Martedì, 15 marzo 2011 15: 19

Luce e radiazione infrarossa

Vota questo gioco
(2 voti )

L'energia radiante della luce e dell'infrarosso (IR) sono due forme di radiazione ottica e, insieme alla radiazione ultravioletta, formano lo spettro ottico. All'interno dello spettro ottico, diverse lunghezze d'onda hanno potenzialità considerevolmente diverse di provocare effetti biologici, e per questo motivo lo spettro ottico può essere ulteriormente suddiviso.

Il termine leggera dovrebbe essere riservata alle lunghezze d'onda dell'energia radiante comprese tra 400 e 760 nm, che evocano una risposta visiva alla retina (CIE 1987). La luce è la componente essenziale della produzione di lampade illuminanti, display visivi e un'ampia varietà di illuminatori. A parte l'importanza dell'illuminazione per la vista, alcune fonti di luce possono, tuttavia, provocare reazioni fisiologiche indesiderate come invalidità e abbagliamento fastidioso, sfarfallio e altre forme di stress oculare a causa della scarsa ergonomia delle attività sul posto di lavoro. L'emissione di luce intensa è anche un effetto collaterale potenzialmente pericoloso di alcuni processi industriali, come la saldatura ad arco.

La radiazione infrarossa (IRR, lunghezze d'onda da 760 nm a 1 mm) può anche essere indicata abbastanza comunemente come radiazione termica (o radiazione termica), ed è emesso da qualsiasi oggetto caldo (motori caldi, metalli fusi e altre fonti di fonderia, superfici trattate termicamente, lampade elettriche ad incandescenza, sistemi di riscaldamento radiante, ecc.). La radiazione infrarossa viene emessa anche da una grande varietà di apparecchiature elettriche come motori elettrici, generatori, trasformatori e varie apparecchiature elettroniche.

La radiazione infrarossa è un fattore che contribuisce allo stress da calore. L'elevata temperatura e umidità dell'aria ambiente e un basso grado di circolazione dell'aria possono combinarsi con il calore radiante per produrre stress da calore con il potenziale di lesioni da calore. In ambienti più freddi, anche fonti di calore radiante sgradite o mal progettate possono produrre disagio, una considerazione ergonomica.

Effetti biologici

I rischi professionali presentati all'occhio e alla pelle dalle radiazioni visibili e infrarosse sono limitati dall'avversione dell'occhio alla luce intensa e dalla sensazione di dolore nella pelle derivante dall'intenso riscaldamento radiante. L'occhio è ben adattato per proteggersi dalle lesioni acute da radiazioni ottiche (dovute all'energia radiante ultravioletta, visibile o infrarossa) dalla luce solare ambientale. È protetto da una naturale risposta di avversione alla visione di fonti di luce intensa che normalmente lo protegge da lesioni derivanti dall'esposizione a fonti come il sole, le lampade ad arco e gli archi di saldatura, poiché questa avversione limita la durata dell'esposizione a una frazione (circa due- decimi) di secondo. Tuttavia, sorgenti ricche di IRR prive di un forte stimolo visivo possono essere pericolose per il cristallino dell'occhio in caso di esposizione cronica. Ci si può anche costringere a fissare il sole, un arco di saldatura o un campo di neve e quindi subire una temporanea (e talvolta permanente) perdita della vista. In un ambiente industriale in cui le luci intense appaiono basse nel campo visivo, i meccanismi di protezione dell'occhio sono meno efficaci e le precauzioni contro i rischi sono particolarmente importanti.

Esistono almeno cinque tipi distinti di pericoli per gli occhi e la pelle derivanti da fonti di luce intensa e IRR e le misure protettive devono essere scelte tenendo conto di ciascuno di essi. Oltre ai potenziali pericoli presentati dalle radiazioni ultraviolette (UVR) provenienti da alcune sorgenti luminose intense, si dovrebbero considerare i seguenti pericoli (Sliney e Wolbarsht 1980; OMS 1982):

  1. Lesione termica alla retina, che può verificarsi a lunghezze d'onda da 400 nm a 1,400 nm. Normalmente il pericolo di questo tipo di lesione è rappresentato solo dai laser, da una sorgente ad arco di xeno molto intensa o da una palla di fuoco nucleare. Il bruciore locale della retina si traduce in un punto cieco (scotoma).
  2. Lesioni fotochimiche da luce blu alla retina (un pericolo principalmente associato alla luce blu di lunghezze d'onda da 400 nm a 550 nm) (Ham 1989). La lesione è comunemente chiamata fotoretinite da "luce blu"; una forma particolare di questa ferita è chiamata, secondo la sua fonte, retinite solare. La retinite solare una volta era chiamata "cecità da eclissi" e associata "ustione retinica". Solo negli ultimi anni è diventato chiaro che la fotoretinite deriva da un meccanismo di lesione fotochimica in seguito all'esposizione della retina a lunghezze d'onda più corte nello spettro visibile, vale a dire la luce viola e blu. Fino agli anni '1970 si pensava che fosse il risultato di un meccanismo di danno termico. Contrariamente alla luce blu, la radiazione IRA è molto inefficace nel produrre lesioni alla retina. (Prosciutto 1989; Sliney e Wolbarsht 1980).
  3. Rischi termici nel vicino infrarosso per il cristallino (associati a lunghezze d'onda da circa 800 nm a 3,000 nm) con potenziale cataratta da calore industriale. L'esposizione corneale media alla radiazione infrarossa alla luce solare è dell'ordine di 10 W/m2. In confronto, i lavoratori del vetro e dell'acciaio esposti a irradiazioni infrarosse dell'ordine di 0.8-4 kW/m2 ogni giorno per 10-15 anni hanno riferito di aver sviluppato opacità lenticolari (Sliney e Wolbarsht 1980). Queste bande spettrali includono IRA e IRB (vedi figura 1). La linea guida dell'American Conference of Governmental Industrial Hygienists (ACGIH) per l'esposizione IRA della parte anteriore dell'occhio è un'irradiazione totale ponderata nel tempo di 100 W/m2 per durate di esposizione superiori a 1,000 s (16.7 min) (ACGIH 1992 e 1995).
  4. Lesione termica della cornea e della congiuntiva (a lunghezze d'onda da circa 1,400 nm a 1 mm). Questo tipo di lesione è quasi esclusivamente limitato all'esposizione alle radiazioni laser.
  5. Lesione termica della pelle. Questo è raro dalle fonti convenzionali ma può verificarsi nell'intero spettro ottico.

L'importanza della lunghezza d'onda e del tempo di esposizione

Le lesioni termiche (1) e (4) di cui sopra sono generalmente limitate a durate di esposizione molto brevi e la protezione degli occhi è progettata per prevenire queste lesioni acute. Tuttavia, le lesioni fotochimiche, come quelle menzionate in (2) sopra, possono derivare da bassi tassi di dose distribuiti sull'intera giornata lavorativa. Il prodotto del rateo di dose e della durata dell'esposizione dà sempre la dose (è la dose che determina il grado di rischio fotochimico). Come con qualsiasi meccanismo di lesione fotochimica, si deve considerare lo spettro d'azione che descrive l'efficacia relativa delle diverse lunghezze d'onda nel causare un effetto fotobiologico. Ad esempio, lo spettro d'azione per il danno retinico fotochimico raggiunge il picco a circa 440 nm (Ham 1989). La maggior parte degli effetti fotochimici sono limitati a una gamma molto ristretta di lunghezze d'onda; mentre un effetto termico può verificarsi a qualsiasi lunghezza d'onda nello spettro. Pertanto, la protezione degli occhi per questi effetti specifici deve bloccare solo una banda spettrale relativamente stretta per essere efficace. Normalmente, più di una banda spettrale deve essere filtrata nella protezione degli occhi per una sorgente a banda larga.

Sorgenti di radiazione ottica

Luce del sole

La maggiore esposizione professionale alle radiazioni ottiche deriva dall'esposizione dei lavoratori all'aperto ai raggi del sole. Lo spettro solare si estende dal taglio stratosferico dello strato di ozono di circa 290-295 nm nella banda dell'ultravioletto ad almeno 5,000 nm (5 μm) nella banda dell'infrarosso. La radiazione solare può raggiungere un livello fino a 1 kW/m2 durante i mesi estivi. Può provocare stress da calore, a seconda della temperatura e dell'umidità dell'aria ambiente.

Fonti artificiali

Le fonti artificiali più significative di esposizione umana alle radiazioni ottiche includono quanto segue:

  1. Saldatura e taglio. I saldatori ei loro collaboratori sono generalmente esposti non solo a intense radiazioni UV, ma anche a intense radiazioni visibili e IR emesse dall'arco. In rari casi, queste fonti hanno prodotto lesioni acute alla retina dell'occhio. La protezione degli occhi è obbligatoria per questi ambienti.
  2. Industria dei metalli e fonderie. La fonte più significativa di esposizione nel visibile e nell'infrarosso proviene dalle superfici di metallo fuso e caldo nelle industrie dell'acciaio e dell'alluminio e nelle fonderie. L'esposizione dei lavoratori varia tipicamente da 0.5 a 1.2 kW/m2.
  3. Lampade ad arco. Molti processi industriali e commerciali, come quelli che coinvolgono lampade fotochimiche, emettono luce visibile (blu) intensa a onde corte, nonché radiazioni UV e IR. Sebbene la probabilità di un'esposizione dannosa sia bassa a causa della schermatura, in alcuni casi può verificarsi un'esposizione accidentale.
  4. Lampade a infrarossi. Queste lampade emettono prevalentemente nella gamma IRA e sono generalmente utilizzate per il trattamento termico, l'essiccazione della vernice e le relative applicazioni. Queste lampade non presentano alcun rischio di esposizione significativo per l'uomo poiché il disagio prodotto dall'esposizione limiterà l'esposizione a un livello sicuro.
  5. Trattamento medico. Le lampade a infrarossi sono utilizzate in medicina fisica per una varietà di scopi diagnostici e terapeutici. L'esposizione al paziente varia notevolmente a seconda del tipo di trattamento e le lampade IR richiedono un uso attento da parte del personale.
  6. Illuminazione generale. Le lampade fluorescenti emettono pochissimi infrarossi e generalmente non sono abbastanza luminose da rappresentare un potenziale pericolo per gli occhi. Le lampade a incandescenza al tungsteno e al tungsteno-alogeno emettono una grande frazione della loro energia radiante nell'infrarosso. Inoltre, la luce blu emessa dalle lampade alogene al tungsteno può rappresentare un pericolo per la retina se una persona fissa il filamento. Fortunatamente, la risposta di avversione dell'occhio alla luce intensa previene lesioni acute anche a brevi distanze. Il posizionamento di filtri "termici" in vetro su queste lampade dovrebbe ridurre al minimo/eliminare questo rischio.
  7. Proiettori ottici e altri dispositivi. Sorgenti luminose intense sono utilizzate in proiettori, proiettori cinematografici e altri dispositivi di collimazione del raggio di luce. Questi possono rappresentare un pericolo per la retina con il raggio diretto a distanze molto ravvicinate.

 

Misurazione delle proprietà della sorgente

La caratteristica più importante di qualsiasi sorgente ottica è la sua distribuzione di potenza spettrale. Questo viene misurato utilizzando uno spettroradiometro, che consiste in un'ottica di ingresso adatta, un monocromatore e un fotorilevatore.

In molte situazioni pratiche, viene utilizzato un radiometro ottico a banda larga per selezionare una data regione spettrale. Sia per l'illuminazione visibile che per motivi di sicurezza, la risposta spettrale dello strumento sarà adattata per seguire una risposta spettrale biologica; ad esempio, i luxmetri sono orientati alla risposta fotopica (visiva) dell'occhio. Normalmente, a parte i misuratori di rischio UVR, la misurazione e l'analisi dei rischi di sorgenti di luce intensa e di sorgenti a infrarossi è troppo complessa per gli specialisti di salute e sicurezza sul lavoro di routine. Si stanno compiendo progressi nella standardizzazione delle categorie di sicurezza delle lampade, in modo che non saranno necessarie misurazioni da parte dell'utente per determinare i potenziali pericoli.

Limiti di esposizione umana

Dalla conoscenza dei parametri ottici dell'occhio umano e della radianza di una sorgente luminosa, è possibile calcolare gli irradiamenti (tassi di dose) alla retina. Anche l'esposizione delle strutture anteriori dell'occhio umano alla radiazione infrarossa può essere interessante e va inoltre tenuto presente che la posizione relativa della sorgente luminosa e il grado di chiusura delle palpebre possono influenzare notevolmente il corretto calcolo di un'esposizione oculare dose. Per le esposizioni alla luce ultravioletta ea onde corte, è importante anche la distribuzione spettrale della sorgente luminosa.

Numerosi gruppi nazionali e internazionali hanno raccomandato i limiti di esposizione professionale (EL) per le radiazioni ottiche (ACGIH 1992 e 1994; Sliney 1992). Sebbene la maggior parte di questi gruppi abbia raccomandato EL per la radiazione UV e laser, solo un gruppo ha raccomandato EL per la radiazione visibile (cioè la luce), vale a dire l'ACGIH, un'agenzia ben nota nel campo della salute sul lavoro. L'ACGIH fa riferimento ai suoi EL come valori limite di soglia, o TLV, e poiché questi vengono emessi annualmente, c'è l'opportunità di una revisione annuale (ACGIH 1992 e 1995). Si basano in gran parte su dati di lesioni oculari provenienti da studi su animali e da dati di lesioni retiniche umane risultanti dalla visione del sole e dalla saldatura di archi. I TLV si basano inoltre sul presupposto sottostante che le esposizioni ambientali esterne all'energia radiante visibile normalmente non sono pericolose per l'occhio tranne che in ambienti molto insoliti, come campi innevati e deserti, o quando si fissano effettivamente gli occhi sul sole.

Valutazione della sicurezza delle radiazioni ottiche

Poiché una valutazione completa dei pericoli richiede misurazioni complesse dell'irraggiamento spettrale e della radianza della sorgente, e talvolta anche strumenti e calcoli molto specializzati, raramente viene eseguita in loco da igienisti industriali e ingegneri della sicurezza. Invece, l'equipaggiamento protettivo per gli occhi da utilizzare è imposto dalle norme di sicurezza in ambienti pericolosi. Gli studi di ricerca hanno valutato un'ampia gamma di archi, laser e sorgenti termiche al fine di sviluppare ampie raccomandazioni per standard di sicurezza pratici e più facili da applicare.

Misure protettive

L'esposizione professionale alle radiazioni visibili e IR è raramente pericolosa e di solito è benefica. Tuttavia, alcune fonti emettono una quantità considerevole di radiazioni visibili e, in questo caso, viene evocata la naturale risposta di avversione, quindi c'è poca possibilità di sovraesposizione accidentale degli occhi. D'altra parte, l'esposizione accidentale è molto probabile nel caso di sorgenti artificiali che emettono solo radiazioni nel vicino IR. Le misure che possono essere adottate per ridurre al minimo l'esposizione non necessaria del personale alle radiazioni IR includono un'adeguata progettazione ingegneristica del sistema ottico in uso, l'uso di occhiali o visiere protettive adeguate, la limitazione dell'accesso alle persone direttamente interessate al lavoro e la garanzia che i lavoratori siano a conoscenza di i potenziali pericoli associati all'esposizione a intense sorgenti di radiazioni visibili e IR. Il personale addetto alla manutenzione che sostituisce le lampade ad arco deve avere una formazione adeguata in modo da precludere l'esposizione pericolosa. È inaccettabile che i lavoratori soffrano di eritema cutaneo o fotocheratite. Se si verificano queste condizioni, dovrebbero essere esaminate le pratiche di lavoro e adottate misure per garantire che la sovraesposizione sia resa improbabile in futuro. Le operatrici in stato di gravidanza non corrono rischi specifici per le radiazioni ottiche per quanto riguarda l'integrità della loro gravidanza.

Design e standard di protezione per gli occhi

La progettazione di protezioni per gli occhi per la saldatura e altre operazioni che presentano fonti di radiazioni ottiche industriali (ad esempio, lavori di fonderia, produzione di acciaio e vetro) è iniziata all'inizio di questo secolo con lo sviluppo del vetro di Crooke. Gli standard di protezione degli occhi che si sono evoluti in seguito hanno seguito il principio generale secondo cui, poiché le radiazioni infrarosse e ultraviolette non sono necessarie per la visione, quelle bande spettrali dovrebbero essere bloccate nel miglior modo possibile dai materiali di vetro attualmente disponibili.

Gli standard empirici per i dispositivi di protezione degli occhi sono stati testati negli anni '1970 e hanno dimostrato di includere ampi fattori di sicurezza per le radiazioni infrarosse e ultraviolette quando i fattori di trasmissione sono stati testati rispetto agli attuali limiti di esposizione professionale, mentre i fattori di protezione per la luce blu erano appena sufficienti. Alcuni requisiti degli standard sono stati pertanto adeguati.

Protezione dalle radiazioni ultraviolette e infrarosse

Nell'industria vengono utilizzate numerose lampade UV specializzate per il rilevamento della fluorescenza e per la fotopolimerizzazione di inchiostri, resine plastiche, polimeri dentali e così via. Sebbene le sorgenti UVA normalmente comportino pochi rischi, queste sorgenti possono contenere tracce di UVB pericolosi o rappresentare un problema di abbagliamento invalidante (a causa della fluorescenza del cristallino dell'occhio). Le lenti con filtro UV, in vetro o plastica, con fattori di attenuazione molto elevati sono ampiamente disponibili per proteggere dall'intero spettro UV. Una leggera sfumatura giallastra può essere rilevabile se la protezione è garantita a 400 nm. È di fondamentale importanza per questo tipo di occhiali (e per gli occhiali da sole industriali) fornire protezione al campo visivo periferico. Schermi laterali o design avvolgenti sono importanti per proteggere dalla focalizzazione di raggi temporali obliqui nell'area nasale equatoriale del cristallino, dove spesso ha origine la cataratta corticale.

Quasi tutti i materiali delle lenti in vetro e plastica bloccano la radiazione ultravioletta al di sotto di 300 nm e la radiazione infrarossa a lunghezze d'onda superiori a 3,000 nm (3 μm) e per alcuni laser e sorgenti ottiche, i normali occhiali di sicurezza trasparenti resistenti agli urti forniranno una buona protezione (ad es. le lenti in policarbonato trasparente bloccano efficacemente le lunghezze d'onda superiori a 3 μm). Tuttavia, è necessario aggiungere assorbitori come ossidi metallici nel vetro o coloranti organici nella plastica per eliminare i raggi UV fino a circa 380-400 nm e gli infrarossi oltre 780 nm fino a 3 μm. A seconda del materiale, questo può essere facile o molto difficile o costoso e la stabilità dell'assorbitore può variare alquanto. I filtri che soddisfano lo standard ANSI Z87.1 dell'American National Standards Institute devono avere i fattori di attenuazione appropriati in ciascuna banda spettrale critica.

Protezione in vari settori

Antincendio

I vigili del fuoco possono essere esposti a intense radiazioni nel vicino infrarosso e, a parte la protezione cruciale per la testa e il viso, sono spesso prescritti filtri di attenuazione IRR. Qui è importante anche la protezione dagli impatti.

Occhiali per fonderia e vetreria

Gli occhiali e gli occhiali progettati per la protezione oculare contro le radiazioni infrarosse hanno generalmente una leggera sfumatura verdastra, sebbene la tinta possa essere più scura se si desidera un certo comfort contro le radiazioni visibili. Tali protezioni per gli occhi non devono essere confuse con le lenti blu utilizzate nelle operazioni di acciaieria e fonderia, dove l'obiettivo è controllare visivamente la temperatura del fuso; questi occhiali blu non forniscono protezione e dovrebbero essere indossati solo per breve tempo.

Saldatura

Le proprietà di filtrazione dell'infrarosso e dell'ultravioletto possono essere facilmente impartite ai filtri di vetro per mezzo di additivi come l'ossido di ferro, ma il grado di attenuazione strettamente visibile determina il numero di tonalità, che è un'espressione logaritmica dell'attenuazione. Normalmente viene utilizzato un numero di gradazione da 3 a 4 per la saldatura a gas (che richiede occhiali protettivi) e un numero di gradazione da 10 a 14 per le operazioni di saldatura ad arco e arco plasma (qui è richiesta la protezione del casco). La regola empirica è che se il saldatore trova l'arco comodo da vedere, viene fornita un'attenuazione adeguata contro i rischi oculari. I supervisori, gli aiutanti del saldatore e altre persone nell'area di lavoro possono richiedere filtri con un numero di tonalità relativamente basso (ad esempio, da 3 a 4) per proteggersi dalla fotocheratite ("occhio ad arco" o "bagliore del saldatore"). Negli ultimi anni è apparso sulla scena un nuovo tipo di filtro per saldatura, il filtro autoscurante. Indipendentemente dal tipo di filtro, deve soddisfare gli standard ANSI Z87.1 e Z49.1 per i filtri di saldatura fissi specificati per tonalità scura (Buhr e Sutter 1989; CIE 1987).

Filtri per saldatura autoscurante

Il filtro di saldatura autooscurante, il cui numero di gradazione aumenta con l'intensità della radiazione ottica che lo colpisce, rappresenta un importante progresso nella capacità dei saldatori di produrre saldature di qualità costantemente elevata in modo più efficiente ed ergonomico. In precedenza, il saldatore doveva abbassare e sollevare il casco o il filtro ogni volta che veniva acceso e spento un arco. Il saldatore ha dovuto lavorare "alla cieca" poco prima di innescare l'arco. Inoltre, il casco viene comunemente abbassato e sollevato con un brusco schiocco del collo e della testa, che può causare affaticamento del collo o lesioni più gravi. Di fronte a questa procedura scomoda e ingombrante, alcuni saldatori spesso avviano l'arco con un elmetto convenzionale in posizione sollevata, portando alla fotocheratite. In normali condizioni di illuminazione ambientale, un saldatore che indossa un casco dotato di un filtro auto-oscurante può vedere abbastanza bene con la protezione per gli occhi in posizione per eseguire attività come allineare le parti da saldare, posizionare con precisione l'attrezzatura di saldatura e innescare l'arco. Nei modelli di elmetti più tipici, i sensori di luce rilevano quindi virtualmente l'arco elettrico non appena appare e indirizzano un'unità di azionamento elettronica per commutare un filtro a cristalli liquidi da una tonalità chiara a una tonalità scura preselezionata, eliminando la necessità di goffi e pericolosi manovre praticate con filtri a gradazione fissa.

È stata spesso sollevata la questione se i problemi di sicurezza nascosti possano svilupparsi con i filtri autooscuranti. Ad esempio, le immagini residue ("cecità improvvisa") sperimentate sul posto di lavoro possono causare una vista permanentemente compromessa? I nuovi tipi di filtro offrono davvero un grado di protezione equivalente o migliore di quello che possono fornire i tradizionali filtri fissi? Sebbene si possa rispondere affermativamente alla seconda domanda, è necessario comprendere che non tutti i filtri autooscuranti sono equivalenti. Le velocità di reazione del filtro, i valori delle ombre chiare e scure ottenute con una data intensità di illuminazione e il peso di ciascuna unità possono variare da un modello di apparecchiatura all'altro. La dipendenza dalla temperatura delle prestazioni dell'unità, la variazione del grado di ombreggiamento con il degrado elettrico della batteria, l'”ombra dello stato di riposo” e altri fattori tecnici variano a seconda del design di ciascun produttore. Queste considerazioni vengono affrontate in nuovi standard.

Poiché un'adeguata attenuazione del filtro è garantita da tutti i sistemi, il singolo attributo più importante specificato dai produttori di filtri autooscuranti è la velocità di commutazione del filtro. Gli attuali filtri di oscuramento automatico variano nella velocità di commutazione da un decimo di secondo a più veloce di 1/10,000 di secondo. Buhr e Sutter (1989) hanno indicato un mezzo per specificare il tempo massimo di commutazione, ma la loro formulazione varia in relazione all'andamento temporale della commutazione. La velocità di commutazione è cruciale, poiché fornisce l'indizio migliore per l'importantissima (ma non specificata) misura di quanta luce entrerà nell'occhio quando l'arco viene colpito rispetto alla luce ammessa da un filtro fisso dello stesso numero di gradazione di lavoro . Se troppa luce entra nell'occhio per ogni commutazione durante il giorno, la dose di energia luminosa accumulata produce un "adattamento transitorio" e lamentele di "affaticamento degli occhi" e altri problemi. (L'adattamento transitorio è l'esperienza visiva causata da improvvisi cambiamenti nel proprio ambiente luminoso, che può essere caratterizzato da disagio, sensazione di essere stati esposti al bagliore e perdita temporanea della visione dettagliata.) Prodotti attuali con velocità di commutazione dell'ordine di dieci millisecondi fornirà meglio una protezione adeguata contro la fotoretinite. Tuttavia, il tempo di commutazione più breve, dell'ordine di 0.1 ms, ha il vantaggio di ridurre gli effetti di adattamento transitorio (Eriksen 1985; Sliney 1992).

Semplici test di controllo sono disponibili per il saldatore, oltre a approfonditi test di laboratorio. Si potrebbe suggerire al saldatore di guardare semplicemente una pagina di stampa dettagliata attraverso una serie di filtri autooscuranti. Questo darà un'indicazione della qualità ottica di ciascun filtro. Successivamente, al saldatore può essere chiesto di provare a innescare un arco mentre lo osserva attraverso ciascun filtro considerato per l'acquisto. Fortunatamente, si può fare affidamento sul fatto che i livelli di luce confortevoli per la visualizzazione non saranno pericolosi. L'efficacia della filtrazione UV e IR deve essere verificata nella scheda delle specifiche del produttore per assicurarsi che le bande non necessarie vengano filtrate. Alcuni colpi d'arco ripetuti dovrebbero dare al saldatore un'idea del disagio che proverà dall'adattamento transitorio, anche se una prova di un giorno sarebbe la cosa migliore.

Il numero di gradazione dello stato di riposo o di guasto di un filtro autooscurante (uno stato di guasto si verifica quando la batteria si guasta) dovrebbe fornire una protezione del 100% per gli occhi del saldatore per almeno uno o diversi secondi. Alcuni produttori utilizzano uno stato scuro come posizione "off" e altri utilizzano una tonalità intermedia tra gli stati di tonalità scura e chiara. In entrambi i casi, la trasmittanza dello stato di riposo per il filtro dovrebbe essere sensibilmente inferiore alla trasmittanza dell'ombra chiara per escludere un rischio retinico. In ogni caso, il dispositivo dovrebbe fornire all'utente un indicatore chiaro ed evidente di quando il filtro è spento o quando si verifica un guasto del sistema. Ciò assicurerà che il saldatore sia avvisato in anticipo nel caso in cui il filtro non sia acceso o non funzioni correttamente prima dell'inizio della saldatura. Altre caratteristiche, come la durata della batteria o le prestazioni in condizioni di temperatura estreme, possono essere importanti per determinati utenti.

Conclusioni

Sebbene le specifiche tecniche possano sembrare alquanto complesse per i dispositivi che proteggono l'occhio dalle sorgenti di radiazioni ottiche, esistono standard di sicurezza che specificano i numeri di sfumatura e questi standard forniscono un fattore di sicurezza conservativo per chi li indossa.

 

Di ritorno

Leggi 11335 volte Ultima modifica mercoledì 24 agosto 2011 19:38
Altro in questa categoria: " Radiazione infrarossa Laser »

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Radiazioni: riferimenti non ionizzanti

Allen, S.G. 1991. Misurazioni del campo a radiofrequenza e valutazione dei rischi. J Radiol Protect 11:49-62.

Conferenza americana degli igienisti industriali governativi (ACGIH). 1992. Documentazione per i valori limite di soglia. Cincinnati, Ohio: ACGIH.

—. 1993. Valori limite di soglia per sostanze chimiche e agenti fisici e indici di esposizione biologica. Cincinnati, Ohio: ACGIH.

—. 1994a. Rapporto Annuale Comitato Valori Limite Soglia Agenti Fisici ACGIH. Cincinnati, Ohio: ACGIH.

—. 1994b. TLV, valori limite di soglia e indici di esposizione biologica per il periodo 1994-1995. Cincinnati, Ohio: ACGIH.

—. 1995. Valori limite di soglia 1995-1996 per sostanze chimiche e agenti fisici e indici di esposizione biologica. Cincinnati, Ohio: ACGIH.

—. 1996. TLV© e BEI©. Valori Limite di Soglia per Sostanze Chimiche e Agenti Fisici; Indici di esposizione biologica. Cincinnati, Ohio: ACGIH.

Istituto nazionale americano per gli standard (ANSI). 1993. Uso sicuro dei laser. Norma n. Z-136.1. New York: ANSI.

Aniolczyk, R. 1981. Misurazioni della valutazione igienica dei campi elettromagnetici nell'ambiente di diatermia, saldatrici e riscaldatori a induzione. Medicina Pracy 32:119-128.

Bassett, CAL, SN Mitchell e SR Gaston. 1982. Trattamento del campo elettromagnetico pulsante nelle fratture non unite e nelle artrodesi fallite. J Am Med Assoc 247:623-628.

Bassett, CAL, RJ Pawluk e AA Pilla. 1974. Aumento della riparazione ossea mediante campi elettromagnetici accoppiati induttivamente. Scienza 184:575-577.

Berger, D, F Urbach e RE Davies. 1968. Lo spettro d'azione dell'eritema indotto dalla radiazione ultravioletta. Nella relazione preliminare XIII. Congressus Internationalis Dermatologiae, Monaco, a cura di W Jadassohn e CG Schirren. New York: Springer Verlag.

Bernhardt, J.H. 1988a. La definizione di limiti dipendenti dalla frequenza per i campi elettrici e magnetici e la valutazione degli effetti indiretti. Rad Envir Biophys 27:1.

Bernhardt, JH e R Matthes. 1992. Sorgenti elettromagnetiche ELF e RF. In Protezione dalle radiazioni non ionizzanti, a cura di MW Greene. Vancouver: UBC Press.

Bini, M, A Checcucci, A Ignesti, L Millanta, R Olmi, N Rubino, R Vanni. 1986. Esposizione dei lavoratori a campi elettrici RF intensi che fuoriescono dai sigillanti in plastica. J Potenza microonde 21:33-40.

Buhr, E, E Sutter e Consiglio sanitario olandese. 1989. Filtri dinamici per dispositivi di protezione. In Dosimetry of Laser Radiation in Medicine and Biology, a cura di GJ Mueller e DH Sliney. Bellingham, Washington: SPIE.

Ufficio di salute radiologica. 1981. Una valutazione dell'emissione di radiazioni dai terminali video. Rockville, MD: Bureau of Radiological Health.

Cleuet, A e A Mayer. 1980. Risques liés à l'utilisation industrielle des lasers. In Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, n. 99 Parigi: Institut National de Recherche et de Sécurité.

Coblenza, WR, Scala R e JM Hogue. 1931. La relazione eritemica spettrale della pelle con la radiazione ultravioletta. In Atti della National Academy of Sciences degli Stati Uniti d'America Washington, DC: National Academy of Sciences.

Cole, CA, DF Forbes e PD Davies. 1986. Uno spettro d'azione per la fotocarcinogenesi UV. Fotochimica Fotobiol 43(3):275-284.

Commission Internationale de L'Eclairage (CIE). 1987. Vocabolario internazionale dell'illuminazione. Vienna: CIE.

Cullen, AP, BR Chou, MG Hall e SE Jany. 1984. L'ultravioletto B danneggia l'endotelio corneale. Am J Optom Phys Opt 61(7):473-478.

Duchene, A, J Lakey e M Repacholi. 1991. Linee guida IRPA sulla protezione contro le radiazioni non ionizzanti. New York: Pergamo.

Elder, JA, PA Czerki, K Stuchly, K Hansson Mild e AR Sheppard. 1989. Radiazione a radiofrequenza. In Protezione dalle radiazioni non ionizzanti, a cura di MJ Suess e DA Benwell-Morison. Ginevra: OMS.

Eriksen, P. 1985. Spettri ottici risolti nel tempo dall'accensione dell'arco di saldatura MIG. Am Ind Hyg Assoc J 46:101-104.

Everett, MA, RL Olsen e RM Sayer. 1965. Eritema ultravioletto. Arco Dermatol 92:713-719.

Fitzpatrick, TB, MA Pathak, LC Harber, M Seiji e A Kukita. 1974. Luce solare e uomo, risposte fotobiologiche normali e anormali. Tokyo: Univ. della Tokio Press.

Forbes, PD e PD Davies. 1982. Fattori che influenzano la fotocarcinogenesi. Cap. 7 in Photoimmunology, a cura di JAM Parrish, L Kripke e WL Morison. New York: Plenum.

Freeman, RS, DW Owens, JM Knox e HT Hudson. 1966. Fabbisogno energetico relativo per una risposta eritemica della pelle alle lunghezze d'onda monocromatiche dell'ultravioletto presente nello spettro solare. JInvest Dermatol 47:586-592.

Grandolfo, M e K Hansson Mild. 1989. Radiofrequenza pubblica e occupazionale mondiale e protezione dalle microonde. In biointerazione elettromagnetica. Meccanismi, norme di sicurezza, guide di protezione, a cura di G Franceschetti, OP Gandhi e M Grandolfo. New York: Plenum.

Green, MW. 1992. Radiazioni non ionizzanti. 2° Workshop internazionale sulle radiazioni non ionizzanti, 10-14 maggio, Vancouver.

Prosciutto, WTJ. 1989. La fotopatologia e la natura della lesione retinica a luce blu e quasi UV prodotta da laser e altre sorgenti ottiche. In Applicazioni laser in medicina e biologia, a cura di ML Wolbarsht. New York: Plenum.

Ham, WT, HA Mueller, JJ Ruffolo, D Guerry III e RK Guerry. 1982. Spettro d'azione per le lesioni retiniche da radiazione ultravioletta vicina nella scimmia afachica. Am J Ophthalmol 93(3):299-306.

Hansson Mild, K. 1980. Esposizione professionale a campi elettromagnetici a radiofrequenza. Proc. IEEE 68:12-17.

Hausser, KW. 1928. Influenza della lunghezza d'onda nella biologia delle radiazioni. Strahlentherapie 28:25-44.

Istituto di ingegneria elettrica ed elettronica (IEEE). 1990a. IEEE COMAR Posizione di RF e microonde. New York: IEEE.

—. 1990b. Dichiarazione di posizione IEEE COMAR sugli aspetti sanitari dell'esposizione a campi elettrici e magnetici da sigillanti RF e riscaldatori dielettrici. New York: IEEE.

—. 1991. Standard IEEE per i livelli di sicurezza relativi all'esposizione umana a campi elettromagnetici a radiofrequenza da 3 KHz a 300 GHz. New York: IEEE.

Commissione internazionale per la protezione dalle radiazioni non ionizzanti (ICNIRP). 1994. Linee guida sui limiti di esposizione ai campi magnetici statici. Salute Fisica 66:100-106.

—. 1995. Linee guida per i limiti di esposizione umana alle radiazioni laser.

Dichiarazione dell'ICNIRP. 1996. Problemi di salute legati all'uso di radiotelefoni portatili e trasmettitori di base. Fisica sanitaria, 70:587-593.

Commissione elettrotecnica internazionale (IEC). 1993. Norma IEC n. 825-1. Ginevra: CEI.

Ufficio Internazionale del Lavoro (ILO). 1993a. Protezione dai campi elettrici e magnetici a frequenza industriale. Serie sulla sicurezza e la salute sul lavoro, n. 69. Ginevra: ILO.

Associazione internazionale per la protezione dalle radiazioni (IRPA). 1985. Linee guida per i limiti di esposizione umana alle radiazioni laser. Salute Fisica 48(2):341-359.

—. 1988a. Modifica: Raccomandazioni per aggiornamenti minori alle linee guida IRPA 1985 sui limiti di esposizione alle radiazioni laser. Salute Fisica 54(5):573-573.

—. 1988b. Linee guida sui limiti di esposizione ai campi elettromagnetici a radiofrequenza nella gamma di frequenze da 100 kHz a 300 GHz. Salute Fisica 54:115-123.

—. 1989. Proposta di modifica alle linee guida IRPA 1985 sui limiti di esposizione alle radiazioni ultraviolette. Salute Fisica 56(6):971-972.

Associazione internazionale per la protezione dalle radiazioni (IRPA) e Comitato internazionale per le radiazioni non ionizzanti. 1990. Linee guida provvisorie sui limiti di esposizione a campi elettrici e magnetici a 50/60 Hz. Salute Fisica 58(1):113-122.

Kolmodin-Hedman, B, K Hansson Mild, E Jönsson, MC Anderson e A Eriksson. 1988. Problemi di salute tra operazioni di saldatrici per materie plastiche ed esposizione a campi elettromagnetici a radiofrequenza. Int Arch Occup Environ Health 60:243-247.

Krause, N. 1986. Esposizione delle persone a campi magnetici statici e variabili nel tempo nella tecnologia, nella medicina, nella ricerca e nella vita pubblica: aspetti dosimetrici. In Biological Effects of Static and ELF-Magnetic Fields, a cura di JH Bernhardt. Monaco: MMV Medizin Verlag.

Lövsund, P e KH Lieve. 1978. Campo elettromagnetico a bassa frequenza vicino ad alcuni riscaldatori a induzione. Stoccolma: Consiglio di Stoccolma per la salute e la sicurezza sul lavoro.

Lövsund, P, PA Oberg e SEG Nilsson. 1982. Campi magnetici ELF nelle industrie dell'elettroacciaio e della saldatura. Radio Sci 17(5S):355-385.

Luckiesh, ML, L Holladay e AH Taylor. 1930. Reazione della pelle umana non abbronzata alle radiazioni ultraviolette. J Ottica Soc Am 20:423-432.

McKinlay, AF e B Diffey. 1987. Uno spettro d'azione di riferimento per l'eritema indotto da ultravioletti nella pelle umana. In Human Exposure to Ultraviolet Radiation: Risks and Regulations, a cura di WF Passchier e BFM Bosnjakovic. New York: Divisione Excerpta medica, Elsevier Science Publishers.

McKinlay, A, JB Andersen, JH Bernhardt, M Grandolfo, KA Hossmann, FE van Leeuwen, K Hansson Mild, AJ Swerdlow, L Verschaeve e B Veyret. Proposta di un programma di ricerca da parte di un gruppo di esperti della Commissione europea. Possibili effetti sulla salute legati all'uso dei radiotelefoni. Rapporto inedito.

Mitbriet, IM e VD Manyachin. 1984. Influenza dei campi magnetici sulla riparazione dell'osso. Mosca, Nauka, 292-296.

Consiglio nazionale per la protezione dalle radiazioni e le misurazioni (NCRP). 1981. Campi elettromagnetici a radiofrequenza. Proprietà, quantità e unità, interazione biofisica e misurazioni. Bethesda, MD: NCRP.

—. 1986. Effetti biologici e criteri di esposizione per campi elettromagnetici a radiofrequenza. Rapporto n. 86. Bethesda, MD: NCRP.

Consiglio Nazionale per la Protezione Radiologica (NRPB). 1992. Campi elettromagnetici e rischio di cancro. vol. 3(1). Chilton, Regno Unito: NRPB.

—. 1993. Restrizioni sull'esposizione umana a campi e radiazioni elettromagnetici statici e variabili nel tempo. Didcot, Regno Unito: NRPB.

Consiglio Nazionale delle Ricerche (CNR). 1996. Possibili effetti sulla salute dell'esposizione a campi elettrici e magnetici residenziali. Washington: NAS Press. 314.

Olsen, EG e A Ringvold. 1982. Endotelio corneale umano e radiazioni ultraviolette. Acta Oftalmolo 60:54-56.

Parrish, JA, KF Jaenicke e RR Anderson. 1982. Eritema e melanogenesi: spettri di azione della pelle umana normale. Fotochimica Fotobiol 36(2):187-191.

Passchier, WF e BFM Bosnjakovic. 1987. Esposizione umana alle radiazioni ultraviolette: rischi e regolamenti. New York: Excerpta Medica Division, Elsevier Science Publishers.

Pitti, DG. 1974. Lo spettro d'azione dell'ultravioletto umano. Am J Optom Phys Opt 51(12):946-960.

Pitts, DG e TJ Tredici. 1971. Gli effetti dell'ultravioletto sull'occhio. Am Ind Hyg Assoc J 32(4):235-246.

Pitts, DG, AP Cullen e PD Hacker. 1977a. Effetti oculari della radiazione ultravioletta da 295 a 365 nm. Invest Ophthalmol Vis Sci 16(10):932-939.

—. 1977b. Effetti ultravioletti da 295 a 400 nm nell'occhio di coniglio. Cincinnati, Ohio: Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH).

Polk, C ed E Postow. 1986. Manuale CRC degli effetti biologici dei campi elettromagnetici. Boca Raton: CRC Press.

Repacholi, MH. 1985. Videoterminali: gli operatori devono preoccuparsi? Austalas Phys Eng Sci Med 8(2):51-61.

—. 1990. Cancro dall'esposizione a campi elettrici e magnetici a 50760 Hz: un importante dibattito scientifico. Austalas Phys Eng Sci Med 13(1):4-17.

Repacholi, M, A Basten, V Gebski, D Noonan, J Finnic e AW Harris. 1997. Linfomi nei topi transgenici E-Pim1 esposti a campi elettromagnetici pulsati a 900 MHz. Ricerca sulle radiazioni, 147:631-640.

Riley, MV, S Susan, MI Peters e CA Schwartz. 1987. Gli effetti dell'irradiazione UVB sull'endotelio corneale. Curr Eye Ris 6(8):1021-1033.

Ringvold, A. 1980a. Cornea e radiazioni ultraviolette. Acta Oftalmolo 58:63-68.

—. 1980b. Umor acqueo e radiazioni ultraviolette. Acta Oftalmolo 58:69-82.

—. 1983. Danno dell'epitelio corneale causato dalla radiazione ultravioletta. Acta Ophthalmol 61:898-907.

Ringvold, A e M Davanger. 1985. Cambiamenti nello stroma corneale del coniglio causati dalla radiazione UV. Acta Ophthalmol 63:601-606.

Ringvold, A, M Davanger e EG Olsen. 1982. Cambiamenti dell'endotelio corneale dopo la radiazione ultravioletta. Acta Oftalmolo 60:41-53.

Roberts, New Jersey e SM Michaelson. 1985. Studi epidemiologici sull'esposizione umana alle radiazioni a radiofrequenza: una revisione critica. Int Arch Occup Environ Health 56:169-178.

Roy, CR, KH Joyner, HP Gies e MJ Bangay. 1984. Misurazione della radiazione elettromagnetica emessa dai videoterminali (VDT). Rad Prot Australe 2(1):26-30.

Scotto, J, TR Paure, e GB Gori. 1980. Misurazioni delle radiazioni ultraviolette negli Stati Uniti e confronti con i dati sul cancro della pelle. Washington, DC: ufficio stampa del governo degli Stati Uniti.

Sienkiewicz, ZJ, RD Saunder e CI Kowalczuk. 1991. Effetti biologici dell'esposizione a campi elettromagnetici non ionizzanti e radiazioni. 11 Campi elettrici e magnetici a frequenza estremamente bassa. Didcot, Regno Unito: Comitato nazionale per la protezione dalle radiazioni.

Silverman, C. 1990. Studi epidemiologici su cancro e campi elettromagnetici. Nel cap. 17 in Effetti biologici e applicazioni mediche dell'energia elettromagnetica, a cura di OP Gandhi. Engelwood Cliffs, New Jersey: Prentice Hall.

Sliney, DH. 1972. I meriti di uno spettro d'azione dell'inviluppo per i criteri di esposizione alle radiazioni ultraviolette. Am Ind Hyg Assoc J 33:644-653.

—. 1986. Fattori fisici nella catarattogenesi: radiazione ultravioletta ambientale e temperatura. Invest Ophthalmol Vis Sci 27(5):781-790.

—. 1987. Stima dell'esposizione alla radiazione ultravioletta solare a un impianto di lente intraoculare. J Cataract Refract Surg 13(5):296-301.

—. 1992. Guida di un responsabile della sicurezza ai nuovi filtri di saldatura. Saldatura J 71(9):45-47.
Sliney, DH e ML Wolbarsht. 1980. Sicurezza con laser e altre sorgenti ottiche. New York: Plenum.

Stenson, S. 1982. Risultati oculari in xeroderma pigmentoso: rapporto di due casi. Ann Oftalmol 14(6):580-585.

Sterenborg, HJCM e JC van der Leun. 1987. Spettri d'azione per tumorigenesi mediante radiazione ultravioletta. In Human Exposure to Ultraviolet Radiation: Risks and Regulations, a cura di WF Passchier e BFM Bosnjakovic. New York: Excerpta Medica Division, Elsevier Science Publishers.

Stucchi, MA. 1986. Esposizione umana a campi magnetici statici e variabili nel tempo. Salute Fisica 51(2):215-225.

Stuchly, MA e DW Lecuyer. 1985. Riscaldamento ad induzione ed esposizione dell'operatore ai campi elettromagnetici. Salute Fisica 49:693-700.

—. 1989. Esposizione a campi elettromagnetici nella saldatura ad arco. Salute Fisica 56:297-302.

Szmigielski, S, M Bielec, S Lipski e G Sokolska. 1988. Aspetti immunologici e correlati al cancro dell'esposizione a campi a microonde ea radiofrequenza di basso livello. In Modern Bioelectricity, a cura di AA Mario. New York: Marcel Dekker.

Taylor, HR, SK West, FS Rosenthal, B Munoz, HS Newland, H Abbey e EA Emmett. 1988. Effetto della radiazione ultravioletta sulla formazione della cataratta. New Engl J Med 319:1429-1433.

Dillo, R.A. 1983. Strumentazione per la misurazione dei campi elettromagnetici: apparecchiature, calibrazioni e applicazioni selezionate. In Biological Effects and Dosimetry of Nonionizing Radiation, Radiofrequency and Microwave Energies, a cura di M Grandolfo, SM Michaelson e A Rindi. New York: Plenum.

Urbach, F. 1969. Gli effetti biologici della radiazione ultravioletta. New York: Pergamo.

Organizzazione Mondiale della Sanità (OMS). 1981. Radiofrequenza e microonde. Criteri di salute ambientale, n. 16. Ginevra: OMS.

—. 1982. Laser e radiazioni ottiche. Criteri di salute ambientale, n. 23. Ginevra: OMS.

—. 1987. Campi magnetici. Criteri di salute ambientale, n. 69. Ginevra: OMS.

—. 1989. Protezione dalle radiazioni non ionizzanti. Copenaghen: Ufficio regionale dell'OMS per l'Europa.

—. 1993. Campi elettromagnetici da 300 Hz a 300 GHz. Criteri di salute ambientale, n. 137. Ginevra: OMS.

—. 1994. Radiazioni ultraviolette. Criteri di salute ambientale, n. 160. Ginevra: OMS.

Organizzazione mondiale della sanità (OMS), Programma ambientale delle Nazioni Unite (UNEP) e Associazione internazionale per la protezione dalle radiazioni (IRPA). 1984. Frequenza estremamente bassa (ELF). Criteri di salute ambientale, n. 35. Ginevra: OMS.

Zaffanella, LE e DW DeNo. 1978. Effetti elettrostatici ed elettromagnetici delle linee di trasmissione ad altissima tensione. Palo Alto, California: Electric Power Research Institute.

Zuclich, JA e JS Connolly. 1976. Danno oculare indotto dalla radiazione laser quasi ultravioletta. Invest Ophthalmol Vis Sci 15(9):760-764.