Sembra che ci siano tanti pericoli potenziali creati dalle parti mobili della macchina quanti sono i diversi tipi di macchine. Le misure di salvaguardia sono essenziali per proteggere i lavoratori da infortuni inutili e prevenibili legati ai macchinari. Pertanto, qualsiasi parte, funzione o processo della macchina che possa causare lesioni deve essere salvaguardato. Se il funzionamento di una macchina o il contatto accidentale con essa può provocare lesioni all'operatore o ad altri nelle vicinanze, il pericolo deve essere controllato o eliminato.
Moti e azioni meccaniche
I rischi meccanici in genere coinvolgono parti mobili pericolose nelle seguenti tre aree di base:
- il punto di operazione, quel punto in cui viene eseguito il lavoro sul materiale, come il taglio, la sagomatura, la punzonatura, lo stampaggio, l'alesatura o la formatura del grezzo
- apparato di trasmissione di potenza, gli eventuali componenti del sistema meccanico che trasmettono energia alle parti della macchina che effettuano il lavoro. Questi componenti includono volani, pulegge, cinghie, bielle, giunti, camme, mandrini, catene, manovelle e ingranaggi
- altre parti mobili, tutte le parti della macchina che si muovono mentre la macchina è in funzione, come le parti a movimento alternativo, rotante e trasversale, nonché i meccanismi di avanzamento e le parti ausiliarie della macchina.
Un'ampia varietà di movimenti e azioni meccaniche che possono presentare rischi per i lavoratori includono il movimento di elementi rotanti, bracci alternativi, cinghie mobili, ingranaggi ingrananti, denti taglienti e qualsiasi parte che urta o taglia. Questi diversi tipi di movimenti e azioni meccaniche sono fondamentali per quasi tutte le macchine e riconoscerli è il primo passo per proteggere i lavoratori dai pericoli che possono presentare.
Proposte
Esistono tre tipi fondamentali di movimento: rotatorio, alternativo e trasversale.
Moto rotatorio può essere pericoloso; anche le aste lisce e che ruotano lentamente possono afferrare gli indumenti e costringere un braccio o una mano in una posizione pericolosa. Le lesioni dovute al contatto con le parti rotanti possono essere gravi (vedere figura 1).
Figura 1. Punzonatrice meccanica
Collari, giunti, camme, frizioni, volani, estremità dell'albero, mandrini e alberi orizzontali o verticali sono alcuni esempi di meccanismi rotanti comuni che possono essere pericolosi. Vi è un ulteriore pericolo quando bulloni, tacche, abrasioni e chiavi sporgenti o viti di fermo sono esposti su parti rotanti di macchinari, come mostrato nella figura 2.
Figura 2. Esempi di sporgenze pericolose su parti rotanti
Punto di contatto in corsas sono creati dalla rotazione di parti sui macchinari. Esistono tre tipi principali di punti di pressione in corsa:
- Le parti con assi paralleli possono ruotare in direzioni opposte. Queste parti possono essere in contatto (producendo così un punto di contatto) o in stretta prossimità l'una con l'altra, nel qual caso il materiale alimentato tra i rulli produce i punti di contatto. Questo pericolo è comune su macchinari con ingranaggi complanari, laminatoi e calandre, come mostrato in figura 3.
- Un altro tipo di nip point si crea tra parti rotanti e tangenzialmente in movimento, come il punto di contatto tra una cinghia di trasmissione di potenza e la sua puleggia, una catena e una ruota dentata, o un pignone e cremagliera, come mostrato in figura 4.
- Possono anche verificarsi punti di schiacciamento tra parti rotanti e fisse che creano un'azione di taglio, schiacciamento o abrasione. Gli esempi includono volantini o volani con raggi, trasportatori a coclea o la periferia di una mola abrasiva e un supporto di lavoro regolato in modo errato, come mostrato nella figura 5.
Figura 3. Punti di pressione comuni sulle parti rotanti
Figura 4. Punti di contatto tra elementi rotanti e parti con movimenti longitudinali
Figura 5. Punti di contatto tra i componenti rotanti della macchina
Movimenti alternati può essere pericoloso perché durante il movimento avanti e indietro o su e giù, un lavoratore può essere colpito o intrappolato tra una parte mobile e una parte fissa. Un esempio è mostrato in figura 6.
Figura 6. Moto alternativo pericoloso
Moto trasversale (movimento in linea retta e continua) crea un pericolo perché un lavoratore può essere colpito o intrappolato in un punto di schiacciamento o taglio da una parte in movimento. Un esempio di moto trasversale è mostrato in figura 7.
Figura 7. Esempio di movimento trasversale
Azioni
Esistono quattro tipi fondamentali di azione: taglio, punzonatura, cesoiatura e piegatura.
Azione di taglio implica un movimento rotatorio, alternativo o trasversale. L'azione di taglio crea pericoli nel punto di lavoro in cui possono verificarsi lesioni alle dita, alla testa e al braccio e dove frammenti volanti o materiale di scarto possono colpire gli occhi o il viso. Tipici esempi di macchine con rischi di taglio includono seghe a nastro, seghe circolari, alesatrici o trapani, torni (torni) e fresatrici. (Vedi figura 8.)
Figura 8. Esempi di pericoli di taglio
Azione di punzonatura si verifica quando si applica potenza a una slitta (pistone) allo scopo di tranciare, imbutire o stampare metallo o altri materiali. Il pericolo di questo tipo di azione si verifica nel punto di operazione in cui il calcio viene inserito, trattenuto e ritirato a mano. Le macchine tipiche che utilizzano l'azione di punzonatura sono le presse elettriche e i lavoratori del ferro. (Vedi figura 9.)
Figura 9. Tipica operazione di punzonatura
Azione di taglio comporta l'applicazione di energia a una slitta oa un coltello per tagliare o tagliare metallo o altri materiali. Un pericolo si verifica nel punto operativo in cui lo stock viene effettivamente inserito, trattenuto e prelevato. Tipici esempi di macchinari utilizzati per le operazioni di cesoiatura sono le cesoie ad azionamento meccanico, idraulico o pneumatico. (Vedi figura 10.)
Figura 10. Operazione di taglio
Azione di flessione si verifica quando si applica potenza a una slitta per modellare, imbutire o stampare metallo o altri materiali. Il pericolo si verifica nel punto di operazione in cui lo stock viene inserito, trattenuto e ritirato. Le apparecchiature che utilizzano l'azione di piegatura includono presse elettriche, presse piegatrici e curvatubi. (Vedi figura 11.)
Figura 11. Operazione di piegatura
Requisiti per le garanzie
Le protezioni devono soddisfare i seguenti requisiti generali minimi per proteggere i lavoratori dai rischi meccanici:
Impedisci il contatto. La protezione deve impedire che mani, braccia o qualsiasi parte del corpo o degli indumenti di un lavoratore entrino in contatto con parti mobili pericolose, eliminando la possibilità che gli operatori o altri lavoratori pongano parti del loro corpo vicino a parti mobili pericolose.
Fornisci sicurezza. I lavoratori non dovrebbero essere in grado di rimuovere o manomettere facilmente la protezione. Le protezioni e i dispositivi di sicurezza devono essere realizzati in materiale durevole che resista alle condizioni di normale utilizzo e che siano saldamente fissati alla macchina.
Proteggere dalla caduta di oggetti. La protezione dovrebbe garantire che nessun oggetto possa cadere nelle parti in movimento e danneggiare l'apparecchiatura o diventare un proiettile che potrebbe colpire e ferire qualcuno.
Non creare nuovi pericoli. Una protezione vanifica il suo scopo se crea un pericolo di per sé, come un punto di taglio, un bordo frastagliato o una superficie non rifinita. I bordi delle protezioni, ad esempio, devono essere arrotolati o imbullonati in modo tale da eliminare gli spigoli vivi.
Non creare interferenze. Le garanzie che impediscono ai lavoratori di svolgere il proprio lavoro potrebbero presto essere annullate o ignorate. Se possibile, i lavoratori dovrebbero essere in grado di lubrificare le macchine senza disinnestare o rimuovere le protezioni. Ad esempio, posizionare i serbatoi dell'olio all'esterno della protezione, con una linea che porta al punto di lubrificazione, ridurrà la necessità di entrare nell'area pericolosa.
Formazione di salvaguardia
Anche il sistema di salvaguardia più elaborato non può offrire una protezione efficace se i lavoratori non sanno come usarlo e perché. Una formazione specifica e dettagliata è una parte importante di qualsiasi sforzo per implementare la protezione contro i rischi legati alle macchine. Una protezione adeguata può migliorare la produttività e migliorare l'efficienza poiché può alleviare le apprensioni dei lavoratori per gli infortuni. La formazione di sicurezza è necessaria per i nuovi operatori e il personale addetto alla manutenzione o all'installazione, quando vengono messe in servizio protezioni nuove o modificate o quando i lavoratori sono assegnati a una nuova macchina o operazione; dovrebbe comportare istruzione o formazione pratica in quanto segue:
- una descrizione e identificazione dei pericoli associati a macchine particolari e le misure di sicurezza specifiche contro ciascun pericolo
- come le salvaguardie forniscono protezione; come utilizzare le tutele e perché
- come e in quali circostanze le protezioni possono essere rimosse e da chi (nella maggior parte dei casi, solo personale di riparazione o manutenzione)
- cosa fare (ad esempio, contattare il supervisore) se una protezione è danneggiata, mancante o incapace di fornire una protezione adeguata.
Metodi di salvaguardia della macchina
Ci sono molti modi per salvaguardare i macchinari. Il tipo di operazione, la dimensione o la forma dello stock, il metodo di manipolazione, la disposizione fisica dell'area di lavoro, il tipo di materiale e i requisiti o le limitazioni di produzione contribuiranno a determinare il metodo di protezione appropriato per la singola macchina. Il progettista della macchina o il professionista della sicurezza deve scegliere la protezione più efficace e pratica disponibile.
Le protezioni possono essere classificate in cinque classificazioni generali: (1) protezioni, (2) dispositivi, (3) separazione, (4) operazioni e (5) altro.
Salvaguardia con guardie
Esistono quattro tipi generali di protezioni (barriere che impediscono l'accesso alle zone pericolose), come segue:
Guardie fisse. Una protezione fissa è una parte permanente della macchina e non dipende da parti in movimento per svolgere la funzione prevista. Può essere costruito con lamiera, schermo, tela metallica, barre, plastica o qualsiasi altro materiale sufficientemente consistente da resistere a qualsiasi impatto possa ricevere e sopportare un uso prolungato. I ripari fissi sono generalmente preferibili a tutti gli altri tipi per la loro relativa semplicità e permanenza (vedi tabella 1).
Tabella 1. Protezioni macchina
Metodo |
Azione di salvaguardia |
Vantaggi |
limitazioni |
Fisso |
· Fornisce una barriera |
· Si adatta a molte applicazioni specifiche |
· Può interferire con la visibilità |
Interlocked |
· Interrompe o disinserisce l'alimentazione e impedisce l'avviamento della macchina quando la protezione è aperta; dovrebbe richiedere l'arresto della macchina prima che il lavoratore possa raggiungere la zona di pericolo |
· Fornisce la massima protezione |
· Richiede un'attenta regolazione e manutenzione |
Regolabile |
· Fornisce una barriera che può essere regolata per facilitare una varietà di operazioni di produzione |
· Può essere costruito per adattarsi a molte applicazioni specifiche |
· L'operatore può entrare nell'area di pericolo: la protezione può non essere sempre completa |
Auto-regolazione |
· Fornisce una barriera che si sposta in base alle dimensioni dello stock che entra nell'area di pericolo |
· Le protezioni standard sono disponibili in commercio |
· Non sempre fornisce la massima protezione |
Nella figura 12, una protezione fissa su una pressa meccanica racchiude completamente il punto di lavoro. Lo stock viene alimentato attraverso il lato della protezione nell'area dello stampo, con lo stock di scarto che esce sul lato opposto.
Figura 12. Protezione fissa sulla pressa
La Figura 13 mostra una protezione fissa dell'involucro che protegge la cinghia e la puleggia di un'unità di trasmissione di potenza. Sulla parte superiore è presente un pannello di ispezione per ridurre al minimo la necessità di rimuovere la protezione.
Figura 13. Protezione fissa che racchiude cinghie e pulegge
Nella figura 14 sono mostrati i ripari fissi su una sega a nastro. Queste protezioni proteggono gli operatori dalle ruote in rotazione e dalla lama della sega in movimento. Normalmente, l'unico momento in cui le protezioni vengono aperte o rimosse è per la sostituzione della lama o per la manutenzione. È molto importante che siano fissati saldamente mentre la sega è in uso.
Figura 14. Protezioni fisse su sega a nastro
Guardie interbloccate. Quando le protezioni interbloccate vengono aperte o rimosse, il meccanismo di sgancio e/o l'alimentazione si spengono o si disinnestano automaticamente e la macchina non può funzionare o essere avviata fino a quando la protezione interbloccata non viene riposizionata. Tuttavia, la sostituzione della protezione di interblocco non dovrebbe riavviare automaticamente la macchina. I ripari interbloccati possono utilizzare energia elettrica, meccanica, idraulica o pneumatica o qualsiasi combinazione di questi. Gli interblocchi non dovrebbero impedire "inching" (ovvero movimenti progressivi graduali) tramite telecomando, se necessario.
Un esempio di protezione interbloccata è mostrato nella figura 15. In questa figura, il meccanismo di battitura di una macchina raccoglitrice (utilizzata nell'industria tessile) è coperto da una protezione barriera interbloccata. Questa protezione non può essere sollevata mentre la macchina è in funzione, né la macchina può essere riavviata con la protezione in posizione sollevata.
Figura 15. Protezione interbloccata sulla macchina raccoglitrice
Protezioni regolabili. Le protezioni regolabili consentono flessibilità nell'accomodare scorte di varie dimensioni. La figura 16 mostra un carter di protezione regolabile su una sega a nastro.
Figura 16. Protezione regolabile sulla sega a nastro
Protezioni autoregolanti. Le aperture delle protezioni autoregolanti sono determinate dal movimento del calcio. Quando l'operatore sposta il calcio nell'area di pericolo, la protezione viene allontanata, fornendo un'apertura sufficientemente ampia da consentire l'ingresso solo del calcio. Dopo che il calcio è stato rimosso, la guardia ritorna nella posizione di riposo. Questa protezione protegge l'operatore ponendo una barriera tra la zona di pericolo e l'operatore. Le protezioni possono essere costruite in plastica, metallo o altro materiale consistente. Le protezioni autoregolanti offrono diversi gradi di protezione.
La figura 17 mostra una sega a braccio radiale con protezione autoregolante. Mentre la lama viene tirata attraverso il calcio, la protezione si sposta verso l'alto, rimanendo in contatto con il calcio.
Figura 17. Protezione autoregolante sulla sega a braccio radiale
Salvaguardia con dispositivi
I dispositivi di sicurezza possono arrestare la macchina se una mano o qualsiasi parte del corpo viene inavvertitamente posizionata nell'area di pericolo, possono trattenere o ritirare le mani dell'operatore dall'area di pericolo durante il funzionamento, possono richiedere all'operatore di utilizzare entrambe le mani sui comandi della macchina contemporaneamente ( mantenendo così entrambe le mani e il corpo fuori pericolo) o può fornire una barriera sincronizzata con il ciclo operativo della macchina per impedire l'accesso alla zona pericolosa durante la parte pericolosa del ciclo. Esistono cinque tipi fondamentali di dispositivi di sicurezza, come segue:
Dispositivi di rilevamento della presenza
Di seguito sono descritti tre tipi di dispositivi di rilevamento che arrestano la macchina o interrompono il ciclo di lavoro o il funzionamento se un lavoratore si trova all'interno della zona di pericolo:
La dispositivo fotoelettrico (ottico) di rilevamento della presenza utilizza un sistema di sorgenti luminose e comandi in grado di interrompere il ciclo di funzionamento della macchina. Se il campo luminoso è interrotto, la macchina si arresta e non si avvia. Questo dispositivo deve essere utilizzato solo su macchine che possono essere fermate prima che il lavoratore raggiunga la zona di pericolo. La Figura 18 mostra un dispositivo fotoelettrico di rilevamento della presenza utilizzato con una pressa piegatrice. Il dispositivo può essere ruotato verso l'alto o verso il basso per adattarsi a diversi requisiti di produzione.
Figura 18. Rilevatore di presenza fotoelettrico su pressa piegatrice
La dispositivo di rilevamento della presenza a radiofrequenza (capacità). utilizza un raggio radio che fa parte del circuito di controllo. Quando il campo di capacità è interrotto, la macchina si fermerà o non si attiverà. Questo dispositivo deve essere utilizzato solo su macchine che possono essere fermate prima che l'operatore possa raggiungere la zona di pericolo. Ciò richiede che la macchina abbia una frizione a frizione o altri mezzi affidabili per l'arresto. La Figura 19 mostra un dispositivo di rilevamento della presenza a radiofrequenza montato su una pressa a rotazione parziale.
Figura 19. Rilevatore di presenza a radiofrequenza sulla motosega
La dispositivo di rilevamento elettromeccanico ha una sonda o barra di contatto che scende ad una distanza predeterminata quando l'operatore avvia il ciclo della macchina. Se c'è un ostacolo che le impedisce di scendere per tutta la distanza predeterminata, il circuito di controllo non aziona il ciclo della macchina. La Figura 20 mostra un dispositivo di rilevamento elettromeccanico su una lettera ad occhiello. Viene mostrata anche la sonda di rilevamento a contatto con il dito dell'operatore.
Figura 20. Dispositivo di rilevamento elettromeccanico su macchina per lettere a occhio
Dispositivi di richiamo
I dispositivi di richiamo utilizzano una serie di cavi attaccati alle mani, ai polsi e/o alle braccia dell'operatore e sono utilizzati principalmente su macchine con azione di carezza. Quando la slitta/pistone è sollevata, l'operatore può accedere al punto operativo. Quando la slitta/pistone inizia a scendere, un leveraggio meccanico assicura automaticamente il ritiro delle mani dal punto di manovra. La Figura 21 mostra un dispositivo di richiamo su una piccola pressa.
Figura 21. Dispositivo di richiamo sulla pressa di potenza
Dispositivi di ritenuta
In alcuni paesi sono stati utilizzati dispositivi di trattenuta, che utilizzano cavi o cinghie fissati tra un punto fisso e le mani dell'operatore. Questi dispositivi non sono generalmente considerati protezioni accettabili perché sono facilmente aggirabili dall'operatore, consentendo così di mettere le mani nella zona di pericolo. (Vedi tabella 2.)
Tabella 2. Dispositivi
Metodo |
Azione di salvaguardia |
Vantaggi |
limitazioni |
Fotoelettrico |
· La macchina non inizierà a funzionare quando il campo luminoso viene interrotto |
· Può consentire un movimento più libero per l'operatore |
· Non protegge da guasti meccanici |
Frequenza radio |
· Il ciclo della macchina non si avvia quando il campo capacitivo viene interrotto |
· Può consentire un movimento più libero per l'operatore |
· Non protegge da guasti meccanici |
Elettromeccanico |
· La barra di contatto o la sonda percorrono una distanza predeterminata tra l'operatore e la zona pericolosa |
· Può consentire l'accesso al punto operativo |
· La barra di contatto o la sonda devono essere opportunamente regolate per ogni applicazione; questa regolazione deve essere mantenuta correttamente |
Pullback |
· Quando la macchina inizia a funzionare, le mani dell'operatore vengono allontanate dall'area di pericolo |
· Elimina la necessità di barriere ausiliarie o altre interferenze nell'area di pericolo |
· Limita il movimento dell'operatore |
Comandi intervento di sicurezza: |
· Arresta la macchina in caso di intervento |
· Semplicità di utilizzo |
· Tutti i comandi devono essere attivati manualmente |
Comando a due mani |
· È richiesto l'uso simultaneo di entrambe le mani, impedendo all'operatore di entrare nell'area di pericolo |
· Le mani dell'operatore si trovano in una posizione predeterminata, lontano dall'area di pericolo |
· Richiede una macchina a ciclo parziale con freno |
Viaggio a due mani |
· L'uso simultaneo di due mani su comandi separati evita che le mani si trovino nell'area di pericolo all'avvio del ciclo della macchina |
· Le mani dell'operatore sono lontane dall'area di pericolo |
· L'operatore può tentare di raggiungere l'area di pericolo dopo aver fatto inciampare la macchina |
cancello |
· Fornisce una barriera tra l'area di pericolo e l'operatore o altro personale |
· Può impedire di raggiungere o camminare nell'area di pericolo |
· Può richiedere ispezioni frequenti e manutenzione regolare |
Dispositivi di controllo della sicurezza
Tutti questi dispositivi di controllo di sicurezza sono attivati manualmente e devono essere ripristinati manualmente per riavviare la macchina:
- Controlli del viaggio di sicurezza quali barre di pressione, trip rod e tripwire sono comandi manuali che forniscono un mezzo rapido per disattivare la macchina in una situazione di emergenza.
- Barre del corpo sensibili alla pressione, quando premuto, disattiverà la macchina se l'operatore o chiunque altro inciampa, perde l'equilibrio o viene attirato verso la macchina. Il posizionamento della barra è fondamentale, in quanto deve arrestare la macchina prima che una parte del corpo raggiunga la zona di pericolo. La Figura 22 mostra una barra del corpo sensibile alla pressione situata sulla parte anteriore di un mulino per gomma.
Figura 22. Barra del corpo sensibile alla pressione su mulino per gomma
- Dispositivi ad asta di sicurezza disattivare la macchina se premuto a mano. Poiché devono essere azionati dall'operatore durante una situazione di emergenza, la loro corretta posizione è fondamentale. La Figura 23 mostra un'asta di scatto situata sopra il mulino di gomma.
Figura 23. Asta di sicurezza su mulino per gomma
- Cavi tripwire di sicurezza si trovano lungo il perimetro o in prossimità dell'area di pericolo. L'operatore deve essere in grado di raggiungere il cavo con entrambe le mani per arrestare la macchina. La figura 24 mostra una calandra dotata di questo tipo di controllo.
Figura 24. Cavo tripwire di sicurezza sulla calandra
- Comandi a due mani richiedono una pressione costante e simultanea per l'operatore per attivare la macchina. Quando installati su presse di potenza, questi comandi utilizzano una frizione a giro parziale e un monitor del freno, come mostrato in figura 25. Con questo tipo di dispositivo, le mani dell'operatore devono trovarsi in un luogo sicuro (sui pulsanti di comando) e ad una distanza di sicurezza dalla zona di pericolo mentre la macchina completa il suo ciclo di chiusura.
Figura 25. Pulsanti di comando a due mani sulla pressa con frizione a giro parziale
- Viaggio a due mani. Il comando a due mani mostrato in figura 26 viene solitamente utilizzato con macchine dotate di frizioni a giro pieno. Richiede l'applicazione simultanea di entrambi i pulsanti di comando dell'operatore per attivare il ciclo della macchina, dopodiché le mani sono libere. I dispositivi di scatto devono essere posizionati abbastanza lontano dal punto di funzionamento da rendere impossibile per gli operatori spostare le mani dai pulsanti o dalle maniglie di viaggio nel punto di funzionamento prima che sia completata la prima metà del ciclo. Le mani dell'operatore sono tenute abbastanza lontane da evitare che vengano accidentalmente posizionate nell'area di pericolo prima che la slitta/pistone o la lama raggiunga la posizione completamente abbassata.
Figura 26. Pulsanti di comando a due mani sulla pressa di potenza della frizione a rotazione completa
- Gates sono dispositivi di controllo di sicurezza che forniscono una barriera mobile che protegge l'operatore nel punto di lavoro prima che il ciclo della macchina possa essere avviato. I cancelli sono spesso progettati per essere azionati con ogni ciclo della macchina. La Figura 27 mostra un cancello su una pressa di potenza. Se il cancello non può scendere fino alla posizione completamente chiusa, la pressa non funzionerà. Un'altra applicazione dei cancelli è il loro utilizzo come componente di un sistema di protezione perimetrale, dove i cancelli forniscono protezione agli operatori e al traffico pedonale.
Figura 27. Pressa con cancello
Salvaguardia per posizione o distanza
Per salvaguardare una macchina per posizione, la macchina o le sue parti mobili pericolose devono essere posizionate in modo tale che le aree pericolose non siano accessibili o non rappresentino un pericolo per un lavoratore durante il normale funzionamento della macchina. Ciò può essere ottenuto con muri di recinzione o recinzioni che limitano l'accesso alle macchine o posizionando una macchina in modo che una caratteristica di progettazione dell'impianto, come un muro, protegga il lavoratore e altro personale. Un'altra possibilità è avere parti pericolose posizionate abbastanza in alto da essere fuori dalla normale portata di qualsiasi lavoratore. Un'analisi approfondita dei rischi di ogni macchina e situazione particolare è essenziale prima di tentare questa tecnica di protezione. Gli esempi riportati di seguito sono solo alcune delle numerose applicazioni del principio della protezione per posizione/distanza.
Processo di alimentazione. Il processo di alimentazione può essere salvaguardato dalla posizione se è possibile mantenere una distanza di sicurezza per proteggere le mani del lavoratore. Le dimensioni del grezzo su cui si lavora possono fornire una sicurezza adeguata. Ad esempio, quando si utilizza una punzonatrice a un'estremità, se il pezzo è lungo diversi piedi e si sta lavorando solo su un'estremità del pezzo, l'operatore può essere in grado di tenere l'estremità opposta mentre viene eseguito il lavoro. Tuttavia, a seconda della macchina, potrebbe essere ancora necessaria la protezione per altro personale.
Comandi di posizionamento. Il posizionamento della stazione di controllo dell'operatore fornisce un potenziale approccio alla protezione in base alla posizione. I comandi dell'operatore possono essere posizionati a una distanza di sicurezza dalla macchina se non c'è motivo per cui l'operatore sia presente alla macchina.
Metodi di salvaguardia dell'alimentazione e dell'espulsione
Molti metodi di alimentazione ed espulsione non richiedono agli operatori di mettere le mani nella zona di pericolo. In alcuni casi, non è necessario alcun intervento dell'operatore dopo l'impostazione della macchina, mentre in altre situazioni, gli operatori possono alimentare manualmente il materiale con l'assistenza di un meccanismo di alimentazione. Inoltre, possono essere progettati metodi di espulsione che non richiedono alcun intervento dell'operatore dopo che la macchina ha iniziato a funzionare. Alcuni metodi di alimentazione ed espulsione possono persino creare pericoli essi stessi, come un robot che può eliminare la necessità per un operatore di essere vicino alla macchina ma può creare un nuovo pericolo con il movimento del suo braccio. (Vedi tabella 3.)
Tabella 3. Metodi di alimentazione ed espulsione
Metodo |
Azione di salvaguardia |
Vantaggi |
limitazioni |
Alimentazione automatica |
· Lo stock è alimentato da rotoli, indicizzato dal meccanismo della macchina, ecc. |
· Elimina la necessità del coinvolgimento dell'operatore nell'area di pericolo |
· Sono necessarie anche altre protezioni per la protezione dell'operatore, in genere protezioni a barriera fisse |
Semi-automatico |
· Stock è alimentato da scivoli, stampi mobili, quadrante |
· Elimina la necessità del coinvolgimento dell'operatore nell'area di pericolo |
· Sono necessarie anche altre protezioni per la protezione dell'operatore, in genere protezioni a barriera fisse |
Automatico |
· I pezzi vengono espulsi per via aerea o meccanica |
· Elimina la necessità del coinvolgimento dell'operatore nell'area di pericolo |
· Può creare il rischio di scagliare trucioli o detriti |
Semi-automatico |
· I pezzi da lavorare vengono espulsi meccanicamente |
· L'operatore non deve entrare nell'area di pericolo per rimuovere il lavoro finito |
· Sono necessarie altre protezioni per l'operatore |
Robot |
· Eseguono lavori normalmente eseguiti dall'operatore |
· L'operatore non deve entrare nell'area di pericolo |
· Possono creare pericoli essi stessi |
L'utilizzo di uno dei seguenti cinque metodi di alimentazione ed espulsione per salvaguardare le macchine non elimina la necessità di protezioni e altri dispositivi, che devono essere utilizzati secondo necessità per fornire protezione dall'esposizione ai pericoli.
Alimentazione automatica. Gli avanzamenti automatici riducono l'esposizione dell'operatore durante il processo di lavoro e spesso non richiedono alcuno sforzo da parte dell'operatore dopo che la macchina è stata installata e messa in funzione. La pressa in figura 28 è dotata di un meccanismo di avanzamento automatico con un carter di protezione fisso trasparente nella zona di pericolo.
Figura 28. Pressa con avanzamento automatico
Alimentazione semiautomatica. Con l'avanzamento semiautomatico, come nel caso di una pressa meccanica, l'operatore utilizza un meccanismo per posizionare il pezzo in lavorazione sotto la mazza ad ogni corsa. L'operatore non ha bisogno di raggiungere l'area di pericolo e l'area di pericolo è completamente chiusa. La figura 29 mostra un'alimentazione a scivolo in cui ogni pezzo viene inserito a mano. L'utilizzo di un avanzamento a scivolo su una pressa inclinata non solo aiuta a centrare il pezzo mentre scorre nella matrice, ma può anche semplificare il problema dell'espulsione.
Figura 29. Pressa motorizzata con alimentazione a scivolo
Espulsione automatica. L'espulsione automatica può impiegare la pressione dell'aria o un apparato meccanico per rimuovere la parte completata da una pressa e può essere interbloccata con i comandi operativi per impedire il funzionamento fino al completamento dell'espulsione della parte. Il meccanismo della navetta panoramica mostrato nella figura 30 si sposta sotto la parte finita mentre la slitta si sposta verso la posizione sollevata. La navetta quindi afferra la parte strappata dalla slitta dai perni espulsori e la devia in uno scivolo. Quando il pistone si sposta verso il fustellato successivo, la navetta del piatto si allontana dall'area dello stampo.
Figura 30. Sistema di espulsione navetta
Espulsione semiautomatica. La figura 31 mostra un meccanismo di espulsione semiautomatico utilizzato su una pressa elettrica. Quando lo stantuffo viene ritirato dall'area dello stampo, la gamba dell'espulsore, che è accoppiata meccanicamente allo stantuffo, espelle il lavoro completato.
Figura 31. Meccanismo di espulsione semiautomatico
Robot. I robot sono dispositivi complessi che caricano e scaricano merci, assemblano parti, trasferiscono oggetti o eseguono lavori altrimenti eseguiti da un operatore, eliminando così l'esposizione dell'operatore ai rischi. Sono utilizzati al meglio nei processi ad alta produzione che richiedono routine ripetute, dove possono proteggersi da altri pericoli per i dipendenti. I robot possono creare pericoli e devono essere utilizzate protezioni adeguate. La Figura 32 mostra un esempio di un robot che alimenta una pressa.
Figura 32. Utilizzo di barriere protettive per proteggere l'involucro del robot
Ausili vari per la salvaguardia
Sebbene gli ausili di protezione vari non offrano una protezione completa dai rischi della macchina, possono fornire agli operatori un ulteriore margine di sicurezza. È necessario un buon giudizio nella loro applicazione e utilizzo.
Barriere di consapevolezza. Le barriere di sensibilizzazione non forniscono protezione fisica, ma servono solo a ricordare agli operatori che si stanno avvicinando all'area di pericolo. In generale, le barriere di sensibilizzazione non sono considerate adeguate quando esiste un'esposizione continua al pericolo. La Figura 33 mostra una fune utilizzata come barriera di sensibilizzazione sul retro di una cesoia per squadratura. Le barriere non impediscono fisicamente alle persone di entrare nelle aree pericolose, ma forniscono solo la consapevolezza del pericolo.
Figura 33. Vista posteriore del quadrato di taglio elettrico
Shields. Gli schermi possono essere utilizzati per fornire protezione da particelle volanti, schizzi di fluidi per la lavorazione dei metalli o refrigeranti. La Figura 34 mostra due potenziali applicazioni.
Figura 34. Applicazioni degli schermi
Strumenti di tenuta. Gli strumenti di tenuta posizionano e rimuovono il materiale. Un uso tipico sarebbe per raggiungere l'area pericolosa di una pressa o pressa piegatrice. La Figura 35 mostra un assortimento di strumenti per questo scopo. Gli strumenti di tenuta non devono essere utilizzati invece di altre protezioni della macchina; sono semplicemente un supplemento alla protezione fornita da altre guardie.
Figura 35. Strumenti di tenuta
Spingere bastoncini o blocchi, come mostrato nella figura 36, può essere utilizzato quando si alimenta materiale in una macchina, come una lama per sega. Quando diventa necessario che le mani siano molto vicine alla lama, il push stick o il blocco possono fornire un margine di sicurezza e prevenire lesioni.
Figura 36. Uso del push stick o del push block