche e altri agenti per le proprietà tossiche viene spesso intrapreso sulla base di organi e sistemi di organi specifici. In questo capitolo, sono stati selezionati due bersagli per una discussione approfondita: il sistema immunitario e il gene. Questi esempi sono stati scelti per rappresentare un complesso sistema di organi bersaglio e un bersaglio molecolare all'interno delle cellule. Per una discussione più completa sulla tossicologia degli organi bersaglio, il lettore può fare riferimento a testi di tossicologia standard come Casarett e Doull e Hayes. Anche il Programma internazionale sulla sicurezza chimica (IPCS) ha pubblicato diversi documenti sui criteri sulla tossicologia degli organi bersaglio, per sistema di organi.
Gli studi di tossicologia sugli organi bersaglio sono di solito intrapresi sulla base di informazioni che indicano il potenziale di effetti tossici specifici di una sostanza, o da dati epidemiologici o da studi generali di tossicità acuta o cronica, o sulla base di preoccupazioni particolari per proteggere determinate funzioni di organi, come come riproduzione o sviluppo fetale. In alcuni casi, test specifici di tossicità per organi bersaglio sono espressamente richiesti dalle autorità statutarie, come i test di neurotossicità ai sensi della legge statunitense sui pesticidi (vedere "L'approccio degli Stati Uniti alla valutazione del rischio di sostanze tossiche per la riproduzione e agenti neurotossici" e i test di mutagenicità ai sensi del Japanese Chemical Chemical Legge sul controllo delle sostanze (vedi “Principi di identificazione dei pericoli: l'approccio giapponese”).
Come discusso in "Organo bersaglio ed effetti critici", l'identificazione di un organo critico si basa sul rilevamento dell'organo o del sistema di organi che per primo risponde negativamente o alle dosi o esposizioni più basse. Queste informazioni vengono quindi utilizzate per progettare indagini tossicologiche specifiche o test di tossicità più definiti progettati per suscitare indicazioni più sensibili di intossicazione nell'organo bersaglio. Gli studi di tossicologia degli organi bersaglio possono anche essere utilizzati per determinare i meccanismi di azione, di utilizzo nella valutazione del rischio (vedere "L'approccio degli Stati Uniti alla valutazione del rischio di sostanze tossiche per la riproduzione e agenti neurotossici").
Metodi di studi sulla tossicità dell'organo bersaglio
Gli organi bersaglio possono essere studiati mediante l'esposizione di organismi intatti e un'analisi dettagliata della funzione e dell'istopatologia nell'organo bersaglio, o mediante l'esposizione in vitro di cellule, sezioni di tessuto o organi interi mantenuti per periodi di breve o lungo termine in coltura (vedere "Meccanismi di tossicologia: introduzione e concetti”). In alcuni casi, i tessuti di soggetti umani possono anche essere disponibili per studi di tossicità sugli organi bersaglio, e questi possono fornire l'opportunità di convalidare ipotesi di estrapolazione tra specie. Tuttavia, va tenuto presente che tali studi non forniscono informazioni sulla tossicocinetica relativa.
In generale, gli studi sulla tossicità dell'organo bersaglio condividono le seguenti caratteristiche comuni: esame istopatologico dettagliato dell'organo bersaglio, compreso l'esame post mortem, il peso del tessuto e l'esame dei tessuti fissati; studi biochimici di percorsi critici nell'organo bersaglio, come importanti sistemi enzimatici; studi funzionali della capacità dell'organo e dei costituenti cellulari di svolgere le funzioni metaboliche e di altro tipo previste; e analisi dei biomarcatori dell'esposizione e degli effetti precoci nelle cellule degli organi bersaglio.
La conoscenza dettagliata della fisiologia degli organi bersaglio, della biochimica e della biologia molecolare può essere incorporata negli studi sugli organi bersaglio. Ad esempio, poiché la sintesi e la secrezione di proteine di piccolo peso molecolare è un aspetto importante della funzione renale, gli studi di nefrotossicità spesso prestano particolare attenzione a questi parametri (IPCS 1991). Poiché la comunicazione cellula-cellula è un processo fondamentale della funzione del sistema nervoso, gli studi sugli organi bersaglio nella neurotossicità possono includere misurazioni neurochimiche e biofisiche dettagliate della sintesi, dell'assorbimento, dell'immagazzinamento, del rilascio e del legame dei neurotrasmettitori, nonché misurazioni elettrofisiologiche dei cambiamenti nella membrana potenziale associato a questi eventi.
Viene posto un alto grado di enfasi sullo sviluppo di metodi in vitro per la tossicità degli organi bersaglio, per sostituire o ridurre l'uso di animali interi. Progressi sostanziali in questi metodi sono stati ottenuti per le sostanze tossiche per la riproduzione (Heindel e Chapin 1993).
In sintesi, gli studi di tossicità sugli organi bersaglio sono generalmente intrapresi come test di ordine superiore per determinare la tossicità. La selezione di specifici organi bersaglio per un'ulteriore valutazione dipende dai risultati dei test a livello di screening, come i test acuti o subcronici utilizzati dall'OCSE e dall'Unione Europea; alcuni organi bersaglio e sistemi di organi possono essere candidati a priori per indagini speciali a causa delle preoccupazioni per prevenire alcuni tipi di effetti avversi sulla salute.
La parola biomarcatore è l'abbreviazione di marcatore biologico, un termine che si riferisce a un evento misurabile che si verifica in un sistema biologico, come il corpo umano. Questo evento viene quindi interpretato come riflesso, o marcatore, di uno stato più generale dell'organismo o dell'aspettativa di vita. Nella medicina del lavoro, un biomarcatore viene generalmente utilizzato come indicatore dello stato di salute o del rischio di malattia.
I biomarcatori sono utilizzati per studi in vitro e in vivo che possono includere esseri umani. Di solito vengono identificati tre tipi specifici di marcatori biologici. Sebbene alcuni biomarcatori possano essere difficili da classificare, di solito sono separati in biomarcatori di esposizione, biomarcatori di effetto o biomarcatori di suscettibilità (vedi tabella 1).
Tabella 1. Esempi di biomarcatori di esposizione o biomarcatori di effetto utilizzati negli studi tossicologici nella salute sul lavoro
Campione | Misurazione | Scopo |
Biomarcatori di esposizione | ||
Il tessuto adiposo | diossina | Esposizione alla diossina |
Sangue | Piombo | Esposizione al piombo |
Bone | Alluminio | Esposizione di alluminio |
Respiro espirato | toluene | Esposizione al toluene |
Capelli | mercurio | Esposizione al metilmercurio |
Siero | Benzene | Esposizione al benzene |
Urina | Fenolo | Esposizione al benzene |
Effetto biomarcatori | ||
Sangue | Carbossiemoglobina | Esposizione al monossido di carbonio |
globuli rossi | Zinco-protoporfirina | Esposizione al piombo |
Siero | colinesterasi | Esposizione agli organofosfati |
Urina | Microglobuline | Esposizione nefrotossica |
I globuli bianchi | addotti del DNA | Esposizione mutagena |
Dato un grado accettabile di validità, i biomarcatori possono essere impiegati per diversi scopi. Su base individuale, un biomarcatore può essere utilizzato per supportare o confutare una diagnosi di un particolare tipo di avvelenamento o altri effetti avversi indotti chimicamente. In un soggetto sano, un biomarcatore può anche riflettere l'ipersensibilità individuale a specifiche esposizioni chimiche e può quindi servire come base per la previsione del rischio e la consulenza. In gruppi di lavoratori esposti, è possibile applicare alcuni biomarcatori di esposizione per valutare il grado di conformità alle normative sull'abbattimento dell'inquinamento o l'efficacia degli sforzi preventivi in generale.
Biomarcatori di esposizione
Un biomarcatore di esposizione può essere un composto esogeno (o un metabolita) all'interno del corpo, un prodotto interattivo tra il composto (o il metabolita) e un componente endogeno o un altro evento correlato all'esposizione. Più comunemente, i biomarcatori di esposizioni a composti stabili, come i metalli, comprendono misurazioni delle concentrazioni di metalli in campioni appropriati, come sangue, siero o urina. Con le sostanze chimiche volatili, può essere valutata la loro concentrazione nell'aria espirata (dopo l'inalazione di aria priva di contaminazioni). Se il composto viene metabolizzato nel corpo, uno o più metaboliti possono essere scelti come biomarcatore dell'esposizione; i metaboliti sono spesso determinati nei campioni di urina.
I moderni metodi di analisi possono consentire la separazione di isomeri o congeneri di composti organici e la determinazione della speciazione di composti metallici o dei rapporti isotopici di alcuni elementi. Analisi sofisticate consentono di determinare i cambiamenti nella struttura del DNA o di altre macromolecole causati dal legame con sostanze chimiche reattive. Tali tecniche avanzate acquisiranno senza dubbio un'importanza considerevole per le applicazioni negli studi sui biomarcatori, ed è probabile che limiti di rilevamento più bassi e una migliore validità analitica renderanno questi biomarcatori ancora più utili.
Sviluppi particolarmente promettenti si sono verificati con biomarcatori di esposizione a sostanze chimiche mutagene. Questi composti sono reattivi e possono formare addotti con macromolecole, come proteine o DNA. Gli addotti del DNA possono essere rilevati nei globuli bianchi o nelle biopsie tissutali e specifici frammenti di DNA possono essere escreti nelle urine. Ad esempio, l'esposizione all'ossido di etilene provoca reazioni con le basi del DNA e, dopo l'escissione della base danneggiata, l'N-7-(2-idrossietil)guanina verrà eliminata nelle urine. Alcuni addotti potrebbero non riferirsi direttamente a una particolare esposizione. Ad esempio, l'8-idrossi-2'-deossiguanosina riflette il danno ossidativo al DNA e questa reazione può essere innescata da diversi composti chimici, la maggior parte dei quali induce anche la perossidazione lipidica.
Altre macromolecole possono anche essere modificate dalla formazione di addotti o dall'ossidazione. Di particolare interesse, tali composti reattivi possono generare addotti di emoglobina che possono essere determinati come biomarcatori di esposizione ai composti. Il vantaggio è che si possono ottenere ampie quantità di emoglobina da un campione di sangue e, data la durata di quattro mesi dei globuli rossi, gli addotti formati con gli amminoacidi della proteina indicheranno l'esposizione totale durante questo periodo.
Gli addotti possono essere determinati mediante tecniche sensibili come la cromatografia lipidica ad alte prestazioni e sono disponibili anche alcuni metodi immunologici. In generale, i metodi analitici sono nuovi, costosi e necessitano di ulteriore sviluppo e validazione. Una migliore sensibilità può essere ottenuta utilizzando il 32P test di etichettatura post, che è un'indicazione non specifica che si è verificato un danno al DNA. Tutte queste tecniche sono potenzialmente utili per il monitoraggio biologico e sono state applicate in un numero crescente di studi. Tuttavia, sono necessari metodi analitici più semplici e più sensibili. Data la specificità limitata di alcuni metodi a bassi livelli di esposizione, il fumo di tabacco o altri fattori possono avere un impatto significativo sui risultati della misurazione, causando difficoltà di interpretazione.
L'esposizione a composti mutageni, oa composti che vengono metabolizzati in mutageni, può anche essere determinata valutando la mutagenicità dell'urina di un individuo esposto. Il campione di urina viene incubato con un ceppo batterico in cui una specifica mutazione puntiforme è espressa in modo facilmente misurabile. Se nel campione di urina sono presenti sostanze chimiche mutagene, si verificherà un aumento del tasso di mutazioni nei batteri.
I biomarcatori dell'esposizione devono essere valutati in relazione alla variazione temporale dell'esposizione e alla relazione con i diversi compartimenti. Pertanto, l'intervallo di tempo rappresentato dal biomarcatore, ovvero la misura in cui la misurazione del biomarcatore riflette l'esposizione o le esposizioni passate e/o il carico corporeo accumulato, deve essere determinato dai dati tossicocinetici per interpretare il risultato. In particolare, dovrebbe essere considerato il grado in cui il biomarcatore indica la ritenzione in specifici organi bersaglio. Sebbene i campioni di sangue siano spesso utilizzati per gli studi sui biomarcatori, il sangue periferico generalmente non è considerato un compartimento in quanto tale, sebbene funga da mezzo di trasporto tra i compartimenti. Il grado in cui la concentrazione nel sangue riflette i livelli nei diversi organi varia ampiamente tra le diverse sostanze chimiche e di solito dipende anche dalla durata dell'esposizione e dal tempo trascorso dall'esposizione.
A volte questo tipo di evidenza viene utilizzato per classificare un biomarcatore come un indicatore della dose (totale) assorbita o un indicatore della dose efficace (cioè la quantità che ha raggiunto il tessuto bersaglio). Ad esempio, l'esposizione a un particolare solvente può essere valutata dai dati sulla concentrazione effettiva del solvente nel sangue in un particolare momento dopo l'esposizione. Questa misurazione rifletterà la quantità di solvente che è stata assorbita nel corpo. Parte della quantità assorbita verrà espirata a causa della tensione di vapore del solvente. Mentre circola nel sangue, il solvente interagirà con vari componenti del corpo e alla fine sarà soggetto a degradazione da parte degli enzimi. L'esito dei processi metabolici può essere valutato determinando specifici acidi mercapturici prodotti per coniugazione con il glutatione. L'escrezione cumulativa degli acidi mercapturici può riflettere meglio la dose efficace rispetto alla concentrazione ematica.
Gli eventi della vita, come la riproduzione e la senescenza, possono influenzare la distribuzione di una sostanza chimica. La distribuzione delle sostanze chimiche all'interno del corpo è significativamente influenzata dalla gravidanza e molte sostanze chimiche possono attraversare la barriera placentare, causando così l'esposizione del feto. L'allattamento può comportare l'escrezione di sostanze chimiche liposolubili, portando così a una ridotta ritenzione nella madre insieme a un aumento dell'assorbimento da parte del bambino. Durante la perdita di peso o lo sviluppo dell'osteoporosi, possono essere rilasciate sostanze chimiche immagazzinate, che possono quindi provocare una rinnovata e prolungata esposizione "endogena" degli organi bersaglio. Altri fattori possono influenzare l'assorbimento individuale, il metabolismo, la ritenzione e la distribuzione di composti chimici e sono disponibili alcuni biomarcatori di suscettibilità (vedi sotto).
Biomarcatori di effetto
Un indicatore di effetto può essere un componente endogeno, o una misura della capacità funzionale, o qualche altro indicatore dello stato o dell'equilibrio del corpo o del sistema di organi, come influenzato dall'esposizione. Tali marcatori di effetto sono generalmente indicatori preclinici di anomalie.
Questi biomarcatori possono essere specifici o non specifici. I biomarcatori specifici sono utili perché indicano un effetto biologico di una particolare esposizione, fornendo quindi evidenze potenzialmente utilizzabili a scopo preventivo. I biomarcatori non specifici non indicano una singola causa dell'effetto, ma possono riflettere l'effetto totale e integrato dovuto a un'esposizione mista. Entrambi i tipi di biomarcatori possono quindi essere di notevole utilità nella salute sul lavoro.
Non esiste una chiara distinzione tra biomarcatori di esposizione e biomarcatori di effetto. Ad esempio, si potrebbe dire che la formazione di addotti riflette un effetto piuttosto che l'esposizione. Tuttavia, i biomarcatori dell'effetto di solito indicano cambiamenti nelle funzioni delle cellule, dei tessuti o di tutto il corpo. Alcuni ricercatori includono cambiamenti grossolani, come un aumento del peso del fegato degli animali da laboratorio esposti o una diminuzione della crescita nei bambini, come biomarcatori dell'effetto. Ai fini della salute sul lavoro, i biomarcatori degli effetti dovrebbero essere limitati a quelli che indicano cambiamenti biochimici subclinici o reversibili, come l'inibizione degli enzimi. L'effetto biomarcatore più frequentemente utilizzato è probabilmente l'inibizione della colinesterasi causata da alcuni insetticidi, cioè organofosfati e carbammati. Nella maggior parte dei casi, questo effetto è del tutto reversibile e l'inibizione enzimatica riflette l'esposizione totale a questo particolare gruppo di insetticidi.
Alcune esposizioni non provocano l'inibizione enzimatica ma piuttosto un aumento dell'attività di un enzima. Questo è il caso di diversi enzimi che appartengono alla famiglia P450 (vedi “Determinanti genetici della risposta tossica”). Possono essere indotti dall'esposizione a determinati solventi e idrocarburi poliaromatici (IPA). Poiché questi enzimi sono espressi principalmente in tessuti dai quali può essere difficile ottenere una biopsia, l'attività enzimatica viene determinata indirettamente in vivo somministrando un composto che viene metabolizzato da quel particolare enzima, e quindi il prodotto di degradazione viene misurato nelle urine o nel plasma.
Altre esposizioni possono indurre la sintesi di una proteina protettiva nel corpo. L'esempio migliore è probabilmente la metallotioneina, che lega il cadmio e favorisce l'escrezione di questo metallo; l'esposizione al cadmio è uno dei fattori che determinano un aumento dell'espressione del gene della metallotioneina. Potrebbero esistere proteine protettive simili, ma non sono state ancora esplorate a sufficienza per essere accettate come biomarcatori. Tra i candidati per un possibile utilizzo come biomarcatori ci sono le cosiddette proteine dello stress, originariamente chiamate proteine da shock termico. Queste proteine sono generate da una gamma di organismi diversi in risposta a una varietà di esposizioni avverse.
Il danno ossidativo può essere valutato determinando la concentrazione di malondialdeide nel siero o l'esalazione di etano. Allo stesso modo, l'escrezione urinaria di proteine con un piccolo peso molecolare, come l'albumina, può essere utilizzata come biomarcatore di danno renale precoce. Diversi parametri abitualmente utilizzati nella pratica clinica (ad esempio, ormoni sierici o livelli di enzimi) possono anche essere utili come biomarcatori. Tuttavia, molti di questi parametri potrebbero non essere sufficientemente sensibili per rilevare una compromissione precoce.
Un altro gruppo di parametri di effetto riguarda gli effetti genotossici (cambiamenti nella struttura dei cromosomi). Tali effetti possono essere rilevati mediante microscopia dei globuli bianchi che subiscono la divisione cellulare. Al microscopio si possono vedere gravi danni ai cromosomi - aberrazioni cromosomiche o formazione di micronuclei. Il danno può anche essere rivelato aggiungendo un colorante alle cellule durante la divisione cellulare. L'esposizione a un agente genotossico può quindi essere visualizzata come un aumento dello scambio del colorante tra i due cromatidi di ciascun cromosoma (scambio di cromatidi fratelli). Le aberrazioni cromosomiche sono correlate a un aumentato rischio di sviluppare il cancro, ma il significato di un aumento del tasso di scambio di cromatidi fratelli è meno chiaro.
Una valutazione più sofisticata della genotossicità si basa su particolari mutazioni puntiformi nelle cellule somatiche, cioè globuli bianchi o cellule epiteliali ottenute dalla mucosa orale. Una mutazione in un locus specifico può rendere le cellule capaci di crescere in una coltura che contiene una sostanza chimica altrimenti tossica (come la 6-tioguanina). In alternativa, può essere valutato uno specifico prodotto genico (p. es., concentrazioni sieriche o tissutali di oncoproteine codificate da particolari oncogeni). Ovviamente, queste mutazioni riflettono il danno genotossico totale subito e non indicano necessariamente nulla sull'esposizione causale. Questi metodi non sono ancora pronti per l'uso pratico nella medicina del lavoro, ma i rapidi progressi in questa linea di ricerca suggeriscono che tali metodi saranno disponibili entro pochi anni.
Biomarcatori di suscettibilità
Un marcatore di suscettibilità, ereditaria o indotta, è un indicatore che l'individuo è particolarmente sensibile all'effetto di uno xenobiotico o agli effetti di un gruppo di tali composti. La maggior parte dell'attenzione è stata focalizzata sulla suscettibilità genetica, sebbene altri fattori possano essere almeno altrettanto importanti. L'ipersensibilità può essere dovuta a un tratto ereditario, alla costituzione dell'individuo oa fattori ambientali.
La capacità di metabolizzare alcune sostanze chimiche è variabile ed è geneticamente determinata (vedi “Determinanti genetici della risposta tossica”). Diversi enzimi rilevanti sembrano essere controllati da un singolo gene. Ad esempio, l'ossidazione di sostanze chimiche estranee viene effettuata principalmente da una famiglia di enzimi appartenenti alla famiglia P450. Altri enzimi rendono i metaboliti più solubili in acqua per coniugazione (p. es., N-acetiltransferasi e μ-glutatione-S-transferasi). L'attività di questi enzimi è geneticamente controllata e varia considerevolmente. Come accennato in precedenza, l'attività può essere determinata somministrando una piccola dose di un farmaco e quindi determinando la quantità del metabolita nelle urine. Alcuni dei geni sono stati ora caratterizzati e sono disponibili tecniche per determinare il genotipo. Importanti studi suggeriscono che il rischio di sviluppare determinate forme tumorali è correlato alla capacità di metabolizzare composti estranei. Molte domande rimangono ancora senza risposta, limitando così in questo momento l'uso di questi potenziali biomarcatori di suscettibilità nella salute sul lavoro.
Altri tratti ereditari, come l'alfa1-la carenza di antitripsina o la carenza di glucosio-6-fosfato deidrogenasi, provocano anch'esse meccanismi di difesa carenti nell'organismo, causando in tal modo ipersuscettibilità a determinate esposizioni.
La maggior parte delle ricerche relative alla suscettibilità si è occupata della predisposizione genetica. Anche altri fattori giocano un ruolo e sono stati in parte trascurati. Ad esempio, gli individui con una malattia cronica possono essere più sensibili a un'esposizione professionale. Inoltre, se un processo patologico o una precedente esposizione a sostanze chimiche tossiche ha causato danni subclinici agli organi, è probabile che la capacità di resistere a una nuova esposizione tossica sia inferiore. Gli indicatori biochimici della funzione dell'organo possono in questo caso essere usati come biomarcatori di suscettibilità. Forse il miglior esempio di ipersuscettibilità riguarda le risposte allergiche. Se un individuo è diventato sensibilizzato a una particolare esposizione, nel siero possono essere rilevati anticorpi specifici. Anche se l'individuo non è diventato sensibilizzato, altre esposizioni attuali o passate possono aumentare il rischio di sviluppare un effetto avverso correlato a un'esposizione professionale.
Uno dei problemi principali è determinare l'effetto congiunto delle esposizioni miste sul lavoro. Inoltre, le abitudini personali e l'uso di droghe possono determinare un aumento della suscettibilità. Ad esempio, il fumo di tabacco di solito contiene una notevole quantità di cadmio. Pertanto, con l'esposizione professionale al cadmio, un forte fumatore che ha accumulato quantità sostanziali di questo metallo nel corpo sarà a maggior rischio di sviluppare malattie renali correlate al cadmio.
Applicazione in medicina del lavoro
I biomarcatori sono estremamente utili nella ricerca tossicologica e molti possono essere applicabili nel monitoraggio biologico. Tuttavia, anche i limiti devono essere riconosciuti. Molti biomarcatori sono stati finora studiati solo su animali da laboratorio. I modelli tossicocinetici in altre specie potrebbero non riflettere necessariamente la situazione negli esseri umani e l'estrapolazione potrebbe richiedere studi di conferma su volontari umani. Inoltre, si deve tener conto delle variazioni individuali dovute a fattori genetici o costituzionali.
In alcuni casi, i biomarcatori di esposizione potrebbero non essere affatto fattibili (ad esempio, per sostanze chimiche che hanno vita breve in vivo). Altre sostanze chimiche possono essere immagazzinate o influenzare organi a cui non è possibile accedere con procedure di routine, come il sistema nervoso. La via di esposizione può anche influenzare il modello di distribuzione e quindi anche la misurazione del biomarcatore e la sua interpretazione. Ad esempio, è probabile che l'esposizione diretta del cervello attraverso il nervo olfattivo sfugga al rilevamento mediante la misurazione dei biomarcatori dell'esposizione. Per quanto riguarda l'effetto sui biomarcatori, molti di essi non sono affatto specifici e il cambiamento può essere dovuto a una varietà di cause, inclusi i fattori dello stile di vita. Forse in particolare con i biomarcatori di suscettibilità, l'interpretazione deve essere molto cauta al momento, poiché rimangono molte incertezze sul significato generale per la salute dei singoli genotipi.
Nella medicina del lavoro, il biomarcatore ideale dovrebbe soddisfare diversi requisiti. Prima di tutto, la raccolta e l'analisi dei campioni devono essere semplici e affidabili. Per una qualità analitica ottimale è necessaria la standardizzazione, ma i requisiti specifici variano considerevolmente. Le principali aree di interesse includono: la preparazione dell'individuo, la procedura di campionamento e la manipolazione del campione e la procedura di misurazione; quest'ultimo comprende fattori tecnici, come le procedure di calibrazione e garanzia della qualità, e fattori individuali, come l'istruzione e la formazione degli operatori.
Per la documentazione della validità analitica e della tracciabilità, i materiali di riferimento dovrebbero essere basati su matrici pertinenti e con concentrazioni adeguate di sostanze tossiche o metaboliti rilevanti a livelli appropriati. Affinché i biomarcatori vengano utilizzati per il monitoraggio biologico o per scopi diagnostici, i laboratori responsabili devono disporre di procedure analitiche ben documentate con caratteristiche prestazionali definite e registrazioni accessibili per consentire la verifica dei risultati. Allo stesso tempo, tuttavia, devono essere considerati gli aspetti economici della caratterizzazione e dell'utilizzo di materiali di riferimento per integrare le procedure di garanzia della qualità in generale. Pertanto, la qualità ottenibile dei risultati e gli usi a cui sono destinati devono essere bilanciati con i costi aggiuntivi della garanzia della qualità, compresi i materiali di riferimento, la manodopera e la strumentazione.
Un altro requisito è che il biomarcatore sia specifico, almeno nelle circostanze dello studio, per un particolare tipo di esposizione, con una chiara relazione con il grado di esposizione. In caso contrario, il risultato della misurazione del biomarcatore potrebbe essere troppo difficile da interpretare. Per una corretta interpretazione del risultato della misurazione di un biomarcatore di esposizione, deve essere nota la validità diagnostica (ovvero, la traduzione del valore del biomarcatore nell'entità dei possibili rischi per la salute). In quest'area, i metalli fungono da paradigma per la ricerca sui biomarcatori. Recenti ricerche hanno dimostrato la complessità e la sottigliezza delle relazioni dose-risposta, con notevoli difficoltà nell'identificare i livelli senza effetto e quindi anche nel definire le esposizioni tollerabili. Tuttavia, questo tipo di ricerca ha anche illustrato i tipi di indagine e il perfezionamento necessari per scoprire le informazioni rilevanti. Per la maggior parte dei composti organici non sono ancora disponibili associazioni quantitative tra le esposizioni ei corrispondenti effetti avversi sulla salute; in molti casi, anche gli organi bersaglio primari non sono noti con certezza. Inoltre, la valutazione dei dati sulla tossicità e delle concentrazioni di biomarcatori è spesso complicata dall'esposizione a miscele di sostanze, piuttosto che dall'esposizione a un singolo composto in quel momento.
Prima che il biomarcatore venga applicato a fini di salute sul lavoro, sono necessarie alcune considerazioni aggiuntive. In primo luogo, il biomarcatore deve riflettere solo un cambiamento subclinico e reversibile. In secondo luogo, dato che i risultati del biomarcatore possono essere interpretati in relazione ai rischi per la salute, dovrebbero essere disponibili sforzi preventivi e dovrebbero essere considerati realistici nel caso in cui i dati del biomarcatore suggeriscano la necessità di ridurre l'esposizione. In terzo luogo, l'uso pratico del biomarcatore deve essere generalmente considerato eticamente accettabile.
Le misure di igiene industriale possono essere confrontate con i limiti di esposizione applicabili. Allo stesso modo, i risultati sui biomarcatori di esposizione o sui biomarcatori di effetto possono essere confrontati con i limiti di azione biologica, a volte indicati come indici di esposizione biologica. Tali limiti dovrebbero essere basati sui migliori consigli di clinici e scienziati di discipline appropriate, e gli amministratori responsabili come "gestori del rischio" dovrebbero quindi tenere conto di fattori etici, sociali, culturali ed economici rilevanti. La base scientifica dovrebbe, se possibile, includere rapporti dose-risposta integrati da informazioni sulle variazioni di suscettibilità all'interno della popolazione a rischio. In alcuni paesi, i lavoratori ei membri del pubblico in generale sono coinvolti nel processo di definizione degli standard e forniscono un contributo importante, in particolare quando l'incertezza scientifica è considerevole. Una delle maggiori incertezze è come definire un effetto avverso sulla salute che dovrebbe essere prevenuto, ad esempio se la formazione di addotti come biomarcatore di esposizione rappresenti di per sé un effetto avverso (cioè un biomarcatore di effetto) che dovrebbe essere prevenuto. È probabile che sorgano questioni difficili quando si decide se sia eticamente difendibile, per lo stesso composto, avere limiti diversi per l'esposizione avventizia, da un lato, e l'esposizione professionale, dall'altro.
Le informazioni generate dall'uso dei biomarcatori dovrebbero generalmente essere trasmesse agli individui esaminati all'interno del rapporto medico-paziente. Le preoccupazioni etiche devono essere considerate in particolare in relazione alle analisi di biomarcatori altamente sperimentali che attualmente non possono essere interpretate in dettaglio in termini di effettivi rischi per la salute. Per la popolazione generale, ad esempio, attualmente esistono orientamenti limitati per quanto riguarda l'interpretazione di biomarcatori di esposizione diversi dalla concentrazione di piombo nel sangue. Altrettanto importante è la fiducia nei dati generati (vale a dire, se è stato effettuato un campionamento appropriato e se nel laboratorio coinvolto sono state utilizzate valide procedure di garanzia della qualità). Un'ulteriore area di particolare preoccupazione riguarda l'ipersensibilità individuale. Questi problemi devono essere presi in considerazione quando si fornisce il feedback dallo studio.
Tutti i settori della società interessati o interessati alla realizzazione di uno studio sui biomarcatori devono essere coinvolti nel processo decisionale su come gestire le informazioni generate dallo studio. Procedure specifiche per prevenire o superare inevitabili conflitti etici dovrebbero essere sviluppate all'interno dei quadri legali e sociali della regione o del paese. Tuttavia, ogni situazione rappresenta una serie diversa di domande e insidie e non è possibile sviluppare un'unica procedura per il coinvolgimento del pubblico per coprire tutte le applicazioni dei biomarcatori di esposizione.
La valutazione della tossicità genetica è la valutazione degli agenti per la loro capacità di indurre uno dei tre tipi generali di cambiamenti (mutazioni) nel materiale genetico (DNA): genico, cromosomico e genomico. In organismi come gli esseri umani, i geni sono composti da DNA, che consiste di singole unità chiamate basi nucleotidiche. I geni sono disposti in strutture fisiche discrete chiamate cromosomi. La genotossicità può provocare effetti significativi e irreversibili sulla salute umana. Il danno genotossico è un passaggio critico nell'induzione del cancro e può anche essere coinvolto nell'induzione di difetti alla nascita e morte fetale. Le tre classi di mutazioni sopra menzionate possono verificarsi all'interno di uno dei due tipi di tessuti posseduti da organismi come gli esseri umani: spermatozoi o uova (cellule germinali) e il tessuto rimanente (cellule somatiche).
I test che misurano la mutazione genica sono quelli che rilevano la sostituzione, l'aggiunta o la delezione di nucleotidi all'interno di un gene. I test che misurano la mutazione cromosomica sono quelli che rilevano rotture o riarrangiamenti cromosomici che coinvolgono uno o più cromosomi. I test che misurano la mutazione genomica sono quelli che rilevano i cambiamenti nel numero di cromosomi, una condizione chiamata aneuploidia. La valutazione della tossicità genetica è cambiata notevolmente dallo sviluppo da parte di Herman Muller nel 1927 del primo test per rilevare agenti genotossici (mutageni). Da allora sono stati sviluppati più di 200 test che misurano le mutazioni nel DNA; tuttavia, oggi vengono utilizzati comunemente meno di dieci test per la valutazione della tossicità genetica. Questo articolo esamina questi test, descrive ciò che misurano ed esplora il ruolo di questi test nella valutazione della tossicità.
Identificazione dei rischi di cancroPrima dello sviluppo del Campo di tossicologia genetica
La tossicologia genetica è diventata parte integrante del processo complessivo di valutazione del rischio e negli ultimi tempi ha guadagnato importanza come predittore affidabile dell'attività cancerogena. Tuttavia, prima dello sviluppo della tossicologia genetica (prima del 1970), altri metodi erano e sono tuttora utilizzati per identificare potenziali rischi di cancro per l'uomo. Esistono sei principali categorie di metodi attualmente utilizzati per identificare i rischi di cancro nell'uomo: studi epidemiologici, saggi biologici in vivo a lungo termine, saggi biologici in vivo a medio termine, saggi biologici in vivo e in vitro a breve termine, intelligenza artificiale (struttura-attività), e inferenza basata sui meccanismi.
La tabella 1 fornisce vantaggi e svantaggi per questi metodi.
Tabella 1. Vantaggi e svantaggi dei metodi attuali per l'identificazione dei rischi di cancro nell'uomo
Vantaggi | Svantaggi | |
Studi epidemiologici | (1) gli esseri umani sono i massimi indicatori di malattia; (2) valutare le popolazioni sensibili o suscettibili; (3) coorti di esposizione professionale; (4) allarmi sentinella ambientale |
(1) generalmente retrospettivo (certificati di morte, bias di richiamo, ecc.); (2) insensibile, costoso, lungo; (3) dati affidabili sull'esposizione a volte non disponibili o difficili da ottenere; (4) esposizioni combinate, multiple e complesse; mancanza di adeguate coorti di controllo; (5) esperimenti sugli esseri umani non fatti; (6) rilevamento del cancro, non prevenzione |
Saggi biologici in vivo a lungo termine | (1) valutazioni prospettiche e retrospettive (convalida); (2) eccellente correlazione con cancerogeni umani identificati; (3) livelli e condizioni di esposizione noti; (4) identifica la tossicità chimica e gli effetti cancerogeni; (5) risultati ottenuti in tempi relativamente brevi; (6) confronti qualitativi tra classi chimiche; (7) sistemi biologici integrativi e interattivi strettamente legati all'uomo | (1) raramente replicato, ad alta intensità di risorse; (3) strutture limitate adatte a tali esperimenti; (4) dibattito sull'estrapolazione delle specie; (5) le esposizioni utilizzate sono spesso a livelli di gran lunga superiori a quelli sperimentati dall'uomo; (6) l'esposizione a una singola sostanza chimica non imita l'esposizione umana, che generalmente avviene a più sostanze chimiche contemporaneamente |
Saggi biologici in vivo e in vitro a medio e breve termine | (1) più rapido e meno costoso di altri test; (2) grandi campioni facilmente replicabili; (3) vengono misurati i punti finali biologicamente significativi (mutazione, ecc.); (4) può essere utilizzato come analisi di screening per selezionare sostanze chimiche per analisi biologiche a lungo termine |
(1) in vitro non completamente predittivo di in vivo; (2) solitamente organismo o organo specifico; (3) potenze non paragonabili a animali interi o umani |
Associazioni struttura chimica-attività biologica | (1) relativamente facile, rapido e poco costoso; (2) affidabile per alcune classi chimiche (ad esempio, nitrosammine e coloranti benzidinici); (3) sviluppato da dati biologici ma non dipendente da ulteriori sperimentazioni biologiche | (1) non "biologico"; (2) molte eccezioni alle regole formulate; (3) retrospettiva e raramente (ma diventa) prospettica |
Inferenze basate sui meccanismi | (1) ragionevolmente accurato per determinate classi di sostanze chimiche; (2) consente di perfezionare le ipotesi; (3) può orientare le valutazioni del rischio verso popolazioni sensibili | (1) meccanismi di cancerogenesi chimica indefiniti, multipli e probabilmente chimici o specifici per classe; (2) può non evidenziare eccezioni ai meccanismi generali |
Basi razionali e concettuali per saggi di tossicologia genetica
Sebbene i tipi e i numeri esatti dei test utilizzati per la valutazione della tossicità genetica siano in continua evoluzione e varino da paese a paese, i più comuni includono test per (1) mutazione genica in batteri e/o cellule di mammifero in coltura e (2) mutazione cromosomica in cellule di mammifero in coltura e/o midollo osseo all'interno di topi viventi. Alcuni dei test all'interno di questa seconda categoria possono anche rilevare l'aneuploidia. Sebbene questi test non rilevino mutazioni nelle cellule germinali, vengono utilizzati principalmente a causa del costo aggiuntivo e della complessità dell'esecuzione dei test delle cellule germinali. Tuttavia, i test delle cellule germinali nei topi vengono utilizzati quando si desiderano informazioni sugli effetti delle cellule germinali.
Studi sistematici su un periodo di 25 anni (1970-1995), in particolare presso il National Toxicology Program degli Stati Uniti nella Carolina del Nord, hanno portato all'uso di un numero discreto di test per rilevare l'attività mutagena degli agenti. Il fondamento logico per valutare l'utilità dei saggi si basava sulla loro capacità di rilevare agenti che causano il cancro nei roditori e che si sospetta causino il cancro nell'uomo (cioè agenti cancerogeni). Questo perché gli studi degli ultimi decenni hanno indicato che le cellule tumorali contengono mutazioni in alcuni geni e che molti agenti cancerogeni sono anche mutageni. Pertanto, le cellule tumorali sono viste come contenenti mutazioni delle cellule somatiche e la cancerogenesi è vista come un tipo di mutagenesi delle cellule somatiche.
I test di tossicità genetica utilizzati più comunemente oggi sono stati selezionati non solo per il loro ampio database, il costo relativamente basso e la facilità di esecuzione, ma perché hanno dimostrato di rilevare molti roditori e, presumibilmente, agenti cancerogeni per l'uomo. Di conseguenza, i test di tossicità genetica vengono utilizzati per prevedere la potenziale cancerogenicità degli agenti.
Un importante sviluppo concettuale e pratico nel campo della tossicologia genetica è stato il riconoscimento che molti cancerogeni sono stati modificati dagli enzimi all'interno del corpo, creando forme alterate (metaboliti) che erano spesso la forma cancerogena e mutagena definitiva della sostanza chimica madre. Per duplicare questo metabolismo in una capsula di Petri, Heinrich Malling ha dimostrato che l'inclusione di un preparato di fegato di roditore conteneva molti degli enzimi necessari per eseguire questa conversione o attivazione metabolica. Pertanto, molti test di tossicità genetica eseguiti in piastre o provette (in vitro) impiegano l'aggiunta di preparazioni enzimatiche simili. Le preparazioni semplici sono chiamate mix S9 e le preparazioni purificate sono chiamate microsomi. Alcune cellule batteriche e di mammifero sono state ora geneticamente modificate per contenere alcuni dei geni di roditori o umani che producono questi enzimi, riducendo la necessità di aggiungere mix S9 o microsomi.
Saggi e tecniche di tossicologia genetica
I principali sistemi batterici utilizzati per lo screening della tossicità genetica sono il saggio di mutagenicità Salmonella (Ames) e, in misura molto minore, il ceppo WP2 di Escherichia coli. Gli studi della metà degli anni '1980 hanno indicato che l'uso di soli due ceppi del sistema Salmonella (TA98 e TA100) era sufficiente per rilevare circa il 90% dei mutageni conosciuti di Salmonella. Pertanto, questi due ceppi vengono utilizzati per la maggior parte degli scopi di screening; tuttavia, sono disponibili vari altri ceppi per test più approfonditi.
Questi saggi vengono eseguiti in vari modi, ma due procedure generali sono i saggi di incorporazione su piastra e di sospensione liquida. Nel saggio di incorporazione su piastra, le cellule, la sostanza chimica in esame e (se desiderato) l'S9 vengono aggiunti insieme in un agar liquefatto e versati sulla superficie di una piastra di agar petri. L'agar superiore si indurisce in pochi minuti e le piastre vengono incubate per due o tre giorni, dopodiché le cellule mutanti sono cresciute per formare gruppi di cellule visivamente rilevabili chiamate colonie, che vengono poi contate. Il terreno di agar contiene agenti selettivi o è composto da ingredienti tali che cresceranno solo le cellule appena mutate. Il test di incubazione con liquido è simile, tranne per il fatto che le cellule, l'agente del test e l'S9 vengono incubati insieme in un liquido che non contiene agar liquefatto, quindi le cellule vengono lavate via dall'agente del test e dall'S9 e seminate sull'agar.
Le mutazioni nelle cellule di mammifero in coltura vengono rilevate principalmente in uno dei due geni: hprt e a tk. Analogamente ai saggi batterici, le linee cellulari di mammifero (sviluppate da roditori o cellule umane) vengono esposte all'agente di prova in piastre o provette di coltura di plastica e quindi vengono seminate in piastre di coltura che contengono terreno con un agente selettivo che consente solo alle cellule mutanti di crescere . I saggi utilizzati a questo scopo includono il CHO/HPRT, il TK6 e il linfoma di topo L5178Y/TK+/- saggi. Vengono utilizzate anche altre linee cellulari contenenti varie mutazioni di riparazione del DNA e contenenti alcuni geni umani coinvolti nel metabolismo. Questi sistemi consentono il recupero di mutazioni all'interno del gene (mutazione genica) così come mutazioni che coinvolgono regioni del cromosoma che fiancheggiano il gene (mutazione cromosomica). Tuttavia, quest'ultimo tipo di mutazione viene recuperato in misura molto maggiore dal tk sistemi genici che dal hprt sistemi genici a causa della posizione del tk scomodo.
Analogamente al saggio di incubazione in liquido per la mutagenicità batterica, i saggi di mutagenicità su cellule di mammifero comportano generalmente l'esposizione delle cellule in piastre o provette di coltura in presenza dell'agente in esame e S9 per diverse ore. Le cellule vengono quindi lavate, coltivate per diversi giorni per consentire la degradazione dei prodotti genici normali (wild-type) e l'espressione e l'accumulo dei nuovi prodotti genici mutanti, quindi vengono seminate in un terreno contenente un agente selettivo che consente solo le cellule mutanti a crescere. Come i test batterici, le cellule mutanti crescono in colonie visivamente rilevabili che vengono poi contate.
La mutazione cromosomica è identificata principalmente mediante analisi citogenetiche, che comportano l'esposizione di roditori e/o cellule di roditori o umane in piastre di coltura a una sostanza chimica in esame, consentendo il verificarsi di una o più divisioni cellulari, la colorazione dei cromosomi e quindi l'esame visivo dei cromosomi attraverso un microscopio per rilevare alterazioni nella struttura o nel numero di cromosomi. Sebbene sia possibile esaminare una varietà di endpoint, i due attualmente accettati dalle agenzie di regolamentazione come i più significativi sono le aberrazioni cromosomiche e una sottocategoria chiamata micronuclei.
Sono necessarie una notevole formazione ed esperienza per valutare le cellule per la presenza di aberrazioni cromosomiche, rendendo questa procedura costosa in termini di tempo e denaro. Al contrario, i micronuclei richiedono poco addestramento e il loro rilevamento può essere automatizzato. I micronuclei appaiono come piccoli punti all'interno della cellula che sono distinti dal nucleo, che contiene i cromosomi. I micronuclei derivano dalla rottura del cromosoma o dall'aneuploidia. A causa della facilità di scoring dei micronuclei rispetto alle aberrazioni cromosomiche, e poiché studi recenti indicano che gli agenti che inducono aberrazioni cromosomiche nel midollo osseo di topi viventi generalmente inducono micronuclei in questo tessuto, i micronuclei sono ora comunemente misurati come un'indicazione della capacità di un agente per indurre la mutazione cromosomica.
Sebbene i test sulle cellule germinali siano utilizzati molto meno frequentemente rispetto agli altri test sopra descritti, sono indispensabili per determinare se un agente rappresenta un rischio per le cellule germinali, le cui mutazioni possono portare a effetti sulla salute nelle generazioni successive. I test delle cellule germinali più comunemente usati sono nei topi e coinvolgono sistemi che rilevano (1) traslocazioni ereditabili (scambi) tra i cromosomi (test di traslocazione ereditaria), (2) mutazioni geniche o cromosomiche che coinvolgono geni specifici (specifico visibile o biochimico-locus saggi) e (3) mutazioni che influenzano la vitalità (dosaggio letale dominante). Come per i saggi sulle cellule somatiche, il presupposto di lavoro con i saggi sulle cellule germinali è che si presume che gli agenti positivi in questi saggi siano potenziali mutageni delle cellule germinali umane.
Stato attuale e prospettive future
Studi recenti hanno indicato che erano necessarie solo tre informazioni per rilevare circa il 90% di un insieme di 41 cancerogeni per roditori (cioè presunti cancerogeni per l'uomo e mutageni delle cellule somatiche). Questi includevano (1) la conoscenza della struttura chimica dell'agente, specialmente se contiene frazioni elettrofile (vedere la sezione sulle relazioni struttura-attività); (2) dati sulla mutagenicità della Salmonella; e (3) dati da un test di tossicità cronica di 90 giorni nei roditori (topi e ratti). In effetti, essenzialmente tutti gli agenti cancerogeni per l'uomo dichiarati dalla IARC sono rilevabili come mutageni utilizzando solo il test Salmonella e il test del micronucleo del midollo osseo di topo. L'uso di questi test di mutagenicità per rilevare potenziali agenti cancerogeni per l'uomo è ulteriormente supportato dalla scoperta che la maggior parte degli agenti cancerogeni per l'uomo è cancerogena sia nei ratti che nei topi (cancerogeni transspecie) e che la maggior parte degli agenti cancerogeni transspecie è mutagena nella Salmonella e/o induce micronuclei nel midollo osseo del topo.
Con i progressi nella tecnologia del DNA, il progetto sul genoma umano e una migliore comprensione del ruolo della mutazione nel cancro, si stanno sviluppando nuovi test di genotossicità che saranno probabilmente incorporati nelle procedure di screening standard. Tra questi c'è l'uso di cellule transgeniche e di roditori. I sistemi transgenici sono quelli in cui un gene di un'altra specie è stato introdotto in una cellula o in un organismo. Ad esempio, i topi transgenici sono ora in uso sperimentale che consentono il rilevamento della mutazione in qualsiasi organo o tessuto dell'animale, sulla base dell'introduzione di un gene batterico nel topo. Sono ora disponibili cellule batteriche, come Salmonella, e cellule di mammifero (comprese linee cellulari umane) che contengono geni coinvolti nel metabolismo di agenti cancerogeni/mutageni, come i geni P450. Analisi molecolare delle effettive mutazioni indotte nel transgene all'interno di roditori transgenici o all'interno di geni nativi come hprt, oppure è ora possibile analizzare i geni bersaglio all'interno della Salmonella, in modo da poter determinare l'esatta natura delle mutazioni indotte dalle sostanze chimiche, fornendo informazioni sul meccanismo d'azione della sostanza chimica e consentendo confronti con le mutazioni negli esseri umani presumibilmente esposti all'agente .
I progressi molecolari nella citogenetica ora consentono una valutazione più dettagliata delle mutazioni cromosomiche. Questi includono l'uso di sonde (piccoli pezzi di DNA) che si attaccano (ibridano) a geni specifici. I riarrangiamenti dei geni sul cromosoma possono quindi essere rivelati dalla posizione alterata delle sonde, che sono fluorescenti e facilmente visualizzabili come settori colorati sui cromosomi. Il test di elettroforesi su gel a singola cellula per la rottura del DNA (comunemente chiamato test "cometa") consente il rilevamento di rotture del DNA all'interno di singole cellule e può diventare uno strumento estremamente utile in combinazione con tecniche citogenetiche per rilevare il danno cromosomico.
Dopo molti anni di utilizzo e la generazione di un database ampio e sviluppato in modo sistematico, la valutazione della tossicità genetica può ora essere eseguita con pochi test a costi relativamente ridotti in un breve periodo di tempo (poche settimane). I dati prodotti possono essere utilizzati per prevedere la capacità di un agente di essere un roditore e, presumibilmente, cancerogeno per l'uomo/mutageno di cellule somatiche. Tale capacità consente di limitare l'introduzione nell'ambiente di agenti mutageni e cancerogeni e di sviluppare agenti alternativi non mutageni. Gli studi futuri dovrebbero portare a metodi ancora migliori con una maggiore predittività rispetto ai test attuali.
L'emergere di sofisticate tecnologie nella biologia molecolare e cellulare ha stimolato un'evoluzione relativamente rapida nelle scienze della vita, compresa la tossicologia. In effetti, l'attenzione della tossicologia si sta spostando da interi animali e popolazioni di interi animali alle cellule e alle molecole di singoli animali e umani. Dalla metà degli anni '1980, i tossicologi hanno iniziato a impiegare queste nuove metodologie per valutare gli effetti delle sostanze chimiche sui sistemi viventi. Come logica progressione, tali metodi vengono adattati ai fini dei test di tossicità. Questi progressi scientifici hanno collaborato con fattori sociali ed economici per modificare la valutazione della sicurezza del prodotto e del rischio potenziale.
I fattori economici sono specificamente legati al volume dei materiali che devono essere testati. Ogni anno viene introdotta sul mercato una miriade di nuovi cosmetici, prodotti farmaceutici, pesticidi, prodotti chimici e prodotti per la casa. Tutti questi prodotti devono essere valutati per la loro potenziale tossicità. Inoltre, vi è un arretrato di prodotti chimici già in uso che non sono stati adeguatamente testati. L'enorme compito di ottenere informazioni dettagliate sulla sicurezza di tutte queste sostanze chimiche utilizzando i tradizionali metodi di sperimentazione su animali interi sarebbe costoso in termini sia di denaro che di tempo, se potesse essere portato a termine.
Esistono anche questioni sociali che riguardano la salute e la sicurezza pubblica, nonché una crescente preoccupazione del pubblico sull'uso di animali per i test sulla sicurezza dei prodotti. Per quanto riguarda la sicurezza umana, l'interesse pubblico e i gruppi di difesa dell'ambiente hanno esercitato pressioni significative sulle agenzie governative affinché applicassero normative più rigorose sulle sostanze chimiche. Un recente esempio di ciò è stato un movimento di alcuni gruppi ambientalisti per vietare il cloro e i composti contenenti cloro negli Stati Uniti. Una delle motivazioni di un'azione così estrema risiede nel fatto che la maggior parte di questi composti non è mai stata adeguatamente testata. Dal punto di vista tossicologico, il concetto di vietare un'intera classe di sostanze chimiche diverse basato semplicemente sulla presenza di cloro è sia scientificamente infondato che irresponsabile. Tuttavia, è comprensibile che, dal punto di vista del pubblico, ci debba essere una certa garanzia che le sostanze chimiche rilasciate nell'ambiente non comportino un rischio significativo per la salute. Tale situazione sottolinea la necessità di metodi più efficienti e rapidi per valutare la tossicità.
L'altra preoccupazione della società che ha avuto un impatto sull'area dei test di tossicità è il benessere degli animali. Il numero crescente di gruppi per la protezione degli animali in tutto il mondo ha espresso una notevole opposizione all'uso di animali interi per i test sulla sicurezza dei prodotti. Sono state condotte campagne attive contro i produttori di cosmetici, prodotti per la cura della casa e della persona e prodotti farmaceutici nel tentativo di fermare i test sugli animali. Tali sforzi in Europa hanno portato all'approvazione del sesto emendamento alla direttiva 76/768/CEE (la direttiva sui cosmetici). La conseguenza di questa direttiva è che i prodotti cosmetici o gli ingredienti cosmetici che sono stati testati sugli animali dopo il 1° gennaio 1998 non possono essere commercializzati nell'Unione Europea, a meno che metodi alternativi non siano sufficientemente convalidati. Sebbene questa direttiva non abbia giurisdizione sulla vendita di tali prodotti negli Stati Uniti o in altri paesi, influirà in modo significativo sulle società che hanno mercati internazionali che includono l'Europa.
Il concetto di alternative, che costituisce la base per lo sviluppo di test diversi da quelli su animali interi, è definito dai tre Rs: riduzione nel numero di animali utilizzati; raffinatezza di protocolli in modo che gli animali provino meno stress o disagio; e sostituzione degli attuali test sugli animali con test in vitro (cioè test eseguiti al di fuori dell'animale vivente), modelli computerizzati o test su specie di vertebrati o invertebrati inferiori. I tre Rs sono stati introdotti in un libro pubblicato nel 1959 da due scienziati britannici, WMS Russell e Rex Burch, I principi della tecnica sperimentale umana. Russell e Burch sostenevano che l'unico modo per ottenere risultati scientifici validi fosse attraverso il trattamento umano degli animali e ritenevano che si dovessero sviluppare metodi per ridurre l'uso di animali e alla fine sostituirlo. È interessante notare che i principi delineati da Russell e Burch hanno ricevuto poca attenzione fino alla rinascita del movimento per il benessere degli animali a metà degli anni '1970. Oggi il concetto dei tre Rs è all'avanguardia per quanto riguarda la ricerca, i test e l'istruzione.
In sintesi, lo sviluppo delle metodologie di test in vitro è stato influenzato da una varietà di fattori che sono confluiti negli ultimi dieci o vent'anni. È difficile accertare se qualcuno di questi fattori da solo avrebbe avuto un effetto così profondo sulle strategie dei test di tossicità.
Concetto di test di tossicità in vitro
Questa sezione si concentrerà esclusivamente sui metodi in vitro per valutare la tossicità, come una delle alternative alla sperimentazione su animali interi. Ulteriori alternative non animali come la modellazione al computer e le relazioni quantitative struttura-attività sono discusse in altri articoli di questo capitolo.
Gli studi in vitro sono generalmente condotti su cellule o tessuti animali o umani al di fuori del corpo. In vitro significa letteralmente "in vetro" e si riferisce a procedure eseguite su materiale vivo o componenti di materiale vivo coltivate in capsule di Petri o in provette in condizioni definite. Questi possono essere messi a confronto con gli studi in vivo, o con quelli effettuati “nell'animale vivente”. Sebbene sia difficile, se non impossibile, proiettare gli effetti di una sostanza chimica su un organismo complesso quando le osservazioni sono limitate a un singolo tipo di cellule in una piastra, gli studi in vitro forniscono anche una quantità significativa di informazioni sulla tossicità intrinseca. come meccanismi cellulari e molecolari di tossicità. Inoltre, offrono molti vantaggi rispetto agli studi in vivo in quanto sono generalmente meno costosi e possono essere condotti in condizioni più controllate. Inoltre, nonostante il fatto che sia ancora necessario un piccolo numero di animali per ottenere cellule per colture in vitro, questi metodi possono essere considerati alternative di riduzione (poiché vengono utilizzati molti meno animali rispetto agli studi in vivo) e alternative di raffinamento (perché eliminano la necessità sottoporre gli animali alle conseguenze tossiche avverse imposte dagli esperimenti in vivo).
Per interpretare i risultati dei test di tossicità in vitro, determinarne la potenziale utilità nella valutazione della tossicità e metterli in relazione con il processo tossicologico complessivo in vivo, è necessario comprendere quale parte del processo tossicologico si sta esaminando. L'intero processo tossicologico è costituito da eventi che iniziano con l'esposizione dell'organismo a un agente fisico o chimico, progrediscono attraverso interazioni cellulari e molecolari e si manifestano infine nella risposta dell'intero organismo. I test in vitro sono generalmente limitati alla parte del processo tossicologico che avviene a livello cellulare e molecolare. I tipi di informazioni che possono essere ottenuti dagli studi in vitro includono le vie del metabolismo, l'interazione dei metaboliti attivi con i bersagli cellulari e molecolari e gli endpoint tossici potenzialmente misurabili che possono fungere da biomarcatori molecolari per l'esposizione. In una situazione ideale, sarebbe noto il meccanismo di tossicità di ciascuna sostanza chimica dall'esposizione alla manifestazione dell'organismo, in modo tale che le informazioni ottenute dai test in vitro possano essere completamente interpretate e correlate alla risposta dell'intero organismo. Tuttavia, questo è praticamente impossibile, poiché sono stati chiariti relativamente pochi meccanismi tossicologici completi. Pertanto, i tossicologi si trovano di fronte a una situazione in cui i risultati di un test in vitro non possono essere utilizzati come previsione del tutto accurata della tossicità in vivo perché il meccanismo è sconosciuto. Tuttavia, spesso durante il processo di sviluppo di un test in vitro, vengono chiariti i componenti dei meccanismi cellulari e molecolari della tossicità.
Una delle principali questioni irrisolte che circondano lo sviluppo e l'implementazione dei test in vitro è legata alla seguente considerazione: dovrebbero essere basati meccanicamente o è sufficiente che siano descrittivi? È indiscutibilmente meglio da un punto di vista scientifico utilizzare solo test meccanicistici come sostituti dei test in vivo. Tuttavia, in assenza di una conoscenza meccanicistica completa, la prospettiva di sviluppare test in vitro per sostituire completamente i test su animali interi nel prossimo futuro è quasi nulla. Ciò, tuttavia, non esclude l'uso di tipi di test più descrittivi come strumenti di screening precoce, come avviene attualmente. Questi schermi hanno portato a una significativa riduzione dell'uso di animali. Pertanto, fino a quando non verranno generate più informazioni meccanicistiche, potrebbe essere necessario impiegare in misura più limitata test i cui risultati si correlano semplicemente bene con quelli ottenuti in vivo.
Test in vitro per la citotossicità
In questa sezione verranno descritti diversi test in vitro che sono stati sviluppati per valutare il potenziale citotossico di una sostanza chimica. Per la maggior parte, questi test sono facili da eseguire e l'analisi può essere automatizzata. Un test in vitro comunemente usato per la citotossicità è il test del rosso neutro. Questo test viene eseguito su cellule in coltura e, per la maggior parte delle applicazioni, le cellule possono essere mantenute in piastre di coltura che contengono 96 piccoli pozzetti, ciascuno di 6.4 mm di diametro. Poiché ciascun pozzetto può essere utilizzato per una singola determinazione, questa disposizione può contenere più concentrazioni della sostanza chimica in esame nonché controlli positivi e negativi con un numero sufficiente di repliche per ciascuno. Dopo il trattamento delle cellule con varie concentrazioni della sostanza chimica in esame comprese in almeno due ordini di grandezza (ad esempio, da 0.01 mM a 1 mM), nonché sostanze chimiche di controllo positive e negative, le cellule vengono risciacquate e trattate con rosso neutro, un colorante che può essere assorbito e trattenuto solo dalle cellule vive. Il colorante può essere aggiunto alla rimozione della sostanza chimica in esame per determinare gli effetti immediati, oppure può essere aggiunto in momenti diversi dopo la rimozione della sostanza chimica in esame per determinare effetti cumulativi o ritardati. L'intensità del colore in ogni pozzetto corrisponde al numero di cellule vive in quel pozzetto. L'intensità del colore è misurata da uno spettrofotometro che può essere dotato di un lettore di lastre. Il lettore di piastre è programmato per fornire misurazioni individuali per ciascuno dei 96 pozzetti della piastra di coltura. Questa metodologia automatizzata consente allo sperimentatore di eseguire rapidamente un esperimento concentrazione-risposta e di ottenere dati statisticamente utili.
Un altro test relativamente semplice per la citotossicità è il test MTT. MTT (3[4,5-dimetiltiazol-2-il]-2,5-difeniltetrazolio bromuro) è un colorante tetrazolio che viene ridotto dagli enzimi mitocondriali a un colore blu. Solo le cellule con mitocondri vitali manterranno la capacità di eseguire questa reazione; pertanto l'intensità del colore è direttamente correlata al grado di integrità mitocondriale. Questo è un test utile per rilevare composti citotossici generali così come quegli agenti che prendono di mira specificamente i mitocondri.
La misurazione dell'attività della lattato deidrogenasi (LDH) viene utilizzata anche come test ad ampio raggio per la citotossicità. Questo enzima è normalmente presente nel citoplasma delle cellule viventi e viene rilasciato nel mezzo di coltura cellulare attraverso membrane cellulari che perdono di cellule morte o morenti che sono state influenzate negativamente da un agente tossico. Piccole quantità di terreno di coltura possono essere rimosse in vari momenti dopo il trattamento chimico delle cellule per misurare la quantità di LDH rilasciata e determinare un andamento temporale della tossicità. Sebbene il test di rilascio di LDH sia una valutazione molto generale della citotossicità, è utile perché è facile da eseguire e può essere eseguito in tempo reale.
Ci sono molti nuovi metodi in fase di sviluppo per rilevare il danno cellulare. Metodi più sofisticati impiegano sonde fluorescenti per misurare una varietà di parametri intracellulari, come il rilascio di calcio e le variazioni del pH e del potenziale di membrana. In generale, queste sonde sono molto sensibili e possono rilevare cambiamenti cellulari più sottili, riducendo così la necessità di utilizzare la morte cellulare come endpoint. Inoltre, molti di questi saggi fluorescenti possono essere automatizzati mediante l'uso di piastre a 96 pozzetti e lettori di piastre fluorescenti.
Una volta raccolti i dati su una serie di sostanze chimiche utilizzando uno di questi test, è possibile determinare le relative tossicità. La tossicità relativa di una sostanza chimica, determinata in un test in vitro, può essere espressa come la concentrazione che esercita un effetto del 50% sulla risposta finale delle cellule non trattate. Questa determinazione è indicata come CE50 (Effective Cconcentrazione per 50% delle cellule) e può essere utilizzato per confrontare le tossicità di diverse sostanze chimiche in vitro. (Un termine simile utilizzato per valutare la tossicità relativa è IC50, che indica la concentrazione di una sostanza chimica che provoca un'inibizione del 50% di un processo cellulare, ad esempio la capacità di assorbire il rosso neutro.) Non è facile valutare se la relativa tossicità in vitro delle sostanze chimiche sia paragonabile alla loro relativa tossicità in vivo, poiché ci sono così tanti fattori di confusione nel sistema in vivo, come la tossicocinetica, il metabolismo, i meccanismi di riparazione e difesa. Inoltre, poiché la maggior parte di questi test misura gli endpoint generali di citotossicità, non sono basati meccanicamente. Pertanto, l'accordo tra tossicità relative in vitro e in vivo è semplicemente correlativo. Nonostante le numerose complessità e difficoltà di estrapolazione da in vitro a in vivo, questi test in vitro si stanno rivelando molto preziosi perché sono semplici e poco costosi da eseguire e possono essere utilizzati come screening per segnalare farmaci o sostanze chimiche altamente tossiche nelle prime fasi di sviluppo.
Tossicità per gli organi bersaglio
I test in vitro possono anche essere utilizzati per valutare la tossicità specifica per organi bersaglio. Ci sono una serie di difficoltà associate alla progettazione di tali test, la più notevole è l'incapacità dei sistemi in vitro di mantenere molte delle caratteristiche dell'organo in vivo. Spesso, quando le cellule vengono prelevate da animali e poste in coltura, tendono a degenerare rapidamente e/oa dedifferenziarsi, cioè a perdere le loro funzioni organiche ea diventare più generiche. Ciò presenta un problema in quanto entro un breve periodo di tempo, di solito pochi giorni, le colture non sono più utili per valutare gli effetti organo-specifici di una tossina.
Molti di questi problemi vengono superati grazie ai recenti progressi nella biologia molecolare e cellulare. Le informazioni ottenute sull'ambiente cellulare in vivo possono essere utilizzate nella modulazione delle condizioni di coltura in vitro. Dalla metà degli anni '1980 sono stati scoperti nuovi fattori di crescita e citochine, e molti di questi sono ora disponibili in commercio. L'aggiunta di questi fattori alle cellule in coltura aiuta a preservarne l'integrità e può anche aiutare a mantenere funzioni più differenziate per periodi di tempo più lunghi. Altri studi di base hanno accresciuto la conoscenza dei fabbisogni nutrizionali e ormonali delle cellule in coltura, così da poter formulare nuovi terreni. Sono stati compiuti recenti progressi anche nell'identificazione di matrici extracellulari sia naturali che artificiali su cui le cellule possono essere coltivate. La coltura di cellule su queste diverse matrici può avere effetti profondi sia sulla loro struttura che sulla loro funzione. Un grande vantaggio derivato da questa conoscenza è la capacità di controllare in modo complesso l'ambiente delle cellule in coltura ed esaminare individualmente gli effetti di questi fattori sui processi cellulari di base e sulle loro risposte a diversi agenti chimici. In breve, questi sistemi possono fornire una visione approfondita dei meccanismi di tossicità specifici degli organi.
Molti studi sulla tossicità degli organi bersaglio sono condotti su cellule primarie, che per definizione sono appena isolate da un organo e di solito mostrano una durata limitata in coltura. Ci sono molti vantaggi nell'avere colture primarie di un singolo tipo cellulare da un organo per la valutazione della tossicità. Da una prospettiva meccanicistica, tali colture sono utili per studiare specifici bersagli cellulari di una sostanza chimica. In alcuni casi, due o più tipi di cellule di un organo possono essere coltivati insieme, e questo fornisce un ulteriore vantaggio di poter osservare le interazioni cellula-cellula in risposta a una tossina. Alcuni sistemi di co-coltura per la pelle sono stati progettati in modo da formare una struttura tridimensionale simile alla pelle in vivo. È anche possibile co-coltivare cellule di organi diversi, ad esempio fegato e reni. Questo tipo di coltura sarebbe utile per valutare gli effetti specifici sulle cellule renali, di una sostanza chimica che deve essere bioattivata nel fegato.
Anche gli strumenti biologici molecolari hanno svolto un ruolo importante nello sviluppo di linee cellulari continue che possono essere utili per i test di tossicità degli organi bersaglio. Queste linee cellulari sono generate trasfettando il DNA in cellule primarie. Nella procedura di trasfezione, le cellule e il DNA vengono trattati in modo tale che il DNA possa essere assorbito dalle cellule. Il DNA di solito proviene da un virus e contiene uno o più geni che, quando espressi, consentono alle cellule di diventare immortali (cioè in grado di vivere e crescere per lunghi periodi di tempo in coltura). Il DNA può anche essere ingegnerizzato in modo che il gene immortalizzante sia controllato da un promotore inducibile. Il vantaggio di questo tipo di costrutto è che le cellule si dividono solo quando ricevono lo stimolo chimico appropriato per consentire l'espressione del gene immortalizzante. Un esempio di tale costrutto è il grande gene dell'antigene T del Simian Virus 40 (SV40) (il gene immortalizzante), preceduto dalla regione del promotore del gene della metallotioneina, che è indotto dalla presenza di un metallo nel mezzo di coltura. Pertanto, dopo che il gene è stato trasfettato nelle cellule, le cellule possono essere trattate con basse concentrazioni di zinco per stimolare il promotore MT e attivare l'espressione del gene dell'antigene T. In queste condizioni, le cellule proliferano. Quando lo zinco viene rimosso dal mezzo, le cellule smettono di dividersi e in condizioni ideali ritornano a uno stato in cui esprimono le loro funzioni tessuto-specifiche.
La capacità di generare cellule immortalizzate combinata con i progressi nella tecnologia delle colture cellulari ha contribuito notevolmente alla creazione di linee cellulari da molti organi diversi, tra cui cervello, reni e fegato. Tuttavia, prima che queste linee cellulari possano essere utilizzate come surrogato per i tipi di cellule in buona fede, devono essere caratterizzate attentamente per determinare quanto siano realmente "normali".
Altri sistemi in vitro per lo studio della tossicità degli organi bersaglio comportano una crescente complessità. Man mano che i sistemi in vitro progrediscono in complessità dalla singola cellula alla coltura dell'intero organo, diventano più paragonabili all'ambiente in vivo, ma allo stesso tempo diventano molto più difficili da controllare dato l'aumento del numero di variabili. Pertanto, ciò che può essere guadagnato nel passaggio a un livello superiore di organizzazione può essere perso nell'incapacità del ricercatore di controllare l'ambiente sperimentale. La tabella 1 confronta alcune delle caratteristiche di vari sistemi in vitro che sono stati utilizzati per studiare l'epatotossicità.
Tabella 1. Confronto dei sistemi in vitro per gli studi di epatotossicità
Sistema | Complessità (livello di interazione) |
Capacità di mantenere le funzioni specifiche del fegato | Durata potenziale della cultura | Capacità di controllare l'ambiente |
Linee cellulari immortalizzate | da cella a cella (varia con la linea cellulare) | da scarso a buono (varia con la linea cellulare) | indefinito | eccellente |
Colture primarie di epatociti | cellula a cellula | da discreto a eccellente (varia a seconda delle condizioni colturali) | giorni a settimane | eccellente |
Co-colture di cellule epatiche | da cella a cella (tra lo stesso tipo di cella e diversi) | da buono a fantastico | settimana | eccellente |
Fettine di fegato | da cella a cella (tra tutti i tipi di cella) | da buono a fantastico | ore to giorni | buono |
Fegato isolato e perfuso | da cellula a cellula (tra tutti i tipi di cellule) e intra-organo | eccellente | ore | fiera |
Le fette di tessuto tagliate con precisione vengono utilizzate più ampiamente per gli studi tossicologici. Sono disponibili nuovi strumenti che consentono al ricercatore di tagliare fette di tessuto uniforme in un ambiente sterile. Le fette di tessuto offrono qualche vantaggio rispetto ai sistemi di coltura cellulare in quanto sono presenti tutti i tipi di cellule dell'organo e mantengono la loro architettura in vivo e la comunicazione intercellulare. Pertanto, possono essere condotti studi in vitro per determinare il tipo di cellula bersaglio all'interno di un organo nonché per studiare la tossicità specifica dell'organo bersaglio. Uno svantaggio delle fettine è che degenerano rapidamente dopo le prime 24 ore di coltura, principalmente a causa della scarsa diffusione dell'ossigeno alle cellule all'interno delle fettine. Tuttavia, studi recenti hanno indicato che è possibile ottenere un'aerazione più efficiente mediante una leggera rotazione. Questo, insieme all'uso di un mezzo più complesso, consente alle fette di sopravvivere fino a 96 ore.
Gli espianti di tessuto sono simili nel concetto alle fette di tessuto e possono anche essere utilizzati per determinare la tossicità delle sostanze chimiche in specifici organi bersaglio. Gli espianti di tessuto vengono stabiliti rimuovendo un piccolo frammento di tessuto (per gli studi di teratogenicità, un embrione intatto) e ponendolo in coltura per ulteriori studi. Le colture di espianti sono state utili per studi di tossicità a breve termine, tra cui irritazione e corrosività nella pelle, studi sull'amianto nella trachea e studi di neurotossicità nel tessuto cerebrale.
Gli organi perfusi isolati possono anche essere utilizzati per valutare la tossicità dell'organo bersaglio. Questi sistemi offrono un vantaggio simile a quello delle fette di tessuto e degli espianti in quanto sono presenti tutti i tipi di cellule, ma senza lo stress al tessuto introdotto dalle manipolazioni coinvolte nella preparazione delle fette. Inoltre, consentono il mantenimento delle interazioni intra-organo. Uno dei principali svantaggi è la loro fattibilità a breve termine, che ne limita l'uso per i test di tossicità in vitro. In termini di servizio come alternativa, queste colture possono essere considerate un perfezionamento poiché gli animali non subiscono le conseguenze negative del trattamento in vivo con sostanze tossiche. Tuttavia, il loro uso non riduce significativamente il numero di animali richiesti.
In sintesi, sono disponibili diversi tipi di sistemi in vitro per valutare la tossicità degli organi bersaglio. È possibile acquisire molte informazioni sui meccanismi di tossicità utilizzando una o più di queste tecniche. La difficoltà rimane nel saper estrapolare da un sistema in vitro, che rappresenta una parte relativamente piccola del processo tossicologico, all'intero processo che avviene in vivo.
Test in vitro per l'irritazione oculare
Forse il test di tossicità su animali interi più controverso dal punto di vista del benessere degli animali è il test di Draize per l'irritazione oculare, condotto sui conigli. In questo test, una piccola dose fissa di una sostanza chimica viene posta in uno degli occhi del coniglio mentre l'altro occhio viene utilizzato come controllo. Il grado di irritazione e infiammazione viene misurato in vari momenti dopo l'esposizione. Si sta facendo un grande sforzo per sviluppare metodologie per sostituire questo test, che è stato criticato non solo per ragioni umane, ma anche per la soggettività delle osservazioni e la variabilità dei risultati. È interessante notare che, nonostante le dure critiche che il test di Draize ha ricevuto, ha dimostrato di avere un notevole successo nel predire gli irritanti per l'occhio umano, in particolare le sostanze leggermente o moderatamente irritanti, che sono difficili da identificare con altri metodi. Pertanto, le richieste di alternative in vitro sono elevate.
La ricerca di alternative al test di Draize è complicata, anche se si prevede che avrà successo. Sono state sviluppate numerose alternative in vitro e di altro tipo e in alcuni casi sono state implementate. Le alternative di raffinamento al test di Draize, che per definizione sono meno dolorose o angoscianti per gli animali, includono il Low Volume Eye Test, in cui piccole quantità di materiali di prova vengono poste negli occhi dei conigli, non solo per ragioni umane, ma per imitare più da vicino le quantità a cui le persone possono essere effettivamente esposte accidentalmente. Un altro perfezionamento è che le sostanze che hanno un pH inferiore a 2 o superiore a 11.5 non vengono più testate sugli animali poiché sono note per essere gravemente irritanti per gli occhi.
Tra il 1980 e il 1989, è stato stimato un calo dell'87% nel numero di conigli utilizzati per i test di irritazione oculare dei cosmetici. I test in vitro sono stati incorporati come parte di un approccio di test di livello per realizzare questa vasta riduzione dei test su animali interi. Questo approccio è un processo in più fasi che inizia con un esame approfondito dei dati storici sull'irritazione oculare e l'analisi fisica e chimica della sostanza chimica da valutare. Se questi due processi non forniscono informazioni sufficienti, viene eseguita una batteria di test in vitro. I dati aggiuntivi ottenuti dai test in vitro potrebbero quindi essere sufficienti per valutare la sicurezza della sostanza. In caso contrario, il passaggio finale consisterebbe nell'eseguire test in vivo limitati. È facile vedere come questo approccio possa eliminare o almeno ridurre drasticamente il numero di animali necessari per prevedere la sicurezza di una sostanza sperimentale.
La batteria di test in vitro utilizzata come parte di questa strategia di test di livello dipende dalle esigenze del settore specifico. I test di irritazione oculare vengono eseguiti da un'ampia varietà di industrie, dai cosmetici ai prodotti farmaceutici ai prodotti chimici industriali. Il tipo di informazioni richieste da ciascun settore varia e pertanto non è possibile definire un'unica batteria di test in vitro. Una batteria di test è generalmente progettata per valutare cinque parametri: citotossicità, cambiamenti nella fisiologia e biochimica dei tessuti, relazioni quantitative struttura-attività, mediatori dell'infiammazione e recupero e riparazione. Un esempio di test per la citotossicità, che è una possibile causa di irritazione, è il test del rosso neutro che utilizza cellule in coltura (vedi sopra). I cambiamenti nella fisiologia cellulare e nella biochimica risultanti dall'esposizione a una sostanza chimica possono essere analizzati in colture di cellule epiteliali corneali umane. In alternativa, gli investigatori hanno utilizzato anche bulbi oculari di bovini o di pollo intatti o sezionati ottenuti dai macelli. Molti degli endpoint misurati in queste colture di organi interi sono gli stessi di quelli misurati in vivo, come l'opacità corneale e il gonfiore corneale.
L'infiammazione è spesso una componente della lesione oculare indotta da sostanze chimiche e sono disponibili numerosi test per esaminare questo parametro. Vari saggi biochimici rilevano la presenza di mediatori rilasciati durante il processo infiammatorio come l'acido arachidonico e le citochine. Anche la membrana corioallantoidea (CAM) dell'uovo di gallina può essere utilizzata come indicatore di infiammazione. Nel saggio CAM, un piccolo pezzo del guscio di un embrione di pulcino da dieci a 14 giorni viene rimosso per esporre il CAM. La sostanza chimica viene quindi applicata alla CAM e i segni di infiammazione, come l'emorragia vascolare, vengono segnati in vari momenti successivi.
Uno dei processi in vivo più difficili da valutare in vitro è il recupero e la riparazione del danno oculare. Uno strumento di nuova concezione, il microfisiometro al silicio, misura piccoli cambiamenti nel pH extracellulare e può essere utilizzato per monitorare le cellule in coltura in tempo reale. Questa analisi ha dimostrato di correlare abbastanza bene con il recupero in vivo ed è stata utilizzata come test in vitro per questo processo. Questa è stata una breve panoramica dei tipi di test utilizzati come alternative al test di Draize per l'irritazione oculare. È probabile che nei prossimi anni venga definita una serie completa di batterie di test in vitro e ciascuna sarà convalidata per il suo scopo specifico.
Convalida
La chiave per l'accettazione normativa e l'implementazione delle metodologie di test in vitro è la convalida, il processo mediante il quale viene stabilita la credibilità di un test candidato per uno scopo specifico. Gli sforzi per definire e coordinare il processo di convalida sono stati compiuti sia negli Stati Uniti che in Europa. L'Unione Europea ha istituito il Centro europeo per la convalida dei metodi alternativi (ECVAM) nel 1993 per coordinare gli sforzi e per interagire con organizzazioni americane come il Johns Hopkins Center for Alternatives to Animal Testing (CAAT), un centro accademico negli Stati Uniti e il Comitato di coordinamento interagenzia per la convalida di metodi alternativi (ICCVAM), composto da rappresentanti del National Institutes of Health, dell'Agenzia statunitense per la protezione dell'ambiente, della Food and Drug Administration statunitense e della Commissione per la sicurezza dei prodotti di consumo.
La convalida dei test in vitro richiede un'organizzazione e una pianificazione sostanziali. Deve esserci consenso tra le autorità di regolamentazione del governo e gli scienziati industriali e accademici su procedure accettabili e una supervisione sufficiente da parte di un comitato consultivo scientifico per garantire che i protocolli soddisfino gli standard stabiliti. Gli studi di convalida dovrebbero essere eseguiti in una serie di laboratori di riferimento utilizzando serie calibrate di sostanze chimiche provenienti da una banca chimica e cellule o tessuti provenienti da un'unica fonte. Sia la ripetibilità intralaboratorio che la riproducibilità interlaboratorio di una prova candidata devono essere dimostrate ei risultati devono essere sottoposti ad un'analisi statistica appropriata. Una volta raccolti i risultati delle diverse componenti degli studi di convalida, il comitato consultivo scientifico può formulare raccomandazioni sulla validità del/i test candidato/i per uno scopo specifico. Inoltre, i risultati degli studi dovrebbero essere pubblicati su riviste peer-reviewed e inseriti in un database.
La definizione del processo di validazione è attualmente un work in progress. Ogni nuovo studio di validazione fornirà informazioni utili alla progettazione dello studio successivo. La comunicazione e la cooperazione internazionale sono essenziali per il rapido sviluppo di una serie di protocolli ampiamente accettabili, in particolare data la maggiore urgenza imposta dall'approvazione della direttiva CE sui cosmetici. Questa legislazione può effettivamente fornire lo slancio necessario per intraprendere un serio sforzo di convalida. È solo attraverso il completamento di questo processo che può iniziare l'accettazione dei metodi in vitro da parte delle varie comunità di regolamentazione.
Conclusione
Questo articolo ha fornito un'ampia panoramica dello stato attuale dei test di tossicità in vitro. La scienza della tossicologia in vitro è relativamente giovane, ma sta crescendo in modo esponenziale. La sfida per gli anni a venire è incorporare la conoscenza meccanicistica generata dagli studi cellulari e molecolari nel vasto inventario di dati in vivo per fornire una descrizione più completa dei meccanismi tossicologici e stabilire un paradigma con cui i dati in vitro possono essere utilizzati prevedere la tossicità in vivo. Sarà solo attraverso gli sforzi concertati dei tossicologi e dei rappresentanti del governo che si potrà realizzare il valore intrinseco di questi metodi in vitro.
L'analisi delle relazioni struttura-attività (SAR) è l'utilizzo di informazioni sulla struttura molecolare delle sostanze chimiche per prevedere caratteristiche importanti relative a persistenza, distribuzione, assorbimento e assorbimento e tossicità. Il SAR è un metodo alternativo per identificare potenziali sostanze chimiche pericolose, che promette di assistere le industrie e i governi nella definizione delle priorità delle sostanze per un'ulteriore valutazione o per il processo decisionale in fase iniziale per nuove sostanze chimiche. La tossicologia è un'impresa sempre più costosa e ad alta intensità di risorse. Le crescenti preoccupazioni sulla possibilità che le sostanze chimiche causino effetti avversi nelle popolazioni umane esposte hanno spinto le agenzie di regolamentazione e sanitarie ad ampliare la gamma e la sensibilità dei test per rilevare i rischi tossicologici. Allo stesso tempo, gli oneri reali e percepiti della regolamentazione sull'industria hanno provocato preoccupazioni per la praticità dei metodi di test della tossicità e dell'analisi dei dati. Allo stato attuale, la determinazione della cancerogenicità chimica dipende dai test a vita di almeno due specie, entrambi i sessi, a diverse dosi, con un'attenta analisi istopatologica di più organi, nonché dal rilevamento di alterazioni preneoplastiche nelle cellule e negli organi bersaglio. Negli Stati Uniti, si stima che il test biologico del cancro abbia un costo superiore a 3 milioni di dollari (dollari del 1995).
Anche con risorse finanziarie illimitate, l'onere di testare le circa 70,000 sostanze chimiche esistenti prodotte oggi nel mondo supererebbe le risorse disponibili di tossicologi qualificati. Sarebbero necessari secoli per completare anche una valutazione di primo livello di queste sostanze chimiche (NRC 1984). In molti paesi sono aumentate le preoccupazioni etiche sull'uso di animali nei test di tossicità, portando ulteriori pressioni sull'uso di metodi standard di test di tossicità. Il SAR è stato ampiamente utilizzato nell'industria farmaceutica per identificare molecole potenzialmente utili per il trattamento (Hansch e Zhang 1993). Nella politica di salute ambientale e occupazionale, il SAR viene utilizzato per prevedere la dispersione di composti nell'ambiente chimico-fisico e per selezionare nuove sostanze chimiche per un'ulteriore valutazione della potenziale tossicità. Ai sensi del Toxic Substances Control Act (TSCA) degli Stati Uniti, l'EPA ha utilizzato dal 1979 un approccio SAR come "primo screening" di nuove sostanze chimiche nel processo di notifica prefabbricazione (PMN); L'Australia utilizza un approccio simile come parte della sua nuova procedura di notifica delle sostanze chimiche (NICNAS). Negli Stati Uniti l'analisi SAR è una base importante per determinare che esiste una base ragionevole per concludere che la fabbricazione, la lavorazione, la distribuzione, l'uso o lo smaltimento della sostanza presenteranno un rischio irragionevole di danno per la salute umana o per l'ambiente, come richiesto dalla Sezione 5(f) del TSCA. Sulla base di questa constatazione, l'EPA può quindi richiedere test effettivi della sostanza ai sensi della sezione 6 del TSCA.
Razionale per SAR
Il razionale scientifico per SAR si basa sul presupposto che la struttura molecolare di una sostanza chimica predice aspetti importanti del suo comportamento nei sistemi fisico-chimici e biologici (Hansch e Leo 1979).
Processo SAR
Il processo di revisione SAR include l'identificazione della struttura chimica, comprese le formulazioni empiriche e il composto puro; identificazione di sostanze strutturalmente analoghe; ricerca in banche dati e letteratura per informazioni su analoghi strutturali; e analisi della tossicità e altri dati sugli analoghi strutturali. In alcuni rari casi, le informazioni sulla struttura del composto da sole possono essere sufficienti per supportare alcune analisi SAR, basate su meccanismi di tossicità ben noti. Sono stati compilati diversi database su SAR, nonché metodi basati su computer per la previsione della struttura molecolare.
Con queste informazioni, i seguenti endpoint possono essere stimati con SAR:
Va notato che non esistono metodi SAR per endpoint sanitari così importanti come cancerogenicità, tossicità per lo sviluppo, tossicità riproduttiva, neurotossicità, immunotossicità o altri effetti sugli organi bersaglio. Ciò è dovuto a tre fattori: la mancanza di un ampio database su cui testare le ipotesi SAR, la mancanza di conoscenza dei determinanti strutturali dell'azione tossica e la molteplicità delle cellule bersaglio e dei meccanismi coinvolti in questi endpoint (vedere "The United States approccio alla valutazione del rischio di sostanze tossiche per la riproduzione e agenti neurotossici”). Alcuni tentativi limitati di utilizzare il SAR per prevedere la farmacocinetica utilizzando informazioni sui coefficienti di partizione e sulla solubilità (Johanson e Naslund 1988). È stato fatto un SAR quantitativo più ampio per prevedere il metabolismo P450-dipendente di una gamma di composti e il legame di molecole simili a diossina e PCB al recettore citosolico della "diossina" (Hansch e Zhang 1993).
È stato dimostrato che il SAR ha una prevedibilità variabile per alcuni degli endpoint sopra elencati, come mostrato nella tabella 1. Questa tabella presenta i dati di due confronti dell'attività prevista con i risultati effettivi ottenuti mediante misurazione empirica o test di tossicità. Il SAR condotto dagli esperti dell'EPA statunitense ha ottenuto risultati più scarsi nella previsione delle proprietà fisico-chimiche rispetto alla previsione dell'attività biologica, inclusa la biodegradazione. Per gli endpoint di tossicità, SAR ha ottenuto i risultati migliori per prevedere la mutagenicità. Anche Ashby e Tennant (1991) in uno studio più esteso hanno riscontrato una buona prevedibilità della genotossicità a breve termine nella loro analisi delle sostanze chimiche NTP. Questi risultati non sono sorprendenti, data l'attuale comprensione dei meccanismi molecolari della genotossicità (vedi "Tossicologia genetica") e il ruolo dell'elettrofilia nel legame del DNA. Al contrario, il SAR tendeva a sottostimare la tossicità sistemica e subcronica nei mammiferi ea sovrastimare la tossicità acuta per gli organismi acquatici.
Tabella 1. Confronto dei dati SAR e dei test: analisi OCSE/NTP
endpoint | Accordo (%) | Disaccordo (%) | Numero |
Punto di ebollizione | 50 | 50 | 30 |
Pressione del vapore | 63 | 37 | 113 |
Solubilità dell'acqua | 68 | 32 | 133 |
Coefficiente di ripartizione | 61 | 39 | 82 |
La biodegradazione | 93 | 7 | 107 |
Tossicità per i pesci | 77 | 22 | 130 |
Tossicità dafnie | 67 | 33 | 127 |
Tossicità acuta per i mammiferi (LD50 ) | 80 | 201 | 142 |
Irritazione della pelle | 82 | 18 | 144 |
Irritazione agli occhi | 78 | 22 | 144 |
Sensibilizzazione cutanea | 84 | 16 | 144 |
Tossicità subcronica | 57 | 32 | 143 |
Mutagenesi2 | 88 | 12 | 139 |
Mutagenesi3 | 82-944 | 1-10 | 301 |
Cancerogenicità3 : Saggio biologico di due anni | 72-954 | - | 301 |
Fonte: dati OCSE, comunicazione personale C. Auer, US EPA. In questa analisi sono stati utilizzati solo gli endpoint per i quali erano disponibili previsioni SAR comparabili e dati di test effettivi. I dati NTP provengono da Ashby e Tennant 1991.
1 Desta preoccupazione è stata l'incapacità del SAR di prevedere la tossicità acuta nel 12% delle sostanze chimiche testate.
2 Dati OCSE, basati sulla concordanza del test di Ames con SAR
3 Dati NTP, basati su test genetox rispetto alle previsioni SAR per diverse classi di "sostanze chimiche strutturalmente allerta".
4 La concordanza varia con la classe; la maggiore concordanza era con i composti aromatici ammino/nitro; più basso con strutture “varie”.
Per altri endpoint tossici, come notato sopra, SAR ha un'utilità meno dimostrabile. Le previsioni sulla tossicità nei mammiferi sono complicate dalla mancanza di SAR per la tossicocinetica di molecole complesse. Tuttavia, sono stati fatti alcuni tentativi per proporre principi SAR per endpoint complessi di tossicità sui mammiferi (per esempio, vedere Bernstein (1984) per un'analisi SAR di potenziali sostanze tossiche per la riproduzione maschile). Nella maggior parte dei casi, il database è troppo piccolo per consentire test rigorosi delle previsioni basate sulla struttura.
A questo punto si può concludere che il SAR può essere utile principalmente per dare la priorità all'investimento di risorse per i test di tossicità o per sollevare preoccupazioni in merito a potenziali pericoli. Solo nel caso della mutagenicità è probabile che l'analisi SAR da sola possa essere utilizzata con affidabilità per informare altre decisioni. Per nessun endpoint è probabile che SAR possa fornire il tipo di informazioni quantitative richieste ai fini della valutazione del rischio come discusso altrove in questo capitolo e Enciclopedia.
" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."