Mercoledì, Febbraio 16 2011 01: 28

Tipi di lampade e illuminazione

Vota questo gioco
(43 voti )

Una lampada è un convertitore di energia. Sebbene possa svolgere funzioni secondarie, il suo scopo principale è la trasformazione dell'energia elettrica in radiazione elettromagnetica visibile. Ci sono molti modi per creare luce. Il metodo standard per creare l'illuminazione generale è la conversione dell'energia elettrica in luce.

Tipi di luce

Incandescenza

Quando i solidi ei liquidi vengono riscaldati, emettono radiazioni visibili a temperature superiori a 1,000 K; questo è noto come incandescenza.

Tale riscaldamento è alla base della generazione della luce nelle lampade a incandescenza: una corrente elettrica passa attraverso un sottile filo di tungsteno, la cui temperatura sale da circa 2,500 a 3,200 K, a seconda del tipo di lampada e della sua applicazione.

C'è un limite a questo metodo, che è descritto dalla legge di Planck per le prestazioni di un radiatore a corpo nero, secondo cui la distribuzione spettrale dell'energia irradiata aumenta con la temperatura. A circa 3,600 K e oltre, c'è un marcato guadagno nell'emissione di radiazione visibile e la lunghezza d'onda della massima potenza si sposta nella banda visibile. Questa temperatura è vicina al punto di fusione del tungsteno, che viene utilizzato per il filamento, quindi il limite di temperatura pratica è di circa 2,700 K, oltre il quale l'evaporazione del filamento diventa eccessiva. Un risultato di questi spostamenti spettrali è che gran parte della radiazione emessa non viene emessa come luce ma come calore nella regione dell'infrarosso. Le lampade a incandescenza possono quindi essere efficaci dispositivi di riscaldamento e vengono utilizzate in lampade progettate per l'essiccazione della stampa, la preparazione del cibo e l'allevamento di animali.

Scarica elettrica

La scarica elettrica è una tecnica utilizzata nelle moderne sorgenti luminose per il commercio e l'industria a causa della produzione più efficiente di luce. Alcuni tipi di lampade combinano la scarica elettrica con la fotoluminescenza.

Una corrente elettrica fatta passare attraverso un gas ecciterà gli atomi e le molecole ad emettere radiazioni di uno spettro che è caratteristico degli elementi presenti. Sono comunemente usati due metalli, sodio e mercurio, perché le loro caratteristiche danno radiazioni utili all'interno dello spettro visibile. Nessuno dei due metalli emette uno spettro continuo e le lampade a scarica hanno spettri selettivi. La loro resa cromatica non sarà mai identica agli spettri continui. Le lampade a scarica sono spesso classificate come ad alta pressione oa bassa pressione, sebbene questi termini siano solo relativi e una lampada al sodio ad alta pressione funziona a meno di un'atmosfera.

Tipi di luminescenza

Fotoluminescenza si verifica quando la radiazione viene assorbita da un solido e viene poi riemessa a una diversa lunghezza d'onda. Quando la radiazione riemessa è all'interno dello spettro visibile viene chiamato il processo fluorescenza or fosforescenza.

elettroluminescenza si verifica quando la luce è generata da una corrente elettrica che passa attraverso alcuni solidi, come i materiali fosforici. Viene utilizzato per insegne e cruscotti autoilluminati ma non si è rivelato una sorgente luminosa pratica per l'illuminazione di edifici o esterni.

Evoluzione delle lampade elettriche

Sebbene il progresso tecnologico abbia consentito di produrre diverse lampade, i principali fattori che ne hanno influenzato lo sviluppo sono state le forze del mercato esterno. Ad esempio, la produzione delle lampade a incandescenza in uso all'inizio di questo secolo è stata possibile solo dopo la disponibilità di buone pompe da vuoto e la trafilatura del filo di tungsteno. Tuttavia, è stata la produzione e distribuzione su larga scala di energia elettrica per soddisfare la domanda di illuminazione elettrica a determinare la crescita del mercato. L'illuminazione elettrica offriva molti vantaggi rispetto alla luce generata a gas o petrolio, come la luce fissa che richiede una manutenzione poco frequente, nonché la maggiore sicurezza di non avere fiamme esposte e nessun sottoprodotto locale della combustione.

Durante il periodo di ripresa dopo la seconda guerra mondiale, l'accento era posto sulla produttività. La lampada tubolare fluorescente è diventata la fonte di luce dominante perché ha reso possibile l'illuminazione priva di ombre e relativamente priva di calore di fabbriche e uffici, consentendo il massimo utilizzo dello spazio. I requisiti di emissione luminosa e potenza per una tipica lampada tubolare fluorescente da 1,500 mm sono riportati nella tabella 1.

Tabella 1. Miglioramento dell'emissione luminosa e dei requisiti di potenza di alcune tipiche lampade a tubo fluorescente da 1,500 mm

Valutazione (W)

Diametro (mm)

Riempimento di gas

Potenza luminosa (lumen)

80

38

argo

4,800

65

38

argo

4,900

58

25

krypton

5,100

50

25

argo

5,100
(ingranaggio ad alta frequenza)

 

Negli anni '1970 i prezzi del petrolio sono aumentati e i costi energetici sono diventati una parte significativa dei costi operativi. Il mercato richiedeva lampade fluorescenti che producessero la stessa quantità di luce con un minore consumo elettrico. Il design della lampada è stato perfezionato in diversi modi. Mentre il secolo si chiude c'è una crescente consapevolezza dei problemi ambientali globali. Un migliore utilizzo delle materie prime in declino, il riciclaggio o lo smaltimento sicuro dei prodotti e la continua preoccupazione per il consumo di energia (in particolare l'energia generata dai combustibili fossili) stanno avendo un impatto sugli attuali design delle lampade.

Criteri di rendimento

I criteri di prestazione variano a seconda dell'applicazione. In generale, non esiste una particolare gerarchia di importanza di questi criteri.

Uscita luminosa: Il flusso luminoso di una lampada determinerà la sua idoneità in relazione alla scala dell'installazione e alla quantità di illuminazione richiesta.

Aspetto del colore e resa cromatica: scale e valori numerici separati si applicano all'aspetto del colore e alla resa cromatica. È importante ricordare che le cifre forniscono solo indicazioni e alcune sono solo approssimazioni. Quando possibile, le valutazioni di idoneità dovrebbero essere effettuate con lampade reali e con i colori oi materiali che si applicano alla situazione.

Vita della lampada: La maggior parte delle lampade richiederà la sostituzione più volte durante la vita dell'impianto di illuminazione e i progettisti dovrebbero ridurre al minimo i disagi per gli occupanti causati da guasti occasionali e manutenzione. Le lampade sono utilizzate in un'ampia varietà di applicazioni. La vita media prevista è spesso un compromesso tra costo e prestazioni. Ad esempio, la lampada per un proiettore per diapositive avrà una durata di poche centinaia di ore perché la massima resa luminosa è importante per la qualità dell'immagine. Al contrario, alcune lampade per l'illuminazione stradale possono essere sostituite ogni due anni, il che corrisponde a circa 8,000 ore di funzionamento.

Inoltre, la durata della lampada è influenzata dalle condizioni operative e quindi non esiste un valore semplice che si applichi a tutte le condizioni. Inoltre, la durata effettiva della lampada può essere determinata da diverse modalità di guasto. Un guasto fisico come la rottura del filamento o della lampada può essere preceduto da una riduzione dell'emissione luminosa o da cambiamenti nell'aspetto del colore. La durata della lampada è influenzata dalle condizioni ambientali esterne quali temperatura, vibrazioni, frequenza di avviamento, fluttuazioni della tensione di alimentazione, orientamento e così via.

Va notato che la vita media citata per un tipo di lampada è il tempo per i guasti del 50% da un lotto di lampade di prova. È improbabile che questa definizione di vita sia applicabile a molte installazioni commerciali o industriali; quindi la durata pratica della lampada è generalmente inferiore ai valori pubblicati, che dovrebbero essere utilizzati solo a scopo di confronto.

EFFICIENZA: Come regola generale l'efficienza di un dato tipo di lampada migliora all'aumentare della potenza nominale, poiché la maggior parte delle lampade ha una perdita fissa. Tuttavia, diversi tipi di lampade hanno marcate variazioni di efficienza. Dovrebbero essere utilizzate lampade con la massima efficienza, a condizione che siano soddisfatti anche i criteri di dimensione, colore e durata. Il risparmio energetico non dovrebbe andare a scapito del comfort visivo o della capacità prestazionale degli occupanti. Alcune efficacie tipiche sono riportate nella tabella 2.

Tabella 2. Efficienze tipiche della lampada

Efficacia della lampada

 

Lampada a filamento da 100 W

14 lumen/watt

Tubo fluorescente da 58W

89 lumen/watt

Sodio ad alta pressione da 400 W

125 lumen/watt

131 W sodio a bassa pressione

198 lumen/watt

 

Principali tipi di lampade

Nel corso degli anni, diversi sistemi di nomenclatura sono stati sviluppati da standard e registri nazionali e internazionali.

Nel 1993, la Commissione elettrotecnica internazionale (IEC) ha pubblicato un nuovo sistema internazionale di codifica delle lampade (ILCOS) destinato a sostituire i sistemi di codifica nazionali e regionali esistenti. Un elenco di alcuni codici ILCOS in forma abbreviata per varie lampade è riportato nella tabella 3.

Tabella 3. Sistema di codifica in forma abbreviata ILCOS (International Lamp Coding System) per alcuni tipi di lampade

Tipo (codice)

Valutazioni comuni (watt)

Resa cromatica

Temperatura colore (K)

Vita (ore)

Lampade fluorescenti compatte (FS)

5-55

buono

2,700-5,000

5,000-10,000

Lampade al mercurio ad alta pressione (QE)

80-750

fiera

3,300-3,800

20,000

Lampade al sodio ad alta pressione (S-)

50-1,000

povero a buono

2,000-2,500

6,000-24,000

Lampade a incandescenza (I)

5-500

buono

2,700

1,000-3,000

Lampade a induzione (XF)

23-85

buono

3,000-4,000

10,000-60,000

Lampade al sodio a bassa pressione (LS)

26-180

colore giallo monocromatico

1,800

16,000

Lampade alogene al tungsteno a bassa tensione (HS)

12-100

buono

3,000

2,000-5,000

Lampade ad alogenuri metallici (M-)

35-2,000

da buono a fantastico

3,000-5,000

6,000-20,000

Lampade fluorescenti tubolari (FD)

4-100

da giusto a buono

2,700-6,500

10,000-15,000

Lampade alogene al tungsteno (HS)

100-2,000

buono

3,000

2,000-4,000

 

Lampade ad incandescenza

Queste lampade utilizzano un filamento di tungsteno in un gas inerte o sottovuoto con un involucro di vetro. Il gas inerte sopprime l'evaporazione del tungsteno e riduce l'annerimento dell'involucro. Esiste una grande varietà di forme di lampade, che sono in gran parte decorative nell'aspetto. La costruzione di una tipica lampada GLS (General Lighting Service) è mostrata in figura 1.

Figura 1. Costruzione di una lampada GLS

LIG010F1

Le lampade ad incandescenza sono disponibili anche con una vasta gamma di colori e finiture. I codici ILCOS e alcune forme tipiche comprendono quelli riportati nella tabella 4.

Tabella 4. Colori e forme comuni delle lampade a incandescenza, con i relativi codici ILCOS

Colore/Forma

Code

Cancellare

/C

Frosted

/F

White

/W

Rosso

/R

Blu

/B

Green

/G

Giallo

/Y

A forma di pera (GLS)

IA

Candela

IB

Conico

IC

Globulare

IG

Fungo

IM

 

Le lampade a incandescenza sono ancora popolari per l'illuminazione domestica a causa del loro basso costo e delle dimensioni compatte. Tuttavia, per l'illuminazione commerciale e industriale la scarsa efficacia genera costi operativi molto elevati, quindi le lampade a scarica sono la scelta normale. Una lampada da 100 W ha un'efficienza tipica di 14 lumen/watt rispetto ai 96 lumen/watt di una lampada fluorescente da 36 W.

Le lampade a incandescenza sono semplici da attenuare riducendo la tensione di alimentazione e sono ancora utilizzate dove l'oscuramento è una caratteristica di controllo desiderata.

Il filamento di tungsteno è una sorgente luminosa compatta, facilmente focalizzabile da riflettori o lenti. Le lampade a incandescenza sono utili per l'illuminazione di display dove è necessario il controllo direzionale.

Lampade alogene al tungsteno

Questi sono simili alle lampade a incandescenza e producono luce allo stesso modo da un filamento di tungsteno. Tuttavia il bulbo contiene gas alogeno (bromo o iodio) che è attivo nel controllare l'evaporazione del tungsteno. Vedi figura 2.

Figura 2. Il ciclo dell'alogeno

LIG010F2

Fondamentale per il ciclo alogeno è una temperatura minima della parete del bulbo di 250 °C per garantire che l'alogenuro di tungsteno rimanga allo stato gassoso e non si condensi sulla parete del bulbo. Questa temperatura significa bulbi fatti di quarzo al posto del vetro. Con il quarzo è possibile ridurre le dimensioni del bulbo.

La maggior parte delle lampade alogene al tungsteno ha una durata maggiore rispetto alle equivalenti a incandescenza e il filamento è a una temperatura più elevata, creando più luce e colori più bianchi.

Le lampade alogene al tungsteno sono diventate popolari laddove le dimensioni ridotte e le prestazioni elevate sono il requisito principale. Esempi tipici sono l'illuminazione di palcoscenici, inclusi film e TV, dove il controllo direzionale e l'attenuazione sono requisiti comuni.

Lampade alogene al tungsteno a bassa tensione

Questi sono stati originariamente progettati per proiettori di diapositive e film. A 12 V il filamento per la stessa potenza di 230 V diventa più piccolo e più spesso. Questo può essere focalizzato in modo più efficiente e la massa del filamento più grande consente una temperatura operativa più elevata, aumentando l'emissione luminosa. Il filamento spesso è più robusto. Questi vantaggi sono stati realizzati come utili per il mercato dei display commerciali e, anche se è necessario disporre di un trasformatore step-down, queste lampade ora dominano l'illuminazione delle vetrine dei negozi. Vedi figura 3.

Figura 3. Lampada con riflettore dicroico a bassa tensione

LIG010F3

Sebbene gli utenti di proiettori cinematografici desiderino quanta più luce possibile, troppo calore danneggia il mezzo trasparente. È stato sviluppato un tipo speciale di riflettore che riflette solo la radiazione visibile, consentendo alla radiazione infrarossa (calore) di passare attraverso la parte posteriore della lampada. Questa caratteristica fa ora parte di molte lampade con riflettore a bassa tensione per l'illuminazione di display e apparecchiature per proiettori.

 

 

 

Sensibilità alla tensione: Tutte le lampade a incandescenza sono sensibili alle variazioni di tensione e ne risentono l'emissione luminosa e la durata. La mossa per “armonizzare” la tensione di alimentazione in tutta Europa a 230 V si sta realizzando allargando le tolleranze alle quali possono operare le autorità di generazione. Lo spostamento è verso ±10%, che è un intervallo di tensione compreso tra 207 e 253 V. Le lampade alogene a incandescenza e al tungsteno non possono essere utilizzate in modo ragionevole in questo intervallo, quindi sarà necessario far corrispondere la tensione di alimentazione effettiva ai valori nominali della lampada. Vedi figura 4.

Figura 4. Lampade a incandescenza GLS e tensione di alimentazione

LIG010F4

Anche le lampade a scarica saranno influenzate da questa ampia variazione di tensione, quindi la specifica corretta dell'alimentatore diventa importante.

 

 

 

 

 

 

 

Lampade fluorescenti tubolari

Si tratta di lampade al mercurio a bassa pressione e sono disponibili nelle versioni “hot cathode” e “cold cathode”. Il primo è il tradizionale tubo fluorescente per uffici e fabbriche; "catodo caldo" si riferisce all'accensione della lampada preriscaldando gli elettrodi per creare una sufficiente ionizzazione del gas e del vapore di mercurio per stabilire la scarica.

Le lampade a catodo freddo sono utilizzate principalmente per la segnaletica e la pubblicità. Vedi figura 5.

Figura 5. Principio della lampada fluorescente

LIG010F5

Le lampade fluorescenti richiedono dispositivi di controllo esterni per l'avviamento e per controllare la corrente della lampada. Oltre alla piccola quantità di vapore di mercurio, c'è un gas di partenza (argon o krypton).

La bassa pressione del mercurio genera una scarica di luce azzurra. La maggior parte della radiazione si trova nella regione UV a 254 nm, una frequenza di radiazione caratteristica per il mercurio. All'interno della parete del tubo è presente un sottile rivestimento di fosforo, che assorbe i raggi UV e irradia l'energia sotto forma di luce visibile. La qualità del colore della luce è determinata dal rivestimento di fosforo. È disponibile una gamma di fosfori con diversi aspetti cromatici e resa cromatica.

Durante gli anni '1950 i fosfori disponibili offrivano una scelta di ragionevole efficacia (60 lumen/watt) con luce carente di rossi e blu, o resa cromatica migliorata da fosfori "deluxe" di efficienza inferiore (40 lumen/watt).

Negli anni '1970 erano stati sviluppati nuovi fosfori a banda stretta. Questi irradiavano separatamente luce rossa, blu e verde ma, combinati, producevano luce bianca. La regolazione delle proporzioni ha dato una gamma di diversi aspetti cromatici, tutti con un'eccellente resa cromatica simile. Questi tri-fosfori sono più efficienti dei tipi precedenti e rappresentano la migliore soluzione di illuminazione economica, anche se le lampade sono più costose. Una maggiore efficacia riduce i costi operativi e di installazione.

Il principio del trifosforo è stato esteso alle lampade multifosforo dove è necessaria una resa cromatica critica, come per le gallerie d'arte e la corrispondenza dei colori industriale.

I moderni fosfori a banda stretta sono più durevoli, hanno una migliore manutenzione del flusso luminoso e aumentano la durata della lampada.

Lampade fluorescenti compatte

Il tubo fluorescente non è un pratico sostituto della lampada ad incandescenza a causa della sua forma lineare. Tubi piccoli ea foro stretto possono essere configurati all'incirca delle stesse dimensioni della lampada a incandescenza, ma ciò impone un carico elettrico molto più elevato sul materiale fosforico. L'uso di trifosfori è essenziale per ottenere una durata accettabile della lampada. Vedi figura 6.

Figura 6. Fluorescenza compatta a quattro gambe

LIG010F6

Tutte le lampade fluorescenti compatte utilizzano trifosforo, quindi, quando vengono utilizzate insieme a lampade fluorescenti lineari, anche queste ultime dovrebbero essere trifosforo per garantire l'uniformità del colore.

Alcune lampade compatte includono l'alimentatore di controllo operativo per formare dispositivi di retrofit per lampade a incandescenza. La gamma è in aumento e consente di aggiornare facilmente le installazioni esistenti a un'illuminazione più efficiente dal punto di vista energetico. Queste unità integrali non sono adatte per l'oscuramento dove questo faceva parte dei controlli originali.

 

 

 

 

Alimentatore elettronico ad alta frequenza: Se la normale frequenza di alimentazione di 50 o 60 Hz viene aumentata a 30 kHz, vi è un aumento del 10% dell'efficacia dei tubi fluorescenti. I circuiti elettronici possono far funzionare singole lampade a tali frequenze. Il circuito elettronico è progettato per fornire la stessa emissione luminosa dell'alimentatore a filo avvolto, a partire da una potenza della lampada ridotta. Ciò offre la compatibilità del pacchetto lumen con il vantaggio che il carico ridotto della lampada aumenterà notevolmente la durata della lampada. L'alimentatore elettronico è in grado di funzionare su una gamma di tensioni di alimentazione.

Non esiste uno standard comune per gli alimentatori elettronici e le prestazioni della lampada possono differire dalle informazioni pubblicate fornite dai produttori della lampada.

L'uso di apparecchiature elettroniche ad alta frequenza elimina il normale problema dello sfarfallio, a cui alcuni occupanti possono essere sensibili.

Lampade a induzione

Recentemente sono apparse sul mercato lampade che utilizzano il principio dell'induzione. Sono lampade al mercurio a bassa pressione con rivestimento trifosforo e come produttori di luce sono simili alle lampade fluorescenti. L'energia viene trasferita alla lampada mediante radiazione ad alta frequenza, a circa 2.5 MHz da un'antenna posizionata centralmente all'interno della lampada. Non esiste alcun collegamento fisico tra la lampadina e la bobina. Senza elettrodi o altri collegamenti a filo, la costruzione del recipiente di scarica è più semplice e duratura. La durata della lampada è determinata principalmente dall'affidabilità dei componenti elettronici e dal mantenimento del flusso luminoso del rivestimento al fosforo.

Lampade al mercurio ad alta pressione

Gli scarichi ad alta pressione sono più compatti e presentano carichi elettrici più elevati; pertanto, richiedono tubi ad arco di quarzo per resistere alla pressione e alla temperatura. Il tubo dell'arco è contenuto in un involucro di vetro esterno con un'atmosfera di azoto o argon-azoto per ridurre l'ossidazione e la formazione di archi. La lampadina filtra efficacemente la radiazione UV dal tubo ad arco. Vedere la figura 7.

Figura 7. Costruzione della lampada al mercurio

LIG010F7

Ad alta pressione, la scarica di mercurio è principalmente una radiazione blu e verde. Per migliorare il colore un rivestimento di fosforo del bulbo esterno aggiunge luce rossa. Esistono versioni deluxe con un contenuto di rosso aumentato, che offrono una maggiore emissione luminosa e una migliore resa cromatica.

Tutte le lampade a scarica ad alta pressione impiegano del tempo per raggiungere la piena potenza. La scarica iniziale avviene tramite il riempimento di gas conduttore e il metallo evapora all'aumentare della temperatura della lampada.

Alla pressione stabile la lampada non si riavvierà immediatamente senza un apposito alimentatore. C'è un ritardo mentre la lampada si raffredda sufficientemente e la pressione si riduce, in modo che la normale tensione di alimentazione o il circuito dell'accenditore sia adeguato per ristabilire l'arco.

Le lampade a scarica hanno una caratteristica di resistenza negativa, quindi l'alimentatore esterno è necessario per controllare la corrente. Ci sono perdite dovute a questi componenti dell'alimentatore, quindi l'utente dovrebbe considerare i watt totali quando considera i costi operativi e l'installazione elettrica. C'è un'eccezione per le lampade al mercurio ad alta pressione, e un tipo contiene un filamento di tungsteno che funge sia da dispositivo di limitazione della corrente che aggiunge colori caldi alla scarica blu/verde. Ciò consente la sostituzione diretta delle lampade a incandescenza.

Sebbene le lampade al mercurio abbiano una lunga durata di circa 20,000 ore, l'emissione luminosa scenderà a circa il 55% dell'emissione iniziale alla fine di questo periodo, e quindi la vita economica può essere più breve.

Lampade ad alogenuri metallici

Il colore e l'emissione luminosa delle lampade a scarica di mercurio possono essere migliorati aggiungendo diversi metalli all'arco di mercurio. Per ogni lampada la dose è piccola e per un'applicazione accurata è più conveniente maneggiare i metalli in polvere come alogenuri. Questo si rompe quando la lampada si riscalda e rilascia il metallo.

Una lampada ad alogenuri metallici può utilizzare diversi metalli, ognuno dei quali emana un colore caratteristico specifico. Questi includono:

  • disprosio: ampio blu-verde
  • indio: blu stretto
  • litio: rosso stretto
  • scandio: ampio blu-verde
  • sodio-stretto giallo
  • tallio: verde stretto
  • stagno: ampio rosso-arancio

 

Non esiste una miscela standard di metalli, quindi le lampade ad alogenuri metallici di diversi produttori potrebbero non essere compatibili nell'aspetto o nelle prestazioni operative. Per le lampade con potenza nominale inferiore, da 35 a 150 W, esiste una maggiore compatibilità fisica ed elettrica con uno standard comune.

Le lampade ad alogenuri metallici richiedono un alimentatore, ma la mancanza di compatibilità significa che è necessario abbinare ogni combinazione di lampada e alimentatore per garantire condizioni di avviamento e funzionamento corrette.

Lampade al sodio a bassa pressione

Il tubo ad arco è di dimensioni simili al tubo fluorescente ma è realizzato in vetro speciale a strati con un rivestimento interno resistente al sodio. Il tubo dell'arco ha una forma a "U" stretta ed è contenuto in una camicia sottovuoto esterna per garantire la stabilità termica. Durante l'avviamento, le lampade emettono un forte bagliore rosso dovuto al riempimento di gas al neon.

La radiazione caratteristica del vapore di sodio a bassa pressione è un giallo monocromatico. Questo è vicino al picco di sensibilità dell'occhio umano e le lampade al sodio a bassa pressione sono le lampade più efficienti disponibili a quasi 200 lumen/watt. Tuttavia le applicazioni sono limitate a dove la discriminazione dei colori non ha importanza visiva, come strade principali, sottopassaggi e strade residenziali.

In molte situazioni queste lampade vengono sostituite da lampade al sodio ad alta pressione. Le loro dimensioni ridotte offrono un migliore controllo ottico, in particolare per l'illuminazione stradale dove vi è una crescente preoccupazione per l'eccessivo bagliore del cielo.

Lampade al sodio ad alta pressione

Queste lampade sono simili alle lampade al mercurio ad alta pressione ma offrono una migliore efficacia (oltre 100 lumen/watt) e un eccellente mantenimento del flusso luminoso. La natura reattiva del sodio richiede che il tubo ad arco sia prodotto da allumina policristallina traslucida, poiché il vetro o il quarzo non sono adatti. Il bulbo di vetro esterno contiene un vuoto per prevenire la formazione di archi e l'ossidazione. Non c'è radiazione UV dalla scarica di sodio, quindi i rivestimenti di fosforo non hanno alcun valore. Alcune lampadine sono satinate o rivestite per diffondere la sorgente luminosa. Vedere la figura 8.

Figura 8. Costruzione della lampada al sodio ad alta pressione

LIG010F8

All'aumentare della pressione del sodio, la radiazione diventa un'ampia banda attorno al picco giallo e l'aspetto è bianco dorato. Tuttavia, all'aumentare della pressione, l'efficienza diminuisce. Attualmente sono disponibili tre tipi distinti di lampade al sodio ad alta pressione, come mostrato nella tabella 5.

Tabella 5. Tipi di lampade al sodio ad alta pressione

Tipo di lampada (codice)

Colore (K)

Efficacia (lumen/watt)

Vita (ore)

Standard

2,000

110

24,000

Deluxe

2,200

80

14,000

Bianco (figlio)

2,500

50

 

 

Generalmente le lampade standard sono utilizzate per l'illuminazione di esterni, le lampade deluxe per interni industriali e White SON per applicazioni commerciali/display.

Dimmerazione delle lampade a scarica

Le lampade ad alta pressione non possono essere dimmerate in modo soddisfacente, poiché cambiando la potenza della lampada cambiano la pressione e quindi le caratteristiche fondamentali della lampada.

Le lampade fluorescenti possono essere regolate utilizzando alimentatori ad alta frequenza generati tipicamente all'interno dell'alimentatore elettronico. L'aspetto del colore rimane molto costante. Inoltre, l'emissione luminosa è approssimativamente proporzionale alla potenza della lampada, con conseguente risparmio di energia elettrica al diminuire dell'emissione luminosa. Integrando l'emissione luminosa della lampada con il livello prevalente di luce diurna naturale, è possibile fornire un livello di illuminazione quasi costante in un interno.

 

Di ritorno

Leggi 90534 volte Ultima modifica giovedì 13 ottobre 2011 21:28

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti di illuminazione

Chartered Institution of Building Services Engineers (CIBSE). 1993. Guida all'illuminazione. Londra: CIBS.

—. 1994. Codice per l'illuminazione interna. Londra: CIBS.

Commission Internationale de l'Eclairage (CIE). 1992. Manutenzione di sistemi di illuminazione elettrica per interni. Relazione tecnica CIE n. 97. Austria: CIE.

Commissione elettrotecnica internazionale (IEC). 1993. Sistema internazionale di codifica delle lampade. documento CEI n. 123-93. Londra: IEC.

Federazione dell'industria dell'illuminazione. 1994. Guida alla lampada della Federazione dell'industria dell'illuminazione. Londra: Federazione dell'industria dell'illuminazione.