Domenica, Marzo 13 2011 16: 14

Preparazione del carbone

Vota questo gioco
(2 voti )

La preparazione del carbone è il processo mediante il quale il carbone grezzo di miniera viene trasformato in un prodotto di carbone pulito vendibile di dimensioni e qualità coerenti specificate dal consumatore. L'uso finale del carbone rientra nelle seguenti categorie generali:

  • Generazione di elettricità: Il carbone viene bruciato per fornire calore alle turbine che generano elettricità.
  • Produzione di ferro e acciaio: Il carbone viene riscaldato in forni, in assenza di aria, per espellere i gas (materia volatile) per produrre coke. Il coke viene utilizzato nell'altoforno per produrre ferro e acciaio. Il carbone può anche essere aggiunto direttamente all'altoforno come nel processo di iniezione di carbone polverizzato (PCI).
  • Industrial: Il carbone è utilizzato nell'industria metallurgica come riducente, per cui il suo contenuto di carbonio viene utilizzato per rimuovere l'ossigeno (riducente) in un processo metallurgico.
  • Riscaldamento: Il carbone può essere utilizzato a livello domestico e industriale come combustibile per il riscaldamento degli ambienti. Viene anche utilizzato come combustibile nei forni a secco per la fabbricazione del cemento.

 

Frantumazione e rottura

Il carbone run-of-mine proveniente dalla cava deve essere frantumato a una dimensione superiore accettabile per il trattamento nell'impianto di preparazione. Tipici dispositivi di frantumazione e rottura sono:

  • Interruttori dell'alimentatore: Un tamburo rotante dotato di picconi che fratturano il carbone. Il carbone viene consegnato da un trasportatore raschiante e il tamburo ruota nella stessa direzione del flusso del carbone. I demolitori di alimentazione sono comunemente usati nel sottosuolo, tuttavia ce ne sono alcuni in uso in superficie nel circuito di preparazione del carbone.
  • Martelli rotanti: Il circuito dell'interruttore di un guscio fisso esterno con un tamburo rotante interno dotato di piastre forate. La velocità di rotazione tipica del tamburo è di 12-18 giri/min. Le piastre di sollevamento raccolgono il carbone di miniera che poi cade attraverso il diametro del tamburo. Il carbone più tenero si rompe e passa attraverso le perforazioni mentre la roccia più dura viene trasportata verso l'uscita. Il demolitore rotante svolge due funzioni, la riduzione delle dimensioni e l'arricchimento mediante rimozione della roccia.
  • Frantoi a rulli: I frantoi a rulli possono essere costituiti da un singolo rullo rotante e da un'incudine fissa (piastra) o da due rulli che ruotano alla stessa velocità l'uno verso l'altro. Le facce del rullo sono generalmente dentate o ondulate. Una forma comune di frantoio è il frantoio a due stadi o a quattro rulli, per cui il prodotto proveniente dal primo frantoio a doppio rullo cade nel secondo frantoio a doppio rullo posto a un'apertura più piccola, con il risultato che è possibile ottenere una riduzione su larga scala in una sola macchina . Un'applicazione tipica sarebbe la frantumazione di materiale run-of-mine fino a 50 mm.

 

La frantumazione viene talvolta utilizzata dopo il processo di pulizia del carbone, quando il carbone di grandi dimensioni viene frantumato per soddisfare le esigenze del mercato. Di solito vengono utilizzati frantoi a rulli o mulini a martelli. Il mulino a martelli è costituito da una serie di martelli oscillanti liberi che ruotano su un albero che colpiscono il carbone e lo lanciano contro una piastra fissa.

dimensionamento

Il carbone viene dimensionato prima e dopo il processo di arricchimento (pulizia). Diversi processi di pulizia vengono utilizzati su diverse dimensioni di carbone, in modo che il carbone grezzo che entra nell'impianto di preparazione del carbone venga vagliato (setacciato) in tre o quattro dimensioni che poi passano al processo di pulizia appropriato. Il processo di vagliatura viene solitamente effettuato mediante vibrovagli rettangolari con piano di vagliatura in rete o lamiera forata. Per dimensioni inferiori a 6 mm la vagliatura a umido viene utilizzata per aumentare l'efficienza dell'operazione di calibratura e per dimensioni inferiori a 0.5 mm viene posizionato un vaglio curvo statico (curva del setaccio) prima del vaglio vibrante per migliorare l'efficienza.

Dopo il processo di arricchimento, il carbone pulito viene talvolta dimensionato selezionando una varietà di prodotti per i mercati del carbone industriale e domestico. Il dimensionamento del carbone pulito è raramente utilizzato per il carbone per la generazione di elettricità (carbone termico) o per la produzione di acciaio (carbone metallurgico).

Stoccaggio e stoccaggio

Il carbone viene generalmente immagazzinato e stoccato in tre punti della catena di preparazione e movimentazione:

  1. stoccaggio e stoccaggio del carbone grezzo tra la miniera e l'impianto di preparazione
  2. deposito e stoccaggio di carbone pulito tra l'impianto di preparazione e il punto di carico ferroviario o stradale
  3. deposito di carbone pulito nei porti che possono o meno essere controllati dalla miniera.

 

Tipicamente lo stoccaggio del carbone grezzo avviene dopo la frantumazione e di solito assume la forma di depositi aperti (conici, allungati o circolari), silos (cilindrici) o bunker. È comune che la miscelazione dei giunti venga eseguita in questa fase per fornire un prodotto omogeneo all'impianto di preparazione. La miscelazione può essere semplice come il deposito sequenziale di carboni diversi su una pila conica per operazioni sofisticate che utilizzano trasportatori impilatori e recuperatori di ruote a tazze.

Il carbone pulito può essere immagazzinato in vari modi, come scorte aperte o silos. Il sistema di stoccaggio del carbone pulito è progettato per consentire il caricamento rapido di vagoni ferroviari o autocarri. I silos di carbone pulito sono generalmente costruiti su un binario che consente di trascinare lentamente sotto il silo treni unitari fino a 100 vagoni e riempirli fino a un peso noto. La pesatura in movimento viene solitamente utilizzata per mantenere un funzionamento continuo.

Ci sono pericoli intrinseci nei carboni accumulati. Le scorte possono essere instabili. Bisognerebbe vietare il calpestio dei cumuli perché possono verificarsi crolli interni e perché le bonifiche possono iniziare senza preavviso. La pulizia fisica dei blocchi o dei blocchi nei bunker o nei silos deve essere trattata con la massima cura poiché il carbone apparentemente stabile può scivolare improvvisamente.

Pulizia del carbone (beneficio)

Il carbone grezzo contiene materiale dal carbone "puro" alla roccia con una varietà di materiale intermedio, con densità relative che vanno da 1.30 a 2.5. Il carbone viene pulito separando il materiale a bassa densità (prodotto vendibile) dal materiale ad alta densità (rifiuti). L'esatta densità di separazione dipende dalla natura del carbone e dalle specifiche di qualità del carbone pulito. Non è pratico separare il carbone fine in base alla densità e di conseguenza 0.5 mm di carbone grezzo vengono separati mediante processi che utilizzano la differenza nelle proprietà superficiali del carbone e della roccia. Il metodo usualmente impiegato è la flottazione con schiuma.

Separazione di densità

Esistono due metodi di base impiegati, uno dei quali è un sistema che utilizza l'acqua, in cui il movimento del carbone grezzo nell'acqua fa sì che il carbone più leggero abbia un'accelerazione maggiore rispetto alla roccia più pesante. Il secondo metodo consiste nell'immergere il carbone grezzo in un liquido con una densità tra il carbone e la roccia con il risultato che il carbone galleggia e la roccia affonda (separazione del mezzo denso).

Gli impianti che utilizzano acqua sono i seguenti:

  • Maschere: In questa applicazione il carbone grezzo viene introdotto in un bagno d'acqua pulsante. Il carbone grezzo viene spostato attraverso una piastra perforata con l'acqua che pulsa attraverso di essa. Si stabilisce un letto stratificato di materiale con la roccia più pesante in basso e il carbone più leggero in alto. Alla fine dello scarico, i rifiuti vengono rimossi dal carbone pulito. Le gamme di dimensioni tipiche trattate in una maschera vanno da 75 mm a 12 mm. Esistono maschere di carbone fine per applicazioni speciali che utilizzano un letto artificiale di roccia feldspatica.
  • Tabelle di concentrazione: Un tavolo di concentrazione è costituito da un piano in gomma rigata portato su un meccanismo di supporto, collegato a un meccanismo di testa che impartisce un rapido movimento alternativo in direzione parallela ai fucili. L'inclinazione dello scivolo del tavolo può essere regolata. Un flusso d'acqua trasversale è fornito per mezzo di un lavatoio montato lungo il lato superiore del ponte. Il mangime entra appena prima dell'approvvigionamento idrico e viene distribuito a ventaglio sul ponte del tavolo dal movimento differenziale e dal flusso gravitazionale. Le particelle di carbone grezzo sono stratificate in zone (o strati) orizzontali. Il carbone pulito trabocca dal lato inferiore del tavolo e lo scarto viene rimosso dal lato opposto. I tavoli operano nella gamma di dimensioni 5 ´ 0.5 mm.
  • Spirali: Il trattamento del carbone fine con spirali utilizza un principio per cui il carbone fine grezzo viene trasportato lungo un percorso a spirale in un flusso d'acqua e le forze centrifughe dirigono le particelle di carbone più leggere verso l'esterno del flusso e le particelle più pesanti verso l'interno. Un dispositivo separatore all'estremità di scarico separa il carbone fine dai rifiuti fini. Le spirali sono utilizzate come dispositivo di pulizia su frazioni di dimensioni 2 mm ´ 0.1 mm.
  • Cicloni solo acqua: Il carbone grezzo trasportato dall'acqua viene immesso tangenzialmente sotto pressione in un ciclone, provocando un effetto vortice e le forze centrifughe spostano il materiale più pesante verso la parete del ciclone e da lì vengono trasportati al sottoflusso all'apice (o rubinetto). Le particelle più leggere (carbone) rimangono al centro del vortice del vortice e vengono rimosse verso l'alto tramite un tubo (vortex finder) e segnalano al troppopieno. L'esatta densità di separazione può essere regolata variando la pressione, la lunghezza e il diametro del cercatore di vortici e il diametro dell'apice. Il ciclone a sola acqua in genere tratta materiale nella gamma di dimensioni 0.5 mm ´ 0.1 mm e viene azionato in due fasi per migliorare l'efficienza di separazione.

 

Il secondo tipo di separazione della densità è il mezzo denso. In un liquido pesante (mezzo denso), le particelle con densità inferiore al liquido (carbone) galleggeranno e quelle con densità superiore (roccia) affonderanno. L'applicazione industriale più pratica di un mezzo denso è una sospensione finemente macinata di magnetite in acqua. Questo ha molti vantaggi, vale a dire:

  • La miscela è benigna, rispetto ai fluidi inorganici o organici.
  • La densità può essere regolata rapidamente variando il rapporto magnetite/acqua.
  • La magnetite può essere facilmente riciclata rimuovendola dai flussi di prodotto con separatori magnetici.

 

Esistono due classi di separatori a mezzo denso, il separatore a vasca oa recipiente per carbone grezzo nella gamma 75 mm 12 mm e il separatore a ciclone per la pulizia del carbone nella gamma 5 mm ´ 0.5 mm.

I separatori a vasca possono essere vasche profonde o poco profonde in cui il materiale del galleggiante viene trasportato sul bordo della vasca e il materiale del lavello viene estratto dal fondo della vasca mediante catena raschiante o ruota a pale.

Il separatore a ciclone potenzia le forze gravitazionali con le forze centrifughe. L'accelerazione centrifuga è circa 20 volte maggiore dell'accelerazione di gravità che agisce sulle particelle nel separatore del bagno (questa accelerazione si avvicina a 200 volte maggiore dell'accelerazione di gravità all'apice del ciclone). Queste grandi forze spiegano l'elevato rendimento del ciclone e la sua capacità di trattare carbone di piccole dimensioni.

I prodotti dei separatori del mezzo denso, vale a dire il carbone pulito e i rifiuti, passano entrambi sugli schermi di drenaggio e risciacquo dove il mezzo di magnetite viene rimosso e riportato ai separatori. La magnetite diluita dagli schermi di risciacquo viene fatta passare attraverso separatori magnetici per recuperare la magnetite per il riutilizzo. I separatori magnetici sono costituiti da cilindri rotanti in acciaio inossidabile contenenti magneti ceramici fissi montati sull'albero del tamburo fisso. Il fusto è immerso in una vasca di acciaio inossidabile contenente la sospensione di magnetite diluita. Mentre il tamburo ruota, la magnetite aderisce all'area vicino ai magneti interni fissi. La magnetite viene espulsa dal bagno e fuori dal campo magnetico e cade dalla superficie del tamburo attraverso un raschiatore in un serbatoio di riserva.

Sia i misuratori di densità nucleare che gli analizzatori nucleari in linea sono utilizzati negli impianti di preparazione del carbone. Devono essere osservate le precauzioni di sicurezza relative agli strumenti sorgente di radiazioni.

Flottazione della schiuma

La flottazione della schiuma è un processo fisico-chimico che dipende dall'attaccamento selettivo delle bolle d'aria alle superfici delle particelle di carbone e dal non attaccamento delle particelle di rifiuto. Questo processo prevede l'utilizzo di opportuni reagenti per stabilire una superficie idrofoba (idrorepellente) sui solidi da far galleggiare. Le bolle d'aria vengono generate all'interno di un serbatoio (o cella) e man mano che salgono in superficie le particelle fini di carbone ricoperte di reagente aderiscono alla bolla, i rifiuti non di carbone rimangono sul fondo della cella. La schiuma contenente carbone viene rimossa dalla superficie mediante pale e quindi disidratata mediante filtrazione o centrifuga. I rifiuti (o sterili) passano in una cassetta di scarico e vengono solitamente addensati prima di essere pompati in un bacino di raccolta degli sterili.

I reagenti utilizzati nella flottazione a schiuma del carbone sono generalmente frullatori e collettori. Gli schiumatori vengono utilizzati per facilitare la produzione di una schiuma stabile (ovvero, schiume che non si rompono). Sono sostanze chimiche che riducono la tensione superficiale dell'acqua. L'ugello più comunemente usato nella flottazione del carbone è il metil isobutil carbinolo (MIBC). La funzione di un collettore è quella di favorire il contatto tra particelle di carbone e bolle d'aria formando un sottile rivestimento sulle particelle da far galleggiare, che rende la particella idrorepellente. Allo stesso tempo il collettore deve essere selettivo, cioè non deve ricoprire le particelle che non devono essere flottate (cioè i residui). Il collettore più comunemente usato nella flottazione del carbone è l'olio combustibile.

Bricchettatura

La bricchettatura del carbone ha una lunga storia. Alla fine del 1800, il carbone fine o allentato relativamente privo di valore veniva compresso per formare un "combustibile brevettato" o mattonella. Questo prodotto era accettabile sia per il mercato domestico che per quello industriale. Per formare una bricchetta stabile, era necessario un legante. Di solito venivano usati peci e catrami di carbone. L'industria della bricchettatura del carbone per il mercato interno è in declino da alcuni anni. Tuttavia, ci sono stati alcuni progressi nella tecnologia e nelle applicazioni.

I carboni di basso rango ad alta umidità possono essere migliorati mediante essiccazione termica e successiva rimozione di una parte dell'umidità intrinseca o "bloccata". Tuttavia, il prodotto di questo processo è friabile e soggetto al riassorbimento di umidità e alla combustione spontanea. La bricchettatura del carbone di basso rango consente di realizzare un prodotto stabile e trasportabile. La bricchettatura viene utilizzata anche nell'industria dell'antracite, dove i prodotti di grandi dimensioni hanno un prezzo di vendita notevolmente più elevato.

La bricchettatura del carbone è stata utilizzata anche nelle economie emergenti in cui le bricchette sono utilizzate come combustibile per cucinare nelle zone rurali. Il processo di produzione di solito comporta una fase di devolatilizzazione in cui il gas in eccesso o la materia volatile viene espulso prima della bricchettatura per produrre un combustibile domestico "senza fumo".

Il processo di bricchettatura, quindi, solitamente prevede le seguenti fasi:

  • Essiccazione del carbone: Il contenuto di umidità è fondamentale perché ha un impatto sulla forza della bricchetta. I metodi utilizzati sono l'essiccazione diretta (un essiccatore flash che utilizza gas caldo) e l'essiccazione indiretta (un essiccatore a disco che utilizza il calore del vapore).
  • Devolatilizzazione: Questo è applicabile solo ai carboni ad alta volatilità di basso rango. L'attrezzatura utilizzata è una cokeria a storta o ad alveare.
  • Schiacciamento: Il carbone viene spesso frantumato perché una dimensione delle particelle più piccola si traduce in una bricchetta più forte.
  • Raccoglitori: I leganti sono necessari per garantire che la bricchetta abbia una forza adeguata per resistere alla normale manipolazione. I tipi di leganti che sono stati usati sono pece di cokeria, asfalto di petrolio, lignosolforato di ammonio e amido. Il tasso di aggiunta tipico è dal 5 al 15% in peso. Il carbone fine e il legante vengono miscelati in un mulino a pug o in un miscelatore a pale a una temperatura elevata.
  • Produzione di bricchette: La miscela carbone-legante viene alimentata ad una pressa a doppio rullo con superfici dentellate. È possibile realizzare una varietà di forme di bricchette a seconda del tipo di dentellatura del rullo. La forma più comune di mattonelle è la forma del cuscino. La pressione aumenta la densità apparente della miscela carbone-legante da 1.5 a 3 volte.
  • Ricoprire e cuocere: Con alcuni leganti (lignosolforato di ammonio e asfalto di petrolio) è necessario un trattamento termico nell'intervallo di 300°C per indurire i bricchetti. Il forno per il trattamento termico è un trasportatore chiuso e riscaldato con gas caldi.
  • Raffreddamento/tempra: Il forno di raffreddamento è un trasportatore chiuso con aria di ricircolo che passa per ridurre la temperatura della bricchetta a una condizione ambiente. I gas di scarico vengono raccolti, lavati e scaricati nell'atmosfera. La tempra con acqua viene talvolta utilizzata per raffreddare i bricchetti.

 

La bricchettatura della lignite tenera con un elevato contenuto di umidità dal 60 al 70% è un processo leggermente diverso da quello descritto sopra. Le lignite vengono spesso migliorate mediante bricchettatura, che comporta la frantumazione, la vagliatura e l'essiccazione del carbone fino a circa il 15% di umidità, e la pressatura per estrusione senza legante in compatti. Grandi quantità di carbone vengono trattate in questo modo in Germania, India, Polonia e Australia. L'essiccatore utilizzato è un essiccatore a tubo rotativo riscaldato a vapore. Dopo la pressatura per estrusione, il carbone compattato viene tagliato e raffreddato prima di essere trasferito su nastri trasportatori a vagoni ferroviari, autocarri o depositi.

Gli impianti di bricchettatura trattano grandi quantità di materiale altamente combustibile associato a miscele potenzialmente esplosive di polvere di carbone e aria. Il controllo, la raccolta e la manipolazione della polvere, nonché una buona pulizia, sono tutti elementi di notevole importanza per un funzionamento sicuro.

Smaltimento rifiuti e sterili

Lo smaltimento dei rifiuti è parte integrante di un moderno impianto di preparazione del carbone. Sia i rifiuti grossolani che i residui fini sotto forma di liquami devono essere trasportati e smaltiti in modo ecologicamente responsabile.

Rifiuto grossolano

I rifiuti grossolani vengono trasportati tramite camion, nastro trasportatore o funivia all'area di smaltimento dei solidi, che di solito costituisce le pareti del deposito di sterili. I rifiuti possono anche essere restituiti alla fossa aperta.

Vengono ora utilizzate forme innovative ed economiche di trasporto di rifiuti grossolani, vale a dire la frantumazione e il trasporto mediante pompaggio sotto forma di liquame in un bacino di raccolta e anche mediante un sistema pneumatico al deposito sotterraneo.

È necessario selezionare un sito di smaltimento che abbia una quantità minima di superficie esposta e che allo stesso tempo garantisca una buona stabilità. Una struttura esposta su tutti i lati consente un maggiore drenaggio superficiale, con una maggiore tendenza alla formazione di limo nei corsi d'acqua vicini, ed anche una maggiore probabilità di autocombustione. Per minimizzare entrambi questi effetti sono necessarie maggiori quantità di materiale di copertura, compattazione e sigillatura. La struttura di smaltimento ideale è il tipo di funzionamento a valle.

Gli argini dei rifiuti degli impianti di preparazione possono fallire per diversi motivi:

  • basi deboli
  • pendii eccessivamente ripidi di altezze eccessive
  • scarso controllo delle infiltrazioni di acqua e materiale fine attraverso la discarica
  • controllo inadeguato dell'acqua durante eventi di precipitazioni estreme.

 

Le principali categorie di tecniche di progettazione e costruzione che possono ridurre notevolmente i rischi ambientali associati allo smaltimento dei rifiuti di carbone sono:

  • drenaggio dall'interno del mucchio di rifiuti
  • deviazione del drenaggio superficiale
  • compattazione dei rifiuti per ridurre al minimo la combustione spontanea
  • stabilità del cumulo di rifiuti.

 

tailings

Gli sterili (rifiuti solidi fini nell'acqua) vengono solitamente trasportati tramite tubazione in un'area di sequestro. Tuttavia, in alcuni casi il sequestro degli sterili non è accettabile dal punto di vista ambientale ed è necessario un trattamento alternativo, vale a dire la disidratazione degli sterili mediante pressa a nastro o centrifuga ad alta velocità e quindi lo smaltimento del prodotto disidratato mediante nastro o camion nell'area dei rifiuti grossolani.

I depositi di sterili (stagni) funzionano in base al principio che gli sterili si depositano sul fondo e l'acqua chiarificata risultante viene pompata all'impianto per il riutilizzo. L'elevazione della piscina nello stagno viene mantenuta in modo tale che i flussi in entrata della tempesta vengano immagazzinati e quindi prelevati mediante pompaggio o piccoli sistemi di decantazione. Potrebbe essere necessario rimuovere periodicamente i sedimenti dai depositi più piccoli per prolungarne la vita. Il terrapieno di contenimento del sequestro è solitamente costruito con rifiuti grossolani. Una cattiva progettazione del muro di contenimento e la liquefazione degli sterili a causa di uno scarso drenaggio possono portare a situazioni pericolose. Agenti stabilizzanti, generalmente prodotti chimici a base di calcio, sono stati utilizzati per produrre un effetto di cementazione.

I sequestri di sterili si sviluppano normalmente per un lungo periodo di vita della miniera, con condizioni in continuo cambiamento. Pertanto la stabilità della struttura di sequestro deve essere attentamente e continuamente monitorata.

 

Di ritorno

Leggi 10436 volte Ultima modifica Martedì, Giugno 28 2011 12: 19

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti minerari e estrattivi

Agricola, G. 1950. De Re Metallica, tradotto da HC Hoover e LH Hoover. New York: pubblicazioni Dover.

Bickel, KL. 1987. Analisi delle apparecchiature minerarie alimentate a diesel. In Atti del seminario sul trasferimento tecnologico del Bureau of Mines: Diesels in Underground Mines. Circolare informativa 9141. Washington, DC: Bureau of Mines.

Ufficio delle miniere. 1978. Prevenzione degli incendi e delle esplosioni nelle miniere di carbone. Circolare informativa 8768. Washington, DC: Bureau of Mines.

—. 1988. Recenti sviluppi nella protezione antincendio di metalli e non metalli. Circolare informativa 9206. Washington, DC: Bureau of Mines.

Chamberlain, CAE. 1970. L'ossidazione a temperatura ambiente del carbone in relazione alla rilevazione precoce del riscaldamento spontaneo. Ingegnere minerario (ottobre) 130(121):1-6.

Ellicott, CW. 1981. Valutazione dell'esplosività delle miscele di gas e monitoraggio dell'andamento del tempo di campionamento. Atti del Simposio su Accensioni, Esplosioni e Incendi. Illawara: Istituto australiano di estrazione mineraria e metallurgia.

Agenzia per la protezione ambientale (Australia). 1996. Migliori pratiche di gestione ambientale nel settore minerario. Canberra: Agenzia per la protezione dell'ambiente.

Funkemeyer, M e FJ Kock. 1989. Prevenzione incendi nelle giunture di lavoro soggette a combustione spontanea. Glückauf 9-12.

Graham, JI. 1921. La normale produzione di monossido di carbonio nelle miniere di carbone. Transazioni dell'Istituto di ingegneri minerari 60: 222-234.

Grannes, SG, MA Ackerson e GR Green. 1990. Prevenzione dei guasti ai sistemi antincendio automatici sui nastri trasportatori per miniere sotterranee. Circolare informativa 9264. Washington, DC: Bureau of Mines.

Greuer, RE. 1974. Studio dell'estinzione degli incendi in miniera con gas inerti. Rapporto contratto USBM n. S0231075. Washington, DC: Ufficio delle miniere.

Griffin, RE. 1979. Valutazione in miniera di rilevatori di fumo. Circolare informativa 8808. Washington, DC: Bureau of Mines.

Hartman, HL (a cura di). 1992. Manuale di ingegneria mineraria per le PMI, 2a edizione. Baltimora, MD: Società per l'estrazione mineraria, la metallurgia e l'esplorazione.

Hertzberg, M. 1982. Inibizione ed estinzione delle esplosioni di polvere di carbone e metano. Rapporto delle indagini 8708. Washington, DC: Bureau of Mines.

Hoek, E, PK Kaiser e WF Bawden. 1995. Progettazione di Suppoert per le miniere sotterranee di roccia dura. Rotterdam: AA Balkema.

Hughes, AJ e WE Raybold. 1960. La rapida determinazione dell'esplosività dei gas di incendio delle miniere. Ingegnere minerario 29:37-53.

Consiglio internazionale sui metalli e l'ambiente (ICME). 1996. Casi di studio che illustrano le pratiche ambientali nei processi minerari e metallurgici. Ottawa: ICME.

Organizzazione Internazionale del Lavoro (ILO). 1994. Sviluppi recenti nell'industria carboniera. Ginevra: OIL.

Jones, JE e JC Trickett. 1955. Alcune osservazioni sull'esame dei gas risultanti da esplosioni nelle miniere. Transazioni dell'Istituto degli ingegneri minerari 114: 768-790.

Mackenzie-Wood P e J Strang. 1990. Gas di fuoco e loro interpretazione. Ingegnere minerario 149(345):470-478.

Associazione per la prevenzione degli incidenti nelle miniere dell'Ontario. nd Linee guida per la preparazione alle emergenze. Relazione del Comitato tecnico permanente. North Bay: Associazione per la prevenzione degli incidenti nelle miniere dell'Ontario.

Mitchell, D e F Burns. 1979. Interpretazione dello stato di un incendio in miniera. Washington, DC: Dipartimento del lavoro degli Stati Uniti.

Morris, R.M. 1988. Un nuovo rapporto di fuoco per determinare le condizioni nelle aree sigillate. Ingegnere minerario 147(317):369-375.

Domani, GS e CD Litton. 1992. Valutazione in miniera di rilevatori di fumo. Circolare informativa 9311. Washington, DC: Bureau of Mines.

Associazione nazionale per la protezione antincendio (NFPA). 1992a. Codice di prevenzione incendi. NFPA 1. Quincy, MA: NFPA.

—. 1992 b. Di serie sui sistemi a combustibile polverizzato. NFPA 8503. Quincy, Massachusetts: NFPA.

—. 1994a. Standard per la prevenzione degli incendi nell'uso dei processi di taglio e saldatura. NFPA 51B. Quincy, Massachusetts: NFPA.

—. 1994b. Standard per estintori portatili. NFPA 10. Quincy, Massachusetts: NFPA.

—. 1994 c. Standard per sistemi a schiuma a media e alta espansione. NFPA 11A. Quncy, Massachusetts: NFPA.

—. 1994d. Standard per sistemi di estinzione chimici a secco. NFPA 17. Quincy, Massachusetts: NFPA.

—. 1994e. Standard per gli impianti di preparazione del carbone. NFPA 120. Quincy, Massachusetts: NFPA.

—. 1995a. Standard per la prevenzione e il controllo degli incendi nelle miniere sotterranee di metalli e non metalli. NFPA 122. Quincy, Massachusetts: NFPA.

—. 1995b. Standard per la prevenzione e il controllo degli incendi nelle miniere sotterranee di carbone bituminoso. NFPA 123. Quincy, Massachusetts: NFPA.

—. 1996a. Standard sulla protezione antincendio per attrezzature minerarie semoventi e mobili. NFPA 121. Quincy, Massachusetts: NFPA.

—. 1996 b. Liquidi infiammabili e combustibili Cod. NFPA 30. Quincy, Massachusetts: NFPA.

—. 1996 c. Codice elettrico nazionale. NFPA 70. Quincy, Massachusetts: NFPA.

—. 1996d. Codice nazionale di allarme antincendio. NFPA 72. Quincy, Massachusetts: NFPA.

—. 1996e. Standard per l'installazione di impianti sprinkler. NFPA 13. Quincy, Massachusetts: NFPA.

—. 1996f. Standard per l'installazione di sistemi di nebulizzazione dell'acqua. NFPA 15. Quincy, Massachusetts: NFPA.

—. 1996 gr. Standard sui sistemi antincendio Clean Agent. NFPA 2001. Quincy, Massachusetts: NFPA.

—. 1996 ore. Pratica consigliata per la protezione antincendio negli impianti di generazione elettrica e nelle stazioni di conversione CC ad alta tensione. NFPA 850. Quincy, Massachusetts: NFPA.

Ng, D e CP Lazzara. 1990. Prestazioni di blocchi di cemento e pannelli di acciaio in un incendio simulato in miniera. Tecnologia antincendio 26(1):51-76.

Ninteman, DJ. 1978. Ossidazione spontanea e combustione di minerali di solfuro nelle miniere sotterranee. Circolare informativa 8775. Washington, DC: Bureau of Mines.

Pomroy, WH e TL Muldoon. 1983. Un nuovo sistema di allarme antincendio a gas puzzolente. In Atti dell'Assemblea Generale Annuale MAPAO del 1983 e Sessioni Tecniche. North Bay: Associazione per la prevenzione degli incidenti nelle miniere dell'Ontario.

Ramaswatny, A e PS Katiyar. 1988. Esperienze con l'azoto liquido nella lotta contro gli incendi di carbone nel sottosuolo. Journal of Mines Metals and Fuels 36(9):415-424.

Smith, AC e CN Thompson. 1991. Sviluppo e applicazione di un metodo per la previsione del potenziale di combustione spontanea dei carboni bituminosi. Presentato alla 24a Conferenza internazionale sulla sicurezza negli istituti di ricerca mineraria, Makeevka State Research Institute for Safety in the Coal Industry, Makeevka, Federazione Russa.

Timmons, ED, RP Vinson e FN Kissel. 1979. Previsione dei rischi di metano nelle miniere di metalli e non metalli. Rapporto delle indagini 8392. Washington, DC: Bureau of Mines.

Dipartimento di cooperazione tecnica per lo sviluppo delle Nazioni Unite (ONU) e Fondazione tedesca per lo sviluppo internazionale. 1992. Attività mineraria e ambiente: le linee guida di Berlino. Londra: Mining Journal Books.

Programma delle Nazioni Unite per l'ambiente (UNEP). 1991. Aspetti ambientali di metalli non ferrosi selezionati (Cu, Ni, Pb, Zn, Au) nell'estrazione di minerali. Parigi: UNEP.