Mercoledì, marzo 16 2011 22: 04

Valutazione dello Stress da Calore e degli Indici di Stress da Calore

Vota questo gioco
(17 voti )

Lo stress da calore si verifica quando l'ambiente di una persona (temperatura dell'aria, temperatura radiante, umidità e velocità dell'aria), l'abbigliamento e l'attività interagiscono per produrre una tendenza all'aumento della temperatura corporea. Il sistema di termoregolazione del corpo risponde quindi per aumentare la perdita di calore. Questa risposta può essere potente ed efficace, ma può anche produrre uno sforzo sul corpo che porta a disagio e alla fine a malattie da calore e persino alla morte. È quindi importante valutare gli ambienti caldi per garantire la salute e la sicurezza dei lavoratori.

Gli indici di stress da calore forniscono strumenti per valutare gli ambienti caldi e prevedere la probabile sollecitazione termica sul corpo. I valori limite basati sugli indici di stress da calore indicheranno quando è probabile che tale deformazione diventi inaccettabile.

I meccanismi dello stress da calore sono generalmente conosciuti e le pratiche di lavoro per ambienti caldi sono ben consolidate. Questi includono la conoscenza dei segni premonitori dello stress da caldo, programmi di acclimatazione e sostituzione dell'acqua. Ci sono ancora molte vittime, tuttavia, e queste lezioni sembrano dover essere reimparate.

Nel 1964, Leithead e Lind descrissero un'ampia indagine e conclusero che i disturbi da calore si verificano per uno o più dei seguenti tre motivi:

  1. l'esistenza di fattori come la disidratazione o la mancanza di acclimatazione
  2. la mancanza di adeguata valutazione dei pericoli del caldo, sia da parte dell'autorità di vigilanza che da parte degli individui a rischio
  3. circostanze accidentali o imprevedibili che comportano l'esposizione a stress da calore molto elevato.

 

Hanno concluso che molti decessi possono essere attribuiti a negligenza e mancanza di considerazione e che anche quando si verificano disturbi, si può fare molto se sono disponibili tutti i requisiti per il trattamento correttivo corretto e tempestivo.

Indici di stress da calore

Un indice di stress termico è un singolo numero che integra gli effetti dei sei parametri di base in qualsiasi ambiente termico umano in modo tale che il suo valore varierà con lo sforzo termico sperimentato dalla persona esposta a un ambiente caldo. Il valore dell'indice (misurato o calcolato) può essere utilizzato nella progettazione o nella pratica lavorativa per stabilire limiti di sicurezza. Sono state fatte molte ricerche per determinare l'indice di stress termico definitivo e si discute su quale sia il migliore. Ad esempio, Goldman (1988) presenta 32 indici di stress da calore, e ci sono probabilmente almeno il doppio di quel numero utilizzato in tutto il mondo. Molti indici non tengono conto di tutti e sei i parametri fondamentali, sebbene tutti debbano tenerne conto nell'applicazione. L'uso degli indici dipenderà dai singoli contesti, quindi la produzione di così tanti. Alcuni indici sono teoricamente inadeguati ma possono essere giustificati per applicazioni specifiche basate sull'esperienza in un particolare settore.

Kerslake (1972) osserva che “è forse evidente che il modo in cui i fattori ambientali dovrebbero essere combinati deve dipendere dalle proprietà del soggetto ad essi esposto, ma nessuno degli indici di stress termico attualmente in uso tiene formalmente conto di questo ”. La recente ondata di standardizzazione (ad esempio, ISO 7933 (1989b) e ISO 7243 (1989a)) ha portato a pressioni per l'adozione di indici simili in tutto il mondo. Sarà tuttavia necessario acquisire esperienza con l'uso di qualsiasi nuovo indice.

La maggior parte degli indici di stress da calore considera, direttamente o indirettamente, che la principale sollecitazione sul corpo è dovuta alla sudorazione. Ad esempio, maggiore è la sudorazione necessaria per mantenere l'equilibrio termico e la temperatura corporea interna, maggiore è lo sforzo sul corpo. Affinché un indice di stress da calore rappresenti l'ambiente termico umano e preveda la tensione da calore, è necessario un meccanismo per stimare la capacità di una persona che suda di perdere calore nell'ambiente caldo.

Un indice relativo all'evaporazione del sudore nell'ambiente è utile quando le persone mantengono la temperatura corporea interna essenzialmente attraverso la sudorazione. Generalmente si dice che queste condizioni siano in zona prescrittiva (CHI 1969). Quindi la temperatura corporea profonda rimane relativamente costante mentre la frequenza cardiaca e la frequenza del sudore aumentano con lo stress da calore. Al limite superiore della zona prescrittiva (ULPZ), la termoregolazione è insufficiente per mantenere l'equilibrio termico e la temperatura corporea aumenta. Questo è chiamato il zona guidata dall'ambiente (CHI 1969). In questa zona l'accumulo di calore è correlato all'aumento della temperatura corporea interna e può essere utilizzato come indice per determinare i tempi di esposizione consentiti (ad esempio, sulla base di un limite di sicurezza previsto per la temperatura "core" di 38 °C; vedere la Figura 1).

Figura 1. Distribuzioni calcolate di acqua nel compartimento extracellulare (ECW) e nel compartimento intracellulare (ICW) prima e dopo 2 ore di disidratazione da esercizio a temperatura ambiente di 30°C.

HEA080F1

Gli indici di stress da calore possono essere convenientemente classificati come razionale, empirico or dirette. Gli indici razionali si basano su calcoli che coinvolgono l'equazione del bilancio termico; gli indici empirici si basano sullo stabilire equazioni dalle risposte fisiologiche di soggetti umani (ad esempio, perdita di sudore); e gli indici diretti si basano sulla misurazione (solitamente temperatura) di strumenti utilizzati per simulare la risposta del corpo umano. Gli indici di stress termico più influenti e ampiamente utilizzati sono descritti di seguito.

Indici razionali

L'indice di stress da calore (HSI)

L'indice di stress termico è il rapporto di evaporazione necessario per mantenere l'equilibrio termico (Ereq) alla massima evaporazione ottenibile nell'ambiente (Emax), espresso in percentuale (Belding e Hatch 1955). Le equazioni sono fornite nella tabella 1.

 


Tabella 1. Equazioni utilizzate nel calcolo dell'indice di stress da calore (HSI) e dei tempi di esposizione consentiti (AET)

 

 

 

 

vestita

Svestito

(1) Perdita di radiazioni (R)

 

per

4.4

7.3

(2) Perdita per convezione (C)

 

per

4.6

7.6

 

(3) Perdita evaporativa massima ()

 

(limite massimo di 390 )

 

per

7.0

11.7

 

(4) Perdita per evaporazione richiesta ()

 

 

 

 

(5) Indice di stress da calore (HSI)

 

 

 

 

(6) Tempo di esposizione consentito (AET)

 

 

 

dove: M = potenza metabolica; = temperatura dell'aria; = temperatura radiante; = tensione di vapore parziale;  v = velocità dell'aria 


                         

 

I HSI come indice è quindi relativo allo sforzo, essenzialmente in termini di sudorazione corporea, per valori compresi tra 0 e 100. A HSI = 100, l'evaporazione richiesta è la massima realizzabile, e rappresenta quindi il limite superiore della zona prescrittiva. Per HSI>100, c'è accumulo di calore corporeo e i tempi di esposizione consentiti sono calcolati sulla base di un aumento di 1.8 ºC della temperatura interna (accumulo di calore di 264 kJ). Per HSI0 c'è una leggera tensione da freddo, ad esempio quando i lavoratori si riprendono dalla tensione da caldo (vedi tabella 2).

Tabella 2. Interpretazione dei valori dell'Heat Stress Index (HSI).

HSI

Effetto dell'esposizione di otto ore

-20

Lieve deformazione da freddo (es. recupero dall'esposizione al calore).

0

Nessuna tensione termica

10-30

Sforzo termico da lieve a moderato. Scarso effetto sul lavoro fisico ma possibile effetto sul lavoro qualificato

40-60

Grave stress da calore, che comporta una minaccia per la salute a meno che non sia fisicamente in forma. Acclimatamento richiesto

70-90

Sforzo termico molto intenso. Il personale dovrebbe essere selezionato mediante visita medica. Garantire un adeguato apporto di acqua e sale

100

Sforzo massimo tollerato giornalmente da giovani acclimatati in forma

Nel corso 100

Tempo di esposizione limitato dall'aumento della temperatura corporea profonda

Un limite superiore di 390 W/m2 è assegnato a Emax (tasso di sudorazione di 1 l/h, considerato il tasso di sudorazione massimo mantenuto per 8 h). Vengono fatte semplici ipotesi sugli effetti dell'abbigliamento (camicia e pantaloni a maniche lunghe) e si presume che la temperatura della pelle sia costante a 35ºC.

L'indice di stress termico (ITS)

Givoni (1963, 1976) fornì l'Index of Thermal Stress, che era una versione migliorata dell'Heat Stress Index. Un miglioramento importante è il riconoscimento che non tutto il sudore evapora. (Vedi “I. Indice di stress termico” in Caso di studio: Indici di calore.)

Tasso di sudore richiesto

Un ulteriore sviluppo teorico e pratico dell'HSI e dell'ITS è stato il tasso di sudorazione richiesto (SWreq) indice (Vogt et al. 1981). Questo indice calcolava la sudorazione richiesta per il bilancio termico da una migliore equazione del bilancio termico ma, cosa più importante, forniva anche un metodo pratico di interpretazione dei calcoli confrontando ciò che è richiesto con ciò che è fisiologicamente possibile e accettabile negli esseri umani.

Ampie discussioni e valutazioni di laboratorio e industriali (CEC 1988) di questo indice hanno portato ad accettarlo come Standard Internazionale ISO 7933 (1989b). Le differenze tra le risposte osservate e previste dei lavoratori hanno portato all'inclusione di note cautelative relative ai metodi di valutazione della disidratazione e del trasferimento di calore per evaporazione attraverso l'abbigliamento nella sua adozione come proposta di norma europea (prEN-12515). (Vedere "II. Tasso di sudorazione richiesto" in Caso di studio: Indici di calore.)

Interpretazione di SWreq

I valori di riferimento, in termini di ciò che è accettabile o di ciò che le persone possono ottenere, sono usati per fornire un'interpretazione pratica dei valori calcolati (vedi tabella 3).

Tabella 3. Valori di riferimento per i criteri di sollecitazione termica e deformazione (ISO 7933, 1989b)

Criteri

Soggetti non acclimatati

Soggetti acclimatati

 

avvertimento

Pericolo

avvertimento

Pericolo

Massima bagnabilità della pelle

wmax

0.85

0.85

1.0

1.0

Tasso di sudorazione massimo

Riposo (M 65 Wm-2 )

SWmax Wm-2 gh-1

100

150

200

300

 

260

390

520

780

Lavoro (M≥65 Wm-2 )

SWmax Wm-2 gh-1

200

250

300

400

 

520

650

780

1,040

Massimo accumulo di calore

Qmax

Whm-2

50

60

50

60

Massima perdita d'acqua

Dmax

Whm-2 g

1,000

1,250

1,500

2,000

 

2,600

3,250

3,900

5,200

 

In primo luogo, una previsione dell'umidità della pelle (Wp), tasso di evaporazione (Ep) e tasso di sudorazione (SWp) sono fatti. In sostanza, se ciò che viene calcolato come richiesto può essere raggiunto, allora questi sono valori previsti (ad es. SWp = SWreq). Se non possono essere raggiunti, possono essere presi i valori massimi (es. SWp= SWmax). Maggiori dettagli sono forniti in un diagramma di flusso decisionale (vedi figura 2).

Figura 2. Diagramma di flusso decisionale per  (tasso di sudore richiesto).

HEA080F2

Se il tasso di sudorazione richiesto può essere raggiunto dalle persone e non causerà una perdita d'acqua inaccettabile, allora non ci sono limiti dovuti all'esposizione al calore su un turno di 8 ore. In caso contrario, le esposizioni a durata limitata (DE) sono calcolati da quanto segue:

Quando Ep = Ereq ed SWp = Dmax/8, poi DL = 480 minuti e SWreq può essere utilizzato come indice di stress termico. Se quanto sopra non è soddisfatto, allora:

DLE1 = 60Qmax/( Ereq -Ep)

DLE2 = 60Dmax/SWp

DLE è il minore di DLE1 e DLE2. Maggiori dettagli sono forniti nella ISO 7933 (1989b).

Altri indici razionali

I SWreq indice e ISO 7933 (1989) forniscono il metodo razionale più sofisticato basato sull'equazione del bilancio termico, e sono stati i principali progressi. Si possono fare ulteriori sviluppi con questo approccio; tuttavia, un approccio alternativo consiste nell'utilizzare un modello termico. Essenzialmente, la New Effective Temperature (ET*) e la Standard Effective Temperature (SET) forniscono indici basati sul modello a due nodi della termoregolazione umana (Nishi e Gagge 1977). Givoni e Goldman (1972, 1973) forniscono anche modelli di previsione empirica per la valutazione dello stress da calore.

Indici empirici

Temperatura effettiva e temperatura effettiva corretta

L'indice di temperatura effettiva (Houghton e Yaglou 1923) è stato originariamente stabilito per fornire un metodo per determinare gli effetti relativi della temperatura e dell'umidità dell'aria sul comfort. Tre soggetti hanno giudicato quale delle due camere climatiche fosse più calda camminando tra le due. Utilizzando diverse combinazioni di temperatura e umidità dell'aria (e successivamente altri parametri), sono state determinate linee di uguale comfort. Sono state effettuate impressioni immediate, quindi è stata registrata la risposta transitoria. Ciò ha avuto l'effetto di enfatizzare eccessivamente l'effetto dell'umidità alle basse temperature e di sottovalutarlo alle alte temperature (rispetto alle risposte allo stato stazionario). Sebbene in origine fosse un indice di comfort, l'uso della temperatura del globo nero per sostituire la temperatura a bulbo secco nei nomogrammi ET ha fornito la temperatura effettiva corretta (CET) (Bedford 1940). La ricerca riportata da Macpherson (1960) ha suggerito che il CET prevedeva gli effetti fisiologici dell'aumento della temperatura media radiante. ET e CET sono ora usati raramente come indici di comfort, ma sono stati usati come indici di stress da calore. Bedford (1940) ha proposto CET come indice di calore, con limiti superiori di 34ºC per "efficienza ragionevole" e 38.6ºC per tolleranza. Ulteriori indagini, tuttavia, hanno mostrato che l'ET presentava gravi svantaggi per l'uso come indice di stress da calore, che ha portato all'indice Predicted Four Hour Sweat Rate (P4SR).

Tasso di sudore di quattro ore previsto

L'indice Predicted Four Hour Sweat Rate (P4SR) è stato stabilito a Londra da McArdle et al. (1947) e valutato a Singapore in 7 anni di lavoro riassunti da Macpherson (1960). È la quantità di sudore secreta da giovani in forma, acclimatati, esposti all'ambiente per 4 ore mentre caricano armi con munizioni durante uno scontro navale. Il singolo numero (valore indice) che riassume gli effetti dei sei parametri fondamentali è una quantità di sudore della popolazione specifica, ma dovrebbe essere usato come valore indice e non come indicazione di una quantità di sudore in un singolo gruppo di interesse.

È stato riconosciuto che al di fuori della zona prescrittiva (ad esempio, P4SR>5 l) il tasso di sudorazione non era un buon indicatore di sforzo. I nomogrammi P4SR (figura 3) sono stati adattati per tentare di tenere conto di ciò. Il P4SR sembra essere stato utile nelle condizioni per le quali è stato derivato; tuttavia, gli effetti dell'abbigliamento sono eccessivamente semplificati ed è molto utile come indice di accumulo di calore. MacArdle et al. (1947) hanno proposto un P4SR di 4.5 l per un limite in cui non si è verificata alcuna incapacità di alcun tipo di giovane uomo acclimatato.

Figura 3. Nomogramma per la previsione del "tasso di sudorazione previsto nelle 4 ore" (P4SR).

HEA080F3

Previsione della frequenza cardiaca come indice

Fuller e Brouha (1966) hanno proposto un semplice indice basato sulla previsione della frequenza cardiaca (HR) in battiti al minuto. La relazione originariamente formulata con il tasso metabolico in BTU/h e la tensione di vapore parziale in mmHg ha fornito una semplice previsione della frequenza cardiaca da (T + p), quindi il T + p indice.

Givoni e Goldman (1973) forniscono anche equazioni per modificare la frequenza cardiaca nel tempo e anche correzioni per il grado di acclimatazione dei soggetti, che sono date in Case Study" Indici di calore sotto “IV. Frequenza del battito cardiaco".

Un metodo di lavoro e recupero della frequenza cardiaca è descritto da NIOSH (1986) (da Brouha 1960 e Fuller e Smith 1980, 1981). La temperatura corporea e le pulsazioni vengono misurate durante il recupero dopo un ciclo di lavoro o in momenti specifici durante la giornata lavorativa. Al termine di un ciclo di lavoro il lavoratore si siede su uno sgabello, viene misurata la temperatura orale e vengono registrate le seguenti tre pulsazioni:

P1—frequenza del polso contata da 30 secondi a 1 minuto

P2—frequenza del polso contata da 1.5 a 2 minuti

P3—frequenza del polso contata da 2.5 a 3 minuti

Il criterio ultimo in termini di tensione termica è una temperatura orale di 37.5 ºC.

If P3≤90 bpm e P3-P1 = 10 bpm, questo indica che il livello di lavoro è alto ma c'è poco aumento della temperatura corporea. Se P3>90 bpm e P3-P110 bpm, lo stress (caldo + lavoro) è troppo elevato e occorre intervenire per ridisegnare il lavoro.

Vogt et al. (1981) e ISO 9886 (1992) forniscono un modello (tabella 4) che utilizza la frequenza cardiaca per valutare gli ambienti termici:

Tabella 4. Modello che utilizza la frequenza cardiaca per valutare lo stress da calore

Frequenza cardiaca totale

Livello di attività

HR0

Riposo (neutralità termica)

HR0 + risorse umaneM

Lavora

HR0 + risorse umaneS

Sforzo statico

HR0 + risorse umanet

Deformazione termica

HR0 + risorse umaneN

Emozione (psicologica)

HR0 + risorse umanee

Residuo

Sulla base di Vogt et al. (1981) e ISO 9886 (1992).

La componente della deformazione termica (possibile indice di stress termico) può essere calcolata da:

HRt = HRr-HR0

where HRr è la frequenza cardiaca dopo il recupero e HR0 è la frequenza cardiaca a riposo in un ambiente termicamente neutro.

Indici di stress da calore diretto

L'indice di temperatura del globo a bulbo umido

L'indice Wet Bulb Globe Temperature (WBGT) è di gran lunga il più utilizzato in tutto il mondo. È stato sviluppato in un'indagine della Marina degli Stati Uniti sulle vittime del calore durante l'addestramento (Yaglou e Minard 1957) come approssimazione alla più ingombrante temperatura effettiva corretta (CET), modificata per tenere conto dell'assorbimento solare dell'abbigliamento militare verde.

I valori limite WBGT sono stati utilizzati per indicare quando le reclute militari potevano addestrarsi. È stato riscontrato che le vittime del caldo e il tempo perso a causa della cessazione dell'allenamento al caldo sono stati entrambi ridotti utilizzando l'indice WBGT invece della sola temperatura dell'aria. L'indice WBGT è stato adottato da NIOSH (1972), ACGIH (1990) e ISO 7243 (1989a) ed è proposto ancora oggi. ISO 7243 (1989a), basato sull'indice WBGT, fornisce un metodo facilmente utilizzabile in un ambiente caldo per fornire una diagnosi “rapida”. La specifica degli strumenti di misura è fornita nella norma, così come i valori limite WBGT per persone acclimatate o non acclimatate (vedi tabella 5). Ad esempio, per una persona acclimatata a riposo in 0.6 clo, il valore limite è 33ºC WBGT. I limiti forniti in ISO 7243 (1989a) e NIOSH 1972 sono quasi identici. Il calcolo dell'indice WBGT è riportato nella sezione V dell'allegato Caso di studio: Indici di calore.

Tabella 5. Valori di riferimento WBGT da ISO 7243 (1989a)

Tasso metabolico M (Wm-2 )

Valore di riferimento di WBGT

 

Persona abituata a
calore (°C)

Persona non acclimatata
calore (°C)

0. A riposo M≤65

33

 

32

 

1. 65M≤130

30

 

29

 

2. 130M≤200

28

 

26

 
 

Nessun movimento d'aria sensibile

Movimento d'aria sensibile

Nessun movimento d'aria sensibile

Movimento d'aria sensibile

3. 200M260

25

26

22

23

4.M>260

23

25

18

20

Nota: i valori indicati sono stati stabiliti tenendo conto di una temperatura rettale massima di 38°C per le persone interessate.

La semplicità dell'indice e il suo utilizzo da parte di organismi influenti ha portato alla sua diffusa accettazione. Come tutti gli indici diretti ha dei limiti quando viene utilizzato per simulare la risposta umana e dovrebbe essere usato con cautela nelle applicazioni pratiche. È possibile acquistare strumenti portatili che determinano l'indice WBGT (es. Olesen 1985).

Limite fisiologico di esposizione al calore (PHEL)

Dasler (1974, 1977) fornisce valori limite WBGT basati su una previsione di superamento di due limiti fisiologici qualsiasi (da dati sperimentali) di ceppo non ammissibile. I limiti sono dati da:

FEL=(17.25×108-12.97M× 106+ 18.61M2 × 103) ×WBGT-5.36

Questo indice utilizza quindi l'indice diretto WBGT nella zona guidata dall'ambiente (vedi Figura 4), dove può verificarsi l'accumulo di calore.

Indice di temperatura del globo umido (WGT).

La temperatura di un globo nero umido di dimensioni adeguate può essere utilizzata come indice di stress da calore. Il principio è che è influenzato dal trasferimento di calore sia secco che evaporativo, come lo è un uomo che suda, e la temperatura può quindi essere utilizzata, con l'esperienza, come indice di stress termico. Olesen (1985) descrive WGT come la temperatura di un globo nero di 2.5 pollici (63.5 mm) di diametro coperto da un panno nero umido. La temperatura viene letta al raggiungimento dell'equilibrio dopo circa 10-15 minuti di esposizione. NIOSH (1986) descrive il Botsball (Botsford 1971) come lo strumento più semplice e di più facile lettura. È una sfera di rame da 3 pollici (76.2 mm) coperta da un panno nero mantenuto al 100% di umidità da un serbatoio d'acqua autoalimentato. L'elemento sensibile di un termometro si trova al centro della sfera e la temperatura viene letta su un quadrante (con codice colore).

Una semplice equazione che collega WGT a WBGT è:

 

WBGT = WGT +2ºC

per condizioni di calore radiante e umidità moderati (NIOSH 1986), ma ovviamente questa relazione non può reggere in un'ampia gamma di condizioni.

L'indice di Oxford

Lind (1957) ha proposto un indice semplice e diretto utilizzato per l'esposizione al calore limitata dallo stoccaggio e basato su una somma ponderata della temperatura a bulbo umido aspirata (Twb) e temperatura a bulbo secco (Tdb):

WD = 0.85 Twb + 0.15 Tdb

I tempi di esposizione consentiti per le squadre di soccorso in miniera erano basati su questo indice. È ampiamente applicabile ma non è appropriato in presenza di radiazioni termiche significative.

Pratiche di lavoro per ambienti caldi

NIOSH (1986) fornisce una descrizione completa delle pratiche di lavoro per ambienti caldi, comprese le pratiche mediche preventive. Una proposta per la supervisione medica delle persone esposte ad ambienti caldi o freddi è fornita in ISO CD 12894 (1993). Va sempre ricordato che si tratta di un diritto umano fondamentale, che è stato affermato dal 1985 Dichiarazione di Helsinki, che, quando possibile, le persone possono ritirarsi da qualsiasi ambiente estremo senza bisogno di spiegazioni. Laddove l'esposizione ha luogo, pratiche di lavoro definite miglioreranno notevolmente la sicurezza.

È un principio ragionevole nell'ergonomia ambientale e nell'igiene industriale che, ove possibile, il fattore di stress ambientale debba essere ridotto alla fonte. NIOSH (1986) divide i metodi di controllo in cinque tipi. Questi sono presentati nella tabella 6.

Tabella 6. Pratiche di lavoro per ambienti caldi

A. Controlli ingegneristici

Esempio

1. Ridurre la fonte di calore

Allontanarsi dai lavoratori o ridurre la temperatura. Non sempre praticabile.

2. Controllo del calore convettivo

Modificare la temperatura dell'aria e i movimenti dell'aria. I dispositivi di raffreddamento spot possono essere utili.

3. Controllo del calore radiante

Ridurre le temperature superficiali o posizionare uno schermo riflettente tra la sorgente radiante e i lavoratori. Cambia l'emissività della superficie. Utilizzare porte che si aprono solo quando è richiesto l'accesso.

4. Controllo del calore evaporativo

Aumenta il movimento dell'aria, diminuisce la pressione del vapore acqueo. Usa i ventilatori o l'aria condizionata. Indumenti bagnati e soffiare aria sulla persona.

B. Pratiche di lavoro e di igiene
e controlli amministrativi

Esempio

1. Limitare il tempo di esposizione e/o
temperatura

Esegui i lavori nelle ore più fresche del giorno e dell'anno. Fornire aree fresche per il riposo e il recupero. Personale extra, libertà dei lavoratori di interrompere il lavoro, aumentare l'assunzione di acqua.

2. Ridurre il carico di calore metabolico

Meccanizzazione. Lavoro di riprogettazione. Ridurre il tempo di lavoro. Aumentare la forza lavoro.

3. Migliorare il tempo di tolleranza

Programma di acclimatazione al calore. Mantieni i lavoratori fisicamente in forma. Assicurarsi che la perdita d'acqua venga reintegrata e mantenere l'equilibrio elettrolitico se necessario.

4. Formazione in materia di salute e sicurezza

Supervisori formati nel riconoscere i segni di malattie da calore e nel primo soccorso. Istruzione di base a tutto il personale sulle precauzioni personali, sull'uso dei dispositivi di protezione e sugli effetti di fattori non professionali (es. alcol). Uso di un sistema "amico". Dovrebbero essere predisposti piani di emergenza per il trattamento.

5. Screening per l'intolleranza al calore

Storia di precedenti malattie da calore. Fisicamente inadatto.

C. Programma di allerta calore

Esempio

1. In primavera stabilire un'allerta per il caldo
commissione (medico industriale
o infermiere, igienista industriale,
ingegnere della sicurezza, operazione
ingegnere, dirigente di alto rango)

Organizzare un corso di formazione. Promemoria ai preposti per il controllo delle fontanelle, ecc. Verifica delle strutture, delle pratiche, della prontezza, ecc.

2. Dichiarare l'allerta calore in previsione
periodo di caldo

Rinvia le attività non urgenti. Aumenta i lavoratori, aumenta il riposo. Ricorda ai lavoratori di bere. Migliorare le pratiche di lavoro.

D. Raffreddamento del corpo ausiliario e indumenti protettivi

Utilizzare se non è possibile modificare il lavoratore, il lavoro o l'ambiente e lo stress da calore è ancora oltre i limiti. Gli individui dovrebbero essere completamente acclimatati al calore e ben addestrati all'uso e alla pratica di indossare gli indumenti protettivi. Esempi sono gli indumenti raffreddati ad acqua, gli indumenti raffreddati ad aria, i giubbotti antigelo e i soprabiti bagnati.

E. Degrado delle prestazioni

Va ricordato che indossare indumenti protettivi che forniscono protezione dagli agenti tossici aumenterà lo stress da calore. Tutti gli indumenti interferiscono con le attività e possono ridurre le prestazioni (ad es. riducendo la capacità di ricevere informazioni sensoriali e compromettendo, ad esempio, l'udito e la vista).

Fonte: NIOSH 1986.

C'è stata una grande quantità di ricerca militare sui cosiddetti indumenti protettivi NBC (nucleari, biologici, chimici). In ambienti caldi non è possibile togliere gli indumenti e le pratiche lavorative sono molto importanti. Un problema simile si verifica per i lavoratori delle centrali nucleari. I metodi per raffreddare rapidamente i lavoratori in modo che siano in grado di lavorare di nuovo includono spugnare la superficie esterna degli indumenti con acqua e soffiarvi sopra aria secca. Altre tecniche includono dispositivi di raffreddamento attivo e metodi per raffreddare aree locali del corpo. Il trasferimento della tecnologia dell'abbigliamento militare a situazioni industriali è una nuova innovazione, ma si sa molto e pratiche di lavoro appropriate possono ridurre notevolmente i rischi.

 

Tabella 7. Equazioni utilizzate nel calcolo dell'indice e metodo di valutazione della ISO 7933 (1989b)

per convezione naturale

or  , per un'approssimazione o quando i valori sono oltre i limiti per i quali è stata derivata l'equazione.

____________________________________________________________________________________

Tabella 8. Descrizione dei termini utilizzati nella ISO 7933 (1989b)

Simbolo

Termine

Unità

frazione di superficie cutanea coinvolta nello scambio termico per irraggiamento

ND

C

scambio termico sulla pelle per convezione  

Wm-2

perdita di calore respiratorio per convezione

Wm-2

E

flusso di calore per evaporazione sulla superficie della pelle

Wm-2

massima velocità di evaporazione ottenibile con la pelle completamente bagnata

Wm-2

evaporazione necessaria per l'equilibrio termico

Wm-2

perdita di calore respiratorio per evaporazione

Wm-2

emissività cutanea (0.97)

ND

fattore di riduzione per lo scambio termico sensibile dovuto all'abbigliamento

ND

fattore di riduzione per lo scambio termico latente

ND

rapporto tra la superficie del soggetto vestito e quella non vestita

ND

coefficiente di scambio termico convettivo

coefficiente di scambio termico evaporativo

coefficiente di scambio termico radiativo

isolamento termico a secco di base degli indumenti

K

scambio termico sulla pelle per conduzione

Wm-2

M

potenza metabolica

Wm-2

tensione di vapore parziale

kPa

tensione di vapore saturo a temperatura cutanea

kPa

R

scambio termico sulla pelle per irraggiamento

Wm-2

totale resistenza evaporativa dello strato limitante di aria e indumenti

efficienza evaporativa al tasso di sudore richiesto

ND

tasso di sudore richiesto per l'equilibrio termico

Wm-2

Costante di Stefan-Boltzmann, 

temperatura dell'aria

temperatura media radiante

temperatura media della pelle

velocità dell'aria per un soggetto fermo

velocità relativa dell'aria

W

potenza meccanica

Wm-2

bagnatura della pelle

ND

bagnatura della pelle richiesta

ND

ND = adimensionale.

Pratiche di lavoro per ambienti caldi

NIOSH (1986) fornisce una descrizione completa delle pratiche di lavoro per ambienti caldi, comprese le pratiche mediche preventive. Una proposta per la supervisione medica delle persone esposte ad ambienti caldi o freddi è fornita in ISO CD 12894 (1993). Va sempre ricordato che si tratta di un diritto umano fondamentale, che è stato affermato dal 1985Dichiarazione di Helsinki, che, quando possibile, le persone possono ritirarsi da qualsiasi ambiente estremo senza bisogno di spiegazioni. Laddove l'esposizione ha luogo, pratiche di lavoro definite miglioreranno notevolmente la sicurezza.

È un principio ragionevole nell'ergonomia ambientale e nell'igiene industriale che, ove possibile, il fattore di stress ambientale debba essere ridotto alla fonte. NIOSH (1986) divide i metodi di controllo in cinque tipi. Questi sono presentati nella tabella 7. C'è stata una grande quantità di ricerca militare sui cosiddetti indumenti protettivi NBC (nucleari, biologici, chimici). In ambienti caldi non è possibile togliere gli indumenti e le pratiche lavorative sono molto importanti. Un problema simile si verifica per i lavoratori delle centrali nucleari. I metodi per raffreddare rapidamente i lavoratori in modo che siano in grado di lavorare di nuovo includono spugnare la superficie esterna degli indumenti con acqua e soffiarvi sopra aria secca. Altre tecniche includono dispositivi di raffreddamento attivo e metodi per raffreddare aree locali del corpo. Il trasferimento della tecnologia dell'abbigliamento militare a situazioni industriali è una nuova innovazione, ma si sa molto e pratiche di lavoro appropriate possono ridurre notevolmente i rischi.

Valutazione di un ambiente caldo utilizzando gli standard ISO

Il seguente esempio ipotetico dimostra come gli standard ISO possono essere utilizzati nella valutazione degli ambienti caldi (Parsons 1993):

I lavoratori in un'acciaieria eseguono il lavoro in quattro fasi. Indossano abiti ed eseguono lavori leggeri per 1 ora in un ambiente caldo e radiante. Riposano per 1 ora, quindi eseguono lo stesso lavoro leggero per un'ora al riparo dal calore radiante. Quindi eseguono un lavoro che comporta un livello moderato di attività fisica in un ambiente caldo e radiante per 30 minuti.

ISO 7243 fornisce un metodo semplice per monitorare l'ambiente utilizzando l'indice WBGT. Se i livelli di WBGT calcolati sono inferiori ai valori di riferimento WBGT indicati nello standard, non sono necessarie ulteriori azioni. Se i livelli superano i valori di riferimento (tabella 6), è necessario ridurre lo sforzo per i lavoratori. Ciò può essere ottenuto mediante controlli ingegneristici e pratiche di lavoro. Un'azione complementare o alternativa consiste nel condurre una valutazione analitica secondo la norma ISO 7933.

I valori WBGT per il lavoro sono presentati nella tabella 9 e sono stati misurati secondo le specifiche fornite nelle norme ISO 7243 e ISO 7726. I fattori ambientali e personali relativi alle quattro fasi del lavoro sono presentati nella tabella 10.

Tabella 9. Valori WBGT (°C) per quattro fasi di lavoro

Fase di lavoro (minuti)

WBGT = WBGTank + 2 GBGTabd + WBGhd

Riferimento WBGT

0-60

25

30

60-90

23

33

90-150

23

30

150-180

30

28

 

Tabella 10. Dati di base per la valutazione analitica utilizzando ISO 7933

Fase di lavoro (minuti)

ta (° C)

tr (° C)

Pa (Kpa)

v

(SM-1 )

clo

(clo)

Legge

(Wm-2 )

0-60

30

50

3

0.15

0.6

100

60-90

30

30

3

0.05

0.6

58

90-150

30

30

3

0.20

0.6

100

150-180

30

60

3

0.30

1.0

150

 

Si può notare che per una parte del lavoro i valori di WBGT superano quelli dei valori di riferimento. Si conclude che è necessaria un'analisi più dettagliata.

Il metodo di valutazione analitica presentato nella ISO 7933 è stato eseguito utilizzando i dati presentati nella tabella 10 e il programma per computer elencato nell'allegato della norma. I risultati per i lavoratori acclimatati in termini di livello di allarme sono presentati nella tabella 11.

Tabella 11. Valutazione analitica utilizzando ISO 7933

Fase di lavoro
(minuti)

Valori previsti

Durata
limitato
esposizione
(minuti)

Ragione per
limitare

 

tsk (° C)

W (ND)

SO (gh-1 )

 

0-60

35.5

0.93

553

423

Perdita d'acqua

60-90

34.6

0.30

83

480

Nessun limite

90-150

34.6

0.57

213

480

Nessun limite

150-180

35.7

1.00

566

45

Temperatura corporea

Totale

-

0.82

382

480

Nessun limite

 

Una valutazione complessiva prevede quindi che i lavoratori non acclimatati idonei al lavoro potrebbero svolgere un turno di 8 ore senza subire uno sforzo fisiologico (termico) inaccettabile. Se è richiesta una maggiore accuratezza o devono essere valutati i singoli lavoratori, ISO 8996 e ISO 9920 forniranno informazioni dettagliate sulla produzione di calore metabolico e sull'isolamento degli indumenti. ISO 9886 descrive i metodi per misurare lo sforzo fisiologico sui lavoratori e può essere utilizzato per progettare e valutare ambienti per specifiche forze lavoro. In questo esempio saranno interessanti la temperatura media della pelle, la temperatura corporea interna, la frequenza cardiaca e la perdita di massa. ISO CD 12894 fornisce indicazioni sulla supervisione medica di un'indagine.

 

Di ritorno

Leggi 37010 volte Ultima modifica Martedì, Luglio 26 2022 21: 20

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti di calore e freddo

ACGIH (Conferenza americana degli igienisti industriali governativi). 1990. Valori limite di soglia e indici di esposizione biologica per il periodo 1989-1990. New York: ACGIH.

—. 1992. Stress da freddo. In Valori limite di soglia per gli agenti fisici nell'ambiente di lavoro. New York: ACGIH.

Bedford, T. 1940. Calore ambientale e sua misurazione. Memorandum di ricerca medica n. 17. Londra: ufficio di cancelleria di Sua Maestà.

Belding, HS e TF Hatch. 1955. Indice per la valutazione dello stress da calore in termini di ceppo fisiologico risultante. Tubazioni di riscaldamento Aria condizionata 27:129–136.

Bittel, JHM. 1987. Debito di calore come indice di adattamento al freddo negli uomini. JAppl Physiol 62(4):1627–1634.

Bittel, JHM, C Nonotte-Varly, GH Livecchi-Gonnot, GLM Savourey e AM Hanniquet. 1988. Idoneità fisica e reazioni termoregolatorie in un ambiente freddo negli uomini. JAppl Physiol 65:1984-1989.

Bittel, JHM, GH Livecchi-Gonnot, AM Hanniquet e JL Etienne. 1989. Cambiamenti termici osservati prima e dopo il viaggio di JL Etienne al Polo Nord. Eur J Appl Physiol 58:646–651.

Bligh, J e KG Johnson. 1973. Glossario dei termini per la fisiologia termica. JAppl Physiol 35(6):941–961.

Botsford, J.H. 1971. Termometro a globo umido per la misurazione del calore ambientale. Am Ind Hyg J 32:1–10.

Boutelier, C. 1979. Survie et protection des équipages en cas d'immersion accidentelle en eau froide. Neuilly-sur-Seine: AGARD AG 211.

Brouha, L. 1960. Fisiologia nell'industria. New York: Pergamo Press.

Burton, AC e OG Edholm. 1955. L'uomo in un ambiente freddo. Londra: Edward Arnold.

Chen, F, H Nilsson e RI Holmér. 1994. Risposte di raffreddamento del polpastrello a contatto con una superficie di alluminio. Am Ind Hyg Assoc J 55(3):218-22.

Comitato europeo di normalizzazione (CEN). 1992. EN 344. Abbigliamento protettivo contro il freddo. Bruxelles: CEN.

—. 1993. EN 511. Guanti protettivi contro il freddo. Bruxelles: CEN.

Commissione delle Comunità Europee (CEC). 1988. Atti di un seminario sugli indici di stress da calore. Lussemburgo: CEC, Direzione Salute e Sicurezza.

Daanen, HAM. 1993. Deterioramento delle prestazioni manuali in condizioni di freddo e vento. AGARD, NATO, CP-540.

Dasler, AR. 1974. Ventilazione e stress termico, a terra ea galla. Nel Capitolo 3, Manuale di Medicina Preventiva Navale. Washington, DC: Dipartimento della Marina, Ufficio di Medicina e Chirurgia.

—. 1977. Stress da calore, funzioni lavorative e limiti fisiologici di esposizione al calore nell'uomo. In Analisi termica—Comfort umano—Ambienti interni. NBS Special Publication 491. Washington, DC: Dipartimento del Commercio degli Stati Uniti.

Deutsches Institut für Normierung (DIN) 7943-2. 1992. Schlafsacke, Thermophysiologische Prufung. Berlino: DIN.

Dubois, D e EF Dubois. 1916. Calorimetria clinica X: una formula per stimare la superficie appropriata se si conoscono altezza e peso. Arch Int Med 17:863–871.

Eagan, CJ. 1963. Introduzione e terminologia. Fed Proc 22:930–933.

Edwards, JSA, DE Roberts e SH Mutter. 1992. Relazioni per l'uso in un ambiente freddo. J Fauna selvatica Med 3:27–47.

Enander, A. 1987. Reazioni sensoriali e prestazioni a freddo moderato. Tesi di dottorato. Solna: Istituto nazionale di medicina del lavoro.

Fuller, FH e L Brouha. 1966. Nuovi metodi ingegneristici per la valutazione dell'ambiente di lavoro. ASHRAE J 8(1):39–52.

Fuller, FH e PE Smith. 1980. L'efficacia delle procedure di lavoro preventive in un'officina calda. In FN Dukes-Dobos e A Henschel (a cura di). Atti di un seminario NIOSH sugli standard raccomandati per lo stress da calore. Washington DC: pubblicazione DHSS (NIOSH) n. 81-108.

—. 1981. Valutazione dello stress da calore in un'officina calda mediante misurazioni fisiologiche. Am Ind Hyg Assoc J 42:32–37.

Gagge, AP, AP Fobelets e LG Berglund. 1986. Un indice predittivo standard della risposta umana all'ambiente termico. ASHRAE Trans 92:709–731.

Gisolfi, CV e CB Wenger. 1984. Regolazione della temperatura durante l'esercizio: vecchi concetti, nuove idee. Esercizio Sport Sci Rev 12:339–372.

Givoni, B. 1963. Un nuovo metodo per valutare l'esposizione al calore industriale e il carico di lavoro massimo consentito. Documento presentato al Congresso internazionale di biometeorologia a Parigi, Francia, settembre 1963.

—. 1976. Uomo, clima e architettura, 2a ed. Londra: Scienze Applicate.

Givoni, B e RF Goldman. 1972. Previsione della risposta della temperatura rettale al lavoro, all'ambiente e all'abbigliamento. JAppl Physiol 2(6):812–822.

—. 1973. Previsione della risposta della frequenza cardiaca al lavoro, all'ambiente e all'abbigliamento. JAppl Physiol 34(2):201–204.

Goldmann, RF. 1988. Standard per l'esposizione umana al calore. In Environmental Ergonomics, a cura di IB Mekjavic, EW Banister e JB Morrison. Londra: Taylor e Francesco.

Hales, JRS e DAB Richards. 1987. Stress da calore. Amsterdam, New York: Oxford Excerpta Medica.

Hammel, H.T. 1963. Sintesi dei modelli termici comparativi nell'uomo. Fed Proc 22:846–847.

Havenith, G, R Heus e WA Lotens. 1990. Ventilazione degli indumenti, resistenza al vapore e indice di permeabilità: cambiamenti dovuti alla postura, al movimento e al vento. Ergonomia 33:989–1005.

Hayes. 1988. In Environmental Ergonomics, a cura di IB Mekjavic, EW Banister e JB Morrison. Londra: Taylor e Francesco.

Holmér, I. 1988. Valutazione dello stress da freddo in termini di isolamento dell'abbigliamento richiesto—IREQ. Int J Ind Erg 3:159–166.

—. 1993. Lavora al freddo. Revisione dei metodi per la valutazione dello stress da freddo. Int Arch Occ Env Salute 65:147–155.

—. 1994. Stress da freddo: Parte 1—Linee guida per il praticante. Int J Ind Erg 14:1–10.

—. 1994. Stress da freddo: parte 2: la base scientifica (base di conoscenza) per la guida. Int J Ind Erg 14:1–9.

Houghton, FC e CP Yagoglou. 1923. Determinazione di uguali linee di comfort. JASHVE 29:165–176.

Organizzazione internazionale per la standardizzazione (ISO). 1985. ISO 7726. Ambienti termici: strumenti e metodi per misurare le quantità fisiche. Ginevra: ISO.

—. 1989a. ISO 7243. Ambienti caldi: stima dello stress da calore su un lavoratore, basato sull'indice WBGT (Wet Bulb Globe Temperature). Ginevra: ISO.

—. 1989 b. ISO 7933. Ambienti caldi: determinazione analitica e interpretazione dello stress termico utilizzando il calcolo del tasso di sudorazione richiesto. Ginevra: ISO.

—. 1989 c. ISO DIS 9886. Ergonomia: valutazione della deformazione termica mediante misurazioni fisiologiche. Ginevra: ISO.

—. 1990. ISO 8996. Ergonomia: determinazione della produzione di calore metabolico. Ginevra: ISO.

—. 1992. ISO 9886. Valutazione della deformazione termica mediante misurazioni fisiologiche. Ginevra: ISO.

—. 1993. Valutazione dell'influenza dell'ambiente termico utilizzando le scale di giudizio soggettivo. Ginevra: ISO.

—. 1993. ISO CD 12894. Ergonomia dell'ambiente termico: supervisione medica di individui esposti ad ambienti caldi o freddi. Ginevra: ISO.

—. 1993. ISO TR 11079 Valutazione degli ambienti freddi: determinazione dell'isolamento richiesto per l'abbigliamento, IREQ. Ginevra: ISO. (Rapporto tecnico)

—. 1994. ISO 9920. Ergonomia: stima delle caratteristiche termiche di un insieme di indumenti. Ginevra: ISO.

—. 1994. ISO 7730. Ambienti termici moderati: determinazione degli indici PMV e PPD e specifica delle condizioni per il comfort termico. Ginevra: ISO.

—. 1995. ISO DIS 11933. Ergonomia dell'ambiente termico. Principi e applicazione degli standard internazionali. Ginevra: ISO.

Kenneth, W, P Sathasivam, AL Vallerand e TB Graham. 1990. Influenza della caffeina sulle risposte metaboliche degli uomini a riposo a 28 e 5C. JAppl Physiol 68(5):1889–1895.

Kenney, WL e SR Fowler. 1988. Densità e produzione delle ghiandole sudoripare eccrine attivate dalla metilcolina in funzione dell'età. JAppl Physiol 65:1082–1086.

Kerslake, DMcK. 1972. Lo stress degli ambienti caldi. Cambridge: Pressa dell'Università di Cambridge.

LeBlanc, J. 1975. L'uomo al freddo. Springfield, IL, USA: Charles C Thomas Publ.

Leithead, CA e AR Lind. 1964. Stress da calore e disturbi della testa. Londra: Cassel.

Lindo, AR. 1957. Un criterio fisiologico per porre limiti termici ambientali al lavoro di tutti. J Appl Physiol 18:51–56.

Loten, Washington. 1989. L'effettivo isolamento degli indumenti multistrato. Scand J Ambiente di lavoro Salute 15 Suppl. 1:66–75.

—. 1993. Trasferimento di calore da esseri umani che indossano indumenti. Tesi, Università Tecnica. Delft, Paesi Bassi. (ISBN 90-6743-231-8).

Lotens, Washington e G. Havenith. 1991. Calcolo dell'isolamento degli indumenti e della resistenza al vapore. Ergonomia 34: 233–254.

Maclean, D e D Emslie-Smith. 1977. Ipotermia accidentale. Oxford, Londra, Edimburgo, Melbourne: Blackwell Scientific Publication.

Macpherson, RK. 1960. Risposte fisiologiche ad ambienti caldi. Medical Research Council Special Report Series No. 298. Londra: HMSO.

Martineau, L e io Jacob. 1988. Utilizzo del glicogeno muscolare durante la termogenesi da brividi negli esseri umani. JAppl Physiol 56:2046–2050.

Maughan, RJ. 1991. Perdita e sostituzione di liquidi ed elettroliti durante l'esercizio. J Sport Sci 9:117–142.

McArdle, B, W Dunham, HE Halling, WSS Ladell, JW Scalt, ML Thomson e JS Weiner. 1947. La previsione degli effetti fisiologici degli ambienti caldi e caldi. Consiglio di ricerca medica Rep 47/391. Londra: RNP.

McCullough, EA, BW Jones e PEJ Huck. 1985. Un database completo per la stima dell'isolamento dell'abbigliamento. ASHRAE Trans 91:29–47.

McCullough, EA, BW Jones e T Tamura. 1989. Un database per determinare la resistenza all'evaporazione degli indumenti. ASHRAE Trans 95:316–328.

Mc Intyre, DA. 1980. Clima interno. Londra: Applied Science Publishers Ltd.

Mekjavic, IB, EW Banister e JB Morrison (a cura di). 1988. Ergonomia ambientale. Filadelfia: Taylor & Francesco.

Nielsen, B. 1984. Disidratazione, reidratazione e termoregolazione. In E Jokl e M Hebbelinck (a cura di). Medicina e Scienza dello Sport. Basilea: S. Karger.

—. 1994. Stress da calore e acclimatazione. Ergonomia 37(1):49–58.

Nielsen, R, BW Olesen e PO Fanger. 1985. Effetto dell'attività fisica e della velocità dell'aria sull'isolamento termico degli indumenti. Ergonomia 28: 1617–1632.

Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH). 1972. Esposizione professionale ad ambienti caldi. HSM 72-10269. Washington, DC: Dipartimento per l'educazione alla salute e il benessere degli Stati Uniti.

—. 1986. Esposizione professionale ad ambienti caldi. Pubblicazione NIOSH n. 86-113. Washington, DC: NIOSH.

Nishi, Y e AP Gagge. 1977. Scala di temperatura effettiva utilizzata per ambienti ipo e iperbarici. Spazio aereo e Envir Med 48:97–107.

Olsen, BW. 1985. Stress da calore. In Bruel e Kjaer Technical Review No. 2. Danimarca: Bruel e Kjaer.

Olesen, BW, E Sliwinska, TL Madsen e PO Fanger. 1982. Effetto della postura e dell'attività del corpo sull'isolamento termico degli indumenti: misurazioni di un manichino termico mobile. ASHRAE Trans 88:791–805.

Pandolf, KB, BS Cadarette, MN Sawka, AJ Young, RP Francesconi e RR Gonzales. 1988. JAppl Physiol 65(1):65–71.

Parsons, K.C. 1993. Ambienti termici umani. Hampshire, Regno Unito: Taylor & Francis.

Reed, HL, D Brice, KMM Shakir, KD Burman, MM D'Alesandro e JT O'Brian. 1990. Diminuzione della frazione libera degli ormoni tiroidei dopo una prolungata permanenza in Antartide. JAppl Physiol 69:1467–1472.

Rowell, L.B. 1983. Aspetti cardiovascolari della termoregolazione umana. Circ Res 52:367–379.

—. 1986. Regolazione della circolazione umana durante lo stress fisico. Oxford: OUP.

Sato, K e F Sato. 1983. Variazioni individuali nella struttura e nella funzione della ghiandola sudoripare eccrina umana. Am J Physiol 245:R203–R208.

Savourey, G, AL Vallerand e J Bittel. 1992. Adattamento generale e locale dopo un viaggio sugli sci in un severo ambiente artico. Eur J Appl Physiol 64:99–105.

Savourey, G, JP Caravel, B Barnavol e J Bittel. 1994. L'ormone tiroideo cambia in un ambiente di aria fredda dopo l'acclimatazione al freddo locale. JAppl Physiol 76(5):1963–1967.

Savourey, G, B Barnavol, JP Caravel, C Feuerstein e J Bittel. 1996. Adattamento al freddo generale ipotermico indotto dall'acclimatazione al freddo locale. Eur J Appl Physiol 73:237–244.

Vallerand, AL, I Jacob e MF Kavanagh. 1989. Meccanismo di maggiore tolleranza al freddo da parte di una miscela di efedrina/caffeina negli esseri umani. J Appl Physiol 67:438–444.

van Dilla, MA, R Day e PA Siple. 1949. Problemi speciali delle mani. In Fisiologia della regolazione del calore, a cura di R Newburgh. Filadelfia: Saunders.

Vellar, OD. 1969. Perdite di nutrienti attraverso la sudorazione. Oslo: Universitetsforlaget.

Vogt, JJ, V Candas, JP Libert e F Daull. 1981. Tasso di sudore richiesto come indice di tensione termica nell'industria. In Bioingegneria, Fisiologia Termica e Comfort, a cura di K Cena e JA Clark. Amsterdam: Elsevier. 99–110.

Wang, LCH, SFP Man e AN Bel Castro. 1987. Risposte metaboliche e ormonali nella resistenza al freddo aumentata dalla teofillina nei maschi. JAppl Physiol 63:589–596.

Organizzazione Mondiale della Sanità (OMS). 1969. Fattori di salute coinvolti nel lavoro in condizioni di stress da calore. Rapporto tecnico 412. Ginevra: OMS.

Wissler, EH. 1988. Una revisione dei modelli termici umani. In Environmental Ergonomics, a cura di IB Mekjavic, EW Banister e JB Morrison. Londra: Taylor e Francesco.

Beccaccia, AH. 1962. Trasferimento di umidità nei sistemi tessili. Parte I. Textile Res J 32:628–633.

Yaglou, CP e D Minard. 1957. Controllo delle vittime di calore nei centri di addestramento militare. Am Med Assoc Arch Ind Health 16:302–316 e 405.