Mercoledì, Febbraio 16 2011 00: 49

Aria interna: metodi per il controllo e la pulizia

Vota questo gioco
(2 voti )

La qualità dell'aria all'interno di un edificio è dovuta a una serie di fattori che includono la qualità dell'aria esterna, la progettazione del sistema di ventilazione/climatizzazione, il modo in cui il sistema funziona e viene mantenuto e le fonti di inquinamento indoor. In termini generali, il livello di concentrazione di qualsiasi contaminante in uno spazio interno sarà determinato dall'equilibrio tra la generazione dell'inquinante e la velocità della sua eliminazione.

Per quanto riguarda la generazione di contaminanti, anche le fonti di inquinamento possono essere esterne o interne. Le fonti esterne comprendono l'inquinamento atmosferico dovuto a processi di combustione industriale, traffico veicolare, centrali elettriche e così via; inquinamento emesso in prossimità dei pozzi di aspirazione dove l'aria viene aspirata all'interno dell'edificio, come quello proveniente dalle torri di refrigerazione o dalle bocchette di scarico di altri edifici; ed emanazioni da suolo contaminato come gas radon, perdite da serbatoi di benzina o pesticidi.

Tra le fonti di inquinamento interno, vale la pena menzionare quelle associate agli stessi sistemi di ventilazione e condizionamento dell'aria (principalmente la contaminazione microbiologica di qualsiasi segmento di tali sistemi), i materiali utilizzati per costruire e decorare l'edificio e gli occupanti dell'edificio edificio. Fonti specifiche di inquinamento indoor sono fumo di tabacco, laboratori, fotocopiatrici, laboratori fotografici e tipografie, palestre, centri estetici, cucine e caffetterie, bagni, parcheggi e locali caldaia. Tutte queste fonti dovrebbero avere un sistema di ventilazione generale e l'aria estratta da queste aree non dovrebbe essere riciclata attraverso l'edificio. Quando la situazione lo richiede, queste aree dovrebbero anche essere dotate di un sistema di ventilazione localizzata che funzioni per estrazione.

La valutazione della qualità dell'aria interna comprende, tra le altre attività, la misurazione e la valutazione dei contaminanti che possono essere presenti nell'edificio. Diversi indicatori vengono utilizzati per accertare la qualità dell'aria all'interno di un edificio. Includono le concentrazioni di monossido di carbonio e anidride carbonica, i composti organici volatili totali (TVOC), le particelle sospese totali (TSP) e la velocità di ventilazione. Esistono vari criteri o valori obiettivo raccomandati per la valutazione di alcune delle sostanze presenti negli spazi interni. Questi sono elencati in diversi standard o linee guida, come le linee guida per la qualità dell'aria interna promulgate dall'Organizzazione Mondiale della Sanità (OMS), o gli standard dell'American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).

Per molte di queste sostanze, tuttavia, non esistono standard definiti. Per ora la linea d'azione consigliata è applicare i valori e gli standard per gli ambienti industriali forniti dalla Conferenza americana degli igienisti industriali governativi (ACGIH 1992). Vengono quindi applicati fattori di sicurezza o di correzione dell'ordine della metà, un decimo o un centesimo dei valori specificati.

I metodi di controllo dell'aria interna possono essere suddivisi in due gruppi principali: controllo della fonte di inquinamento, o controllo dell'ambiente con strategie di ventilazione e pulizia dell'aria.

Controllo della fonte di inquinamento

La fonte di inquinamento può essere controllata con vari mezzi, inclusi i seguenti:

  1. Eliminazione. Eliminare la fonte di inquinamento è il metodo ideale per il controllo della qualità dell'aria indoor. Questa misura è permanente e non richiede futuri interventi di manutenzione. Si applica quando la fonte dell'inquinamento è nota, come nel caso del fumo di tabacco, e non richiede la sostituzione di agenti inquinanti.
  2. Sostituzione. In alcuni casi, la sostituzione del prodotto che è fonte di contaminazione è la misura da adottare. Cambiare il tipo di prodotti utilizzati (per la pulizia, la decorazione, ecc.) con altri che forniscono lo stesso servizio ma sono meno tossici o presentano meno rischi per le persone che li utilizzano a volte è possibile.
  3. Isolamento o confinamento spaziale. Queste misure sono progettate per ridurre l'esposizione limitando l'accesso alla fonte. Il metodo consiste nell'interporre barriere (parziali o totali) o contenimenti attorno alla fonte di inquinamento per minimizzare le emissioni nell'aria circostante e limitare l'accesso delle persone all'area prossima alla fonte di inquinamento. Questi spazi dovrebbero essere dotati di sistemi di ventilazione supplementari in grado di estrarre l'aria e fornire un flusso d'aria diretto dove necessario. Esempi di questo approccio sono i forni chiusi, i locali caldaie e le sale fotocopiatrici.
  4. Sigillare la fonte. Questo metodo consiste nell'utilizzare materiali che emettono livelli minimi di inquinamento o che non ne emettono affatto. Questo sistema è stato suggerito come un modo per inibire la dispersione di fibre di amianto sciolte da vecchi isolanti, nonché per inibire l'emissione di formaldeide da pareti trattate con resine. Negli edifici contaminati da gas radon, questa tecnica viene utilizzata per sigillare blocchi di calcestruzzo e fessure nei muri seminterrati: vengono utilizzati polimeri che impediscono l'immissione di radon dal terreno. Le pareti del seminterrato possono anche essere trattate con vernice epossidica e un sigillante polimerico di polietilene o poliammide per prevenire la contaminazione che potrebbe penetrare attraverso le pareti o dal terreno.
  5. Ventilazione per estrazione localizzata. I sistemi di ventilazione localizzata si basano sulla cattura dell'inquinante alla fonte o il più vicino possibile alla fonte. La cattura è realizzata da una campana progettata per intrappolare l'inquinante in una corrente d'aria. L'aria scorre poi da condotti con l'ausilio di un ventilatore da purificare. Se l'aria estratta non può essere purificata o filtrata, deve essere scaricata all'esterno e non deve essere riciclata nell'edificio.

 

Controllo dell'ambiente

Gli ambienti interni degli edifici non industriali presentano solitamente molte fonti di inquinamento e, inoltre, tendono ad essere disperse. Il sistema più comunemente impiegato per correggere o prevenire problemi di inquinamento indoor è quindi la ventilazione, sia generale che per diluizione. Questo metodo consiste nel muovere e dirigere il flusso d'aria per catturare, contenere e trasportare gli inquinanti dalla loro fonte al sistema di ventilazione. Inoltre, la ventilazione generale consente anche il controllo delle caratteristiche termiche dell'ambiente interno mediante condizionamento e ricircolo dell'aria (vedi “Finalità e principi della ventilazione generale e di diluizione”, altrove in questo capitolo).

Per diluire l'inquinamento interno, l'aumento del volume di aria esterna è consigliabile solo quando l'impianto è dimensionato correttamente e non provoca mancanza di ventilazione in altre parti dell'impianto o quando il volume aggiunto non impedisce una corretta climatizzazione . Affinché un sistema di ventilazione sia il più efficace possibile, è necessario installare degli estrattori localizzati presso le fonti di inquinamento; l'aria mista a inquinamento non dovrebbe essere riciclata; gli occupanti dovrebbero essere posizionati vicino a bocchette di diffusione dell'aria e fonti di inquinamento vicino a bocchette di estrazione; gli inquinanti dovrebbero essere espulsi per la via più breve possibile; e gli spazi che hanno fonti localizzate di inquinamento dovrebbero essere mantenuti a pressione negativa rispetto alla pressione atmosferica esterna.

La maggior parte delle carenze di ventilazione sembra essere collegata a una quantità inadeguata di aria esterna. Una non corretta distribuzione dell'aria ventilata, però, può anche comportare problemi di scarsa qualità dell'aria. In ambienti con soffitti molto alti, ad esempio, dove l'aria calda (meno densa) viene immessa dall'alto, la temperatura dell'aria può stratificarsi e la ventilazione non riuscirà quindi a diluire l'inquinamento presente nell'ambiente. Il posizionamento e l'ubicazione delle bocchette di diffusione dell'aria e delle bocchette di ritorno dell'aria rispetto agli occupanti e alle fonti di contaminazione è una considerazione che richiede particolare attenzione durante la progettazione del sistema di ventilazione.

Tecniche di purificazione dell'aria

I metodi di purificazione dell'aria dovrebbero essere progettati e selezionati con precisione per tipi di inquinanti specifici e molto concreti. Una volta installato, una regolare manutenzione eviterà che il sistema diventi una nuova fonte di contaminazione. Le seguenti sono descrizioni di sei metodi utilizzati per eliminare gli inquinanti dall'aria.

Filtrazione di particelle

La filtrazione è un metodo utile per eliminare liquidi o solidi in sospensione, ma va tenuto presente che non elimina gas o vapori. I filtri possono catturare particelle per ostruzione, impatto, intercettazione, diffusione e attrazione elettrostatica. La filtrazione di un sistema di condizionamento dell'aria interna è necessaria per molte ragioni. Uno è quello di evitare l'accumulo di sporcizia che può causare una diminuzione della sua efficienza di riscaldamento o raffreddamento. Il sistema può anche essere corroso da alcune particelle (acido solforico e cloruri). La filtrazione è necessaria anche per evitare una perdita di equilibrio nel sistema di ventilazione a causa di depositi sulle pale del ventilatore e false informazioni fornite ai controlli a causa di sensori intasati.

I sistemi di filtrazione dell'aria interna traggono vantaggio dal posizionamento di almeno due filtri in serie. Il primo, un prefiltro o filtro primario, trattiene solo le particelle più grandi. Questo filtro dovrebbe essere cambiato spesso e allungherà la vita del filtro successivo. Il filtro secondario è più efficiente del primo, e può filtrare spore fungine, fibre sintetiche e in generale polveri più fini di quelle raccolte dal filtro primario. Questi filtri dovrebbero essere abbastanza fini da eliminare sostanze irritanti e particelle tossiche.

Un filtro viene selezionato in base alla sua efficacia, alla sua capacità di accumulare polvere, alla sua perdita di carica e al livello di purezza dell'aria richiesto. L'efficacia di un filtro è misurata secondo gli standard ASHRAE 52-76 ed Eurovent 4/5 (ASHRAE 1992; CEN 1979). La loro capacità di ritenzione misura la massa di polvere trattenuta moltiplicata per il volume di aria filtrata e serve per caratterizzare filtri che trattengono solo particelle di grandi dimensioni (filtri a bassa e media efficienza). Per misurare la sua capacità di ritenzione, una polvere aerosol sintetica di concentrazione e granulometria note viene forzata attraverso un filtro. la parte trattenuta nel filtro è calcolata mediante gravimetria.

I efficienza di un filtro si esprime moltiplicando il numero di particelle trattenute per il volume di aria filtrata. Questo valore è quello utilizzato per caratterizzare i filtri che trattengono anche le particelle più fini. Per calcolare l'efficienza di un filtro, viene forzata attraverso di esso una corrente di aerosol atmosferico contenente un aerosol di particelle con un diametro compreso tra 0.5 e 1 μm. La quantità di particelle catturate viene misurata con un opacimetro, che misura l'opacità causata dal sedimento.

Il DOP è un valore utilizzato per caratterizzare i filtri antiparticolato ad altissima efficienza (HEPA). Il DOP di un filtro viene calcolato con un aerosol prodotto vaporizzando e condensando diottilftalato, che produce particelle di 0.3 μm di diametro. Questo metodo si basa sulla proprietà di diffusione della luce delle gocce di diottilftalato: se sottoponiamo il filtro a questo test l'intensità della luce diffusa è proporzionale alla concentrazione superficiale di questo materiale e la penetrazione del filtro può essere misurata dall'intensità relativa di luce diffusa prima e dopo aver filtrato l'aerosol. Affinché un filtro ottenga la designazione HEPA, sulla base di questo test deve essere efficiente al di sopra del 99.97%.

Sebbene esista una relazione diretta tra loro, i risultati dei tre metodi non sono direttamente confrontabili. L'efficienza di tutti i filtri diminuisce man mano che si intasano e possono quindi diventare fonte di odori e contaminazioni. La vita utile di un filtro ad alta efficienza può essere notevolmente estesa utilizzando uno o più filtri di potenza inferiore davanti al filtro ad alta efficienza. La tabella 1 mostra le rese iniziali, finali e medie di diversi filtri secondo i criteri stabiliti da ASHRAE 52-76 per particelle di 0.3 μm di diametro.

Tabella 1. L'efficacia dei filtri (secondo lo standard ASHRAE 52-76) per particelle di 3 mm di diametro

Descrizione del filtro

ASHRAE 52-76

Efficienza (%)

 

Punto di polvere (%)

Arresto (%)

Iniziale

fine

Mediano

Medio

25-30

92

1

25

15

Medio

40-45

96

5

55

34

Alta

60-65

97

19

70

50

Alta

80-85

98

50

86

68

Alta

90-95

99

75

99

87

HEPA al 95%.

-

-

95

99.5

99.1

HEPA al 99.97%.

-

-

99.97

99.7

99.97

 

Precipitazione elettrostatica

Questo metodo si rivela utile per il controllo del particolato. Apparecchiature di questo tipo funzionano ionizzando le particelle e quindi eliminandole dalla corrente d'aria quando vengono attratte e catturate da un elettrodo collettore. La ionizzazione si verifica quando l'effluente contaminato passa attraverso il campo elettrico generato da una forte tensione applicata tra l'elettrodo di raccolta e quello di scarica. La tensione è ottenuta da un generatore di corrente continua. L'elettrodo collettore ha un'ampia superficie ed è solitamente caricato positivamente, mentre l'elettrodo di scarica è costituito da un cavo caricato negativamente.

I fattori più importanti che influenzano la ionizzazione delle particelle sono la condizione dell'effluente, il suo scarico e le caratteristiche delle particelle (dimensione, concentrazione, resistenza, ecc.). L'efficacia della cattura aumenta con l'umidità, la dimensione e la densità delle particelle e diminuisce con l'aumento della viscosità dell'effluente.

Il vantaggio principale di questi dispositivi è che sono altamente efficaci nella raccolta di solidi e liquidi, anche quando la dimensione delle particelle è molto fine. Inoltre, questi sistemi possono essere utilizzati per volumi elevati e temperature elevate. La perdita di pressione è minima. Gli svantaggi di questi sistemi sono l'alto costo iniziale, l'ampio ingombro ei rischi per la sicurezza che comportano date le altissime tensioni in gioco, soprattutto quando vengono utilizzati per applicazioni industriali.

I precipitatori elettrostatici sono utilizzati in una gamma completa, dagli ambienti industriali per ridurre l'emissione di particelle agli ambienti domestici per migliorare la qualità dell'aria interna. Questi ultimi sono dispositivi più piccoli che funzionano a tensioni comprese tra 10,000 e 15,000 volt. Di solito hanno sistemi con regolatori di tensione automatici che assicurano che venga sempre applicata una tensione sufficiente per produrre ionizzazione senza causare una scarica tra i due elettrodi.

Generazione di ioni negativi

Questo metodo serve per eliminare le particelle sospese nell'aria e, secondo alcuni autori, per creare ambienti più salubri. L'efficacia di questo metodo come mezzo per ridurre il disagio o la malattia è ancora oggetto di studio.

Adsorbimento di gas

Questo metodo viene utilizzato per eliminare gas e vapori inquinanti come formaldeide, anidride solforosa, ozono, ossidi di azoto e vapori organici. L'adsorbimento è un fenomeno fisico mediante il quale le molecole di gas vengono intrappolate da un solido adsorbente. L'adsorbente è costituito da un solido poroso con una superficie molto ampia. Per ripulire dall'aria questo tipo di inquinante, si fa passare attraverso una cartuccia piena di adsorbente. Il carbone attivo è il più utilizzato; intrappola un'ampia gamma di gas inorganici e composti organici. Idrocarburi alifatici, clorurati e aromatici, chetoni, alcoli ed esteri ne sono alcuni esempi.

Il gel di silice è anche un adsorbente inorganico e viene utilizzato per intrappolare più composti polari come ammine e acqua. Esistono anche altri adsorbenti organici costituiti da polimeri porosi. È importante tenere presente che tutti i solidi adsorbenti intrappolano solo una certa quantità di inquinante e poi, una volta saturi, devono essere rigenerati o sostituiti. Un altro metodo di cattura tramite solidi adsorbenti consiste nell'utilizzare una miscela di allumina attiva e carbone impregnata di reagenti specifici. Alcuni ossidi metallici, ad esempio, catturano i vapori di mercurio, l'idrogeno solforato e l'etilene. Va tenuto presente che l'anidride carbonica non viene trattenuta dall'adsorbimento.

Assorbimento di gas

L'eliminazione di gas e fumi per assorbimento comporta un sistema che fissa le molecole facendole passare attraverso una soluzione assorbente con la quale reagiscono chimicamente. Questo è un metodo molto selettivo e utilizza reagenti specifici per l'inquinante che deve essere catturato.

Il reagente è generalmente disciolto in acqua. Inoltre deve essere sostituito o rigenerato prima che sia esaurito. Poiché questo sistema si basa sul trasferimento dell'inquinante dalla fase gassosa a quella liquida, le proprietà fisiche e chimiche del reagente sono molto importanti. La sua solubilità e reattività sono particolarmente importanti; altri aspetti che giocano un ruolo importante in questo passaggio dalla fase gassosa a quella liquida sono il pH, la temperatura e l'area di contatto tra gas e liquido. Dove l'inquinante è altamente solubile, è sufficiente farlo gorgogliare attraverso la soluzione per fissarlo al reagente. Dove l'inquinante non è così facilmente solubile il sistema da adottare deve garantire una maggiore area di contatto tra gas e liquido. Alcuni esempi di assorbenti e dei contaminanti per i quali sono particolarmente adatti sono riportati nella tabella 2.

Tabella 2. Reagenti utilizzati come assorbenti per vari contaminanti


Assorbente

Contaminant

Dietilidrossiammina

Solfuro d'idrogeno

Permangenato di potassio

Gas odoriferi

Acidi cloridrico e solforico

Le ammine

Solfuro di sodio

aldeidi

Idrossido di sodio

Formaldehyde


Ozonizzazione

Questo metodo per migliorare la qualità dell'aria interna si basa sull'uso del gas ozono. L'ozono viene generato dall'ossigeno gassoso mediante radiazione ultravioletta o scarica elettrica e viene impiegato per eliminare i contaminanti dispersi nell'aria. Il grande potere ossidante di questo gas lo rende adatto all'uso come agente antimicrobico, deodorante e disinfettante e può aiutare ad eliminare gas e fumi nocivi. Viene anche impiegato per purificare ambienti con alte concentrazioni di monossido di carbonio. In ambito industriale viene utilizzato per il trattamento dell'aria di cucine, mense, impianti di trasformazione alimentare e ittica, impianti chimici, impianti di depurazione residua, impianti di gomma, impianti di refrigerazione e così via. Negli uffici viene utilizzato con impianti di climatizzazione per migliorare la qualità dell'aria interna.

L'ozono è un gas bluastro con un caratteristico odore penetrante. Ad alte concentrazioni è tossico e persino mortale per l'uomo. L'ozono è formato dall'azione della radiazione ultravioletta o da una scarica elettrica sull'ossigeno. La produzione intenzionale, accidentale e naturale di ozono dovrebbe essere differenziata. L'ozono è un gas estremamente tossico e irritante sia in caso di esposizione a breve che a lungo termine. A causa del modo in cui reagisce nel corpo, non si conoscono livelli per i quali non vi siano effetti biologici. Questi dati sono discussi più ampiamente nella sezione chimica di questo Enciclopedia.

I processi che impiegano l'ozono dovrebbero essere eseguiti in spazi chiusi o avere un sistema di estrazione localizzato per catturare qualsiasi rilascio di gas alla fonte. Le bombole di ozono devono essere conservate in aree refrigerate, lontano da agenti riducenti, materiali infiammabili o prodotti che potrebbero catalizzarne la rottura. Va tenuto presente che se gli ozonizzatori funzionano a pressioni negative e dispongono di dispositivi di spegnimento automatico in caso di guasto, la possibilità di perdite è ridotta al minimo.

Le apparecchiature elettriche per processi che impiegano ozono devono essere perfettamente isolate e la loro manutenzione deve essere effettuata da personale esperto. Quando si utilizzano ozonizzatori, i condotti e le apparecchiature accessorie devono disporre di dispositivi che spengano immediatamente gli ozonizzatori quando viene rilevata una perdita; in caso di perdita di efficienza nelle funzioni di ventilazione, deumidificazione o refrigerazione; quando si verifica un eccesso di pressione o un vuoto (a seconda del sistema); o quando l'output del sistema è eccessivo o insufficiente.

Quando gli ozonizzatori sono installati, devono essere dotati di rilevatori specifici per l'ozono. Non ci si può fidare dell'olfatto perché può diventare saturo. Le perdite di ozono possono essere rilevate con strisce reattive di ioduro di potassio che diventano blu, ma questo non è un metodo specifico perché il test è positivo per la maggior parte degli ossidanti. È meglio monitorare le perdite su base continuativa utilizzando celle elettrochimiche, fotometria ultravioletta o chemiluminescenza, con il dispositivo di rilevamento prescelto collegato direttamente a un sistema di allarme che interviene quando vengono raggiunte determinate concentrazioni.

 

Di ritorno

Leggi 8267 volte Ultima modifica Martedì, Settembre 06 2011 23: 11

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti sul controllo ambientale interno

Conferenza americana degli igienisti industriali governativi (ACGIH). 1992. Ventilazione industriale: un manuale di pratica consigliata. 21a ed. Cincinnati, Ohio: ACGIH.

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 1992. Metodo di test dei dispositivi di purificazione dell'aria utilizzati nella ventilazione generale per la rimozione del particolato. Atlanta: ASHRAE.

Baturin, VV. 1972. Fondamenti di ventilazione industriale. New York: Pergamo.

Bedford, T e FA Chrenko. 1974. Principi di base di ventilazione e riscaldamento. Londra: HK Lewis.

Centro europeo di normalizzazione (CEN). 1979. Metodo di test dei filtri dell'aria utilizzati nella ventilazione generale. Eurovento 4/5. Anversa: Comitato europeo degli standard.

Istituzione autorizzata dei servizi di costruzione. 1978. Criteri ambientali per la progettazione. : Chartered Institution of Building Services.

Consiglio delle Comunità Europee (KEK). 1992. Linee guida per i requisiti di ventilazione negli edifici. Lussemburgo: CE.

Costanza, J.D. 1983. Controllo dei contaminanti presenti nell'aria negli impianti. Progettazione e calcoli del sistema. New York: Marcel Dekker.

Fanger, PO. 1988. Introduzione delle unità olf e decipol per quantificare l'inquinamento atmosferico percepito dall'uomo all'interno e all'esterno. Energia Costruzione 12:7-19.

—. 1989. La nuova equazione del comfort per la qualità dell'aria interna. Rivista ASHRAE 10:33-38.

Organizzazione Internazionale del Lavoro (ILO). 1983. Enciclopedia della salute e sicurezza sul lavoro, a cura di L Parmeggiani. 3a ed. Ginevra: OIL.

Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH). 1991. Qualità dell'aria negli edifici: una guida per proprietari di edifici e gestori di strutture. Cincinnati, Ohio: NIOSH.

Sandberg, M. 1981. Cos'è l'efficienza della ventilazione? Costruisci Ambiente 16:123-135.

Organizzazione Mondiale della Sanità (OMS). 1987. Linee guida sulla qualità dell'aria per l'Europa. Serie europea, n. 23. Copenaghen: pubblicazioni regionali dell'OMS.