バナーツールアプローチ

子供のカテゴリ

27. 生物学的モニタリング

27. 生物学的モニタリング (6)

4バナー

 

27. 生物学的モニタリング

章の編集者: Robert Lauwerys


 

目次  

表と図

一般原理
ヴィト・フォアとロレンツォ・アレッシオ

品質保証
D.ゴンペルツ

金属および有機金属化合物
P. Hoet と Robert Lauwerys

有機溶剤
池田正幸

遺伝毒性化学物質
マルハ・ソルサ

農薬
マルコ・マローニとアダルベルト・フェリオーリ 

テーブル類

記事のコンテキストで表を表示するには、下のリンクをクリックしてください.

1. 金属の ACGIH、DFG およびその他の制限値

2. 化学物質および生物学的モニタリングの例

3. 有機溶媒の生物学的モニタリング

4. IARCによって評価された化学物質の遺伝毒性

5. バイオマーカーと一部の細胞/組織サンプルと遺伝毒性

6. ヒトの発がん性物質、職業曝露、および細胞遺伝学的エンドポイント

7. 倫理原則

8. 農薬の生産と使用による曝露

9. さまざまなレベルの ACHE 阻害における急性 OP 毒性

10. ACHE & PCHE & 特定の健康状態のバリエーション

11. 曝露していない健康な人のコリンエステラーゼ活性

12. 尿中アルキルリン酸エステルと OP 農薬

13. 尿中リン酸アルキル測定とOP

14. 尿中カルバメート代謝物

15. 尿中ジチオカルバメート代謝物

16. 農薬の生物学的モニタリングのための提案された指標

17. 推奨生物学的限界値(1996年現在)

フィギュア

サムネイルをポイントすると図のキャプションが表示され、クリックすると記事のコンテキストで図が表示されます.

BMO010F1BMO020F1BMO050F1BMO050T1BMO050F2BMO050F3BMO050T5BMO060F1BMO060F2BMO060F3

 


クリックするとページの先頭に戻ります

表示項目...
28. 疫学と統計

28. 疫学と統計 (12)

4バナー

 

28. 疫学と統計

章の編集者:  フランコ・メルレッティ、コリン・L・ソスコルネ、パオロ・ヴィネイス


目次

表と図

労働安全衛生に適用される疫学的手法
フランコ・メルレッティ、コリン・L・ソスコルネ、パオロ・ヴィネイス

暴露評価
M・ジェラルド・オット

要約ワークライフ曝露測定
コリン・L・ソスコルネ

エクスポージャーの影響の測定
シェリア・ホアー・ザーム

     ケーススタディ:対策
     Franco Merletti、Colin L. Soskolne、Paola Vineis

研究デザインのオプション
スヴェン・ヘルンバーグ

研究デザインにおける妥当性の問題
アニー・J・サスコ

ランダム測定誤差の影響
パオロ・ヴィネイスとコリン・L・ソスコルネ

統計的方法
アニバーレ・ビゲリとマリオ・ブラガ

疫学研究における因果関係評価と倫理
パオロ・ヴィネイス

職業病のサーベイランスにおける方法論的問題を示すケーススタディ
ジャン=ダー・ワン

疫学研究におけるアンケート
スティーブン D. ステルマンとコリン L. ソスコルネ

アスベストの歴史的展望
ローレンス・ガーフィンケル

テーブル類

記事のコンテキストで表を表示するには、下のリンクをクリックしてください.

1. XNUMX つの選択されたワークライフ エクスポージャーの要約測定

2. 疾病発生の対策

3. コホート研究の関連性の尺度

4. ケースコントロール研究のための関連の尺度

5. コホート データの一般的な度数分布表のレイアウト

6. 症例対照データのレイアウト例

7. ケース コントロール データのレイアウト - ケースごとに XNUMX つのコントロール

8. T に対する 1950 人の仮説コホート2

9. 中心傾向と分散の指標

10. 二項実験と確率

11. 二項実験の可能な結果

12. 二項分布、15 回の成功/30 回の試行

13. 二項分布、p = 0.25; 30回の試行

14. タイプ II エラー & パワー; x = 12、 n = 30、a = 0.05

15. タイプ II エラー & パワー; x = 12、 n = 40、a = 0.05

16. アスベストに 632 年以上曝露している 20 人の労働者

17. 632 人のアスベスト労働者の O/E 死亡者数

フィギュア

サムネイルをポイントすると図のキャプションが表示され、クリックすると記事のコンテキストで図が表示されます.

EPI110F1EPI110F2


クリックするとページの先頭に戻ります

表示項目...
29.人間工学

29. 人間工学 (27)

4バナー

 

29.人間工学

章の編集者:  ヴォルフガング・ローリグとヨアヒム・ヴェダー

 


 

目次 

表と図

概要
ヴォルフガング・ローリグとヨアヒム・ヴェダー

目標、原則および方法

人間工学の性質と目的
ウィリアム・T・シングルトン

活動、タスク、および作業システムの分析
ヴェロニク・デ・カイザー

人間工学と標準化
フリードヘルム・ナクライナー

チェックリスト
プラナブ クマール ナグ

物理的および生理学的側面

人体計測
メルキオーレ・マサリ

筋肉の仕事
ジュハニ・スモランダーとヴェイッコ・ロウヘヴァーラ

職場での姿勢
イルッカ・クオリンカ

生体力学
フランク・ダービー

一般的な疲労
エティエンヌ・グランジャン

疲労回復
Rolf Helbig と Walter Rohmert

心理的側面

メンタルワークロード
ウィンフリード・ハッカー

警戒
ハーバート・ホイヤー

精神疲労
ピーター・リヒター

仕事の組織的側面

作業組織
エバーハルト・ウーリッヒとグデラ・グローテ

睡眠不足
小木一貴

作業システムの設計

ワークステーション
ローランド・カデフォス

ツール
TM フレイザー

コントロール、インジケーター、パネル
カール HE クローマー

情報処理とデザイン
アンドリーズ・F・サンダース

すべての人のためのデザイン

特定のグループ向けの設計
ジョーク・H・グラディ=ヴァン・デン・ニューボーア

     ケーススタディ:人の機能制限の国際分類

文化の違い
ホウシャン・シャナヴァズ

高齢労働者
アントワーヌ・ラヴィルとセルジュ・ヴォルコフ

特別なニーズを持つ労働者
ジョーク・H・グラディ=ヴァン・デン・ニューボーア

人間工学の多様性と重要性 -- XNUMX つの例

ダイヤモンド製造におけるシステム設計
イッサカル・ギラド

人間工学的設計原則の無視: チェルノブイリ
ウラジミール・M・ムニポフ 

テーブル類

記事のコンテキストで表を表示するには、下のリンクをクリックしてください.

1. 基本的な人体計測コア リスト

2. 活動レベルに応じた疲労と回復

3. ひずみに対する XNUMX つの応力因子の組み合わせ効果の規則

4. 精神的緊張のいくつかの否定的な結果の違い

5. 生産構造化のための作業指向の原則

6. 組織的文脈への参加

7. 技術プロセスへのユーザーの参加

8. 不規則勤務と睡眠不足

9. アドバンス、アンカー、リタード スリープの側面

10. コントロールの動きと期待される効果

11. 共通ハンドコントロールの制御効果関係

12. コントロール配置のルール

13. ラベルのガイドライン

フィギュア

サムネイルをポイントすると、図のキャプションが表示されます。クリックすると、記事のコンテキストで図が表示されます.

ERG040T1ERG040F1ERG040F2ERG040F3ERG040T2ERG040F5ERG070F1ERG070F2ERG070F3ERG060F2ERG060F1ERG060F3ERG080F1ERG080F4ERG090F1ERG090F2ERG090F3ERG090F4ERG225F1ERG225F2ERG150F1ERG150F2ERG150F4ERG150F5ERG150F6ERG120F1ERG130F1ERG290F1ERG160T1ERG160F1ERG185F1ERG185F2ERG185F3ERG185F4ERG190F1ERG190F2ERG190F3ERG210F1ERG210F2ERG210F3ERG210F4ERG210T4ERG210T5ERG210T6ERG220F1ERG240F1ERG240F2ERG240F3ERG240F4ERG260F1ERG300F1ERG255F1

表示項目...
30. 労働衛生

30. 労働衛生 (6)

4バナー

 

30. 労働衛生

チャプターエディター:  ロバート・F・ヘリック 


 

目次 

表と図

目標、定義、および一般情報
ベレニス I. フェラーリ ゲルツァー

ハザードの認識
リネア・リリアンバーグ

労働環境の評価
ロリ・A・トッド

労働衛生:介入による曝露の制御
ジェームス·スチュワート

暴露評価の生物学的根拠
ディック・ヒーデリック

職業被ばく制限
デニス・J・パウステンバッハ

テーブル類

1. 化学物質の危険; 生物学的および物理的エージェント

2. 職業暴露限界 (OEL) - さまざまな国

フィギュア

IHY010F1 IHY010F2 IHY010F3 IHY040T1 IHY040T2 IHY040T3 IHY040T4 IHY040T5 IHY060T1 IHY060T3

表示項目...
31.個人の保護

31. 個人保護 (7)

4バナー

 

31.個人の保護

チャプターエディター:  ロバート・F・ヘリック 


 

目次 

表と図

個人保護の概要と理念
ロバート・F・ヘリック

目と顔のプロテクター
木村菊次

足と脚の保護
三浦豊彦

ヘッド保護
イザベル・バルティとアラン・メイヤー

聴覚保護
ジョン・R・フランクスとエリオット・H・バーガー

防護衣
S.ザック・マンスドルフ

呼吸保護
トーマス・J・ネルソン

テーブル類

以下のリンクをクリックして、記事のコンテキストで表を表示します。

1. 透過率要件 (ISO 4850-1979)

2. 保護スケール - ガス溶接およびろう付け溶接

3. 保護のスケール - 酸素切断

4. 保護スケール - プラズマアーク切断

5. 保護スケール - 電気アーク溶接またはガウジング

6. 保護スケール - プラズマ ダイレクト アーク溶接

7. 安全ヘルメット: ISO 規格 3873-1977

8. 聴覚保護具の騒音低減評価

9. A 特性ノイズ リダクションの計算

10. 皮膚有害性カテゴリーの例

11. 物理的、化学的、生物学的性能要件

12. 特定の活動に関連する重大な危険

13. ANSI Z88 2 (1992) から割り当てられた保護係数

フィギュア

サムネイルをポイントすると、図のキャプションが表示されます。クリックすると、記事のコンテキストで図が表示されます。

PPE020F1PPE020F2PPE020F3PPE020F4PPE030F1PPE030F2PPE030F3PPE050F1PPE050F2PPE060F1PPE060F2PPE060F3PPE060F4PPE060F5PPE070F3PPE070F5PPE070F7PPE080F3PPE080F1PPE080F2


クリックするとページの先頭に戻ります

表示項目...
32. 記録システムと監視

32. 記録システムと監視 (9)

4バナー

 

32. 記録システムと監視

チャプターエディター:  スティーブン・D・ステルマン

 


 

目次 

表と図

職業病の監視および報告システム
スティーブン・B・マーコウィッツ

労働災害監視
David H. Wegman と Steven D. Stellman

発展途上国における監視
David Koh と Kee-Seng Chia

労働災害および疾病分類システムの開発と適用
エリス・ビドル

致命的ではない職場の怪我や病気のリスク分析
ジョン・W・ルーザー

ケーススタディ: 労働者保護と事故および職業病に関する統計 - HVBG、ドイツ
マーティン・バッツとバークハルト・ホフマン

ケーススタディ: Wismut - ウラン被曝の再考
ハインツ・オッテンとホルスト・シュルツ

疫学における職業被ばく評価の測定戦略と技術
フランク・ボッホマンとヘルムート・ブロメ

ケーススタディ:中国における労働衛生調査

テーブル類

以下のリンクをクリックして、記事のコンテキストで表を表示します.

1. 肝臓の血管肉腫 - 世界登録

2. 職業病、米国、1986 年対 1992 年

3. 塵肺と胸膜中皮腫による米国の死亡者数

4. 届出業務上疾病一覧表の例

5. 病気と怪我の報告コードの構造、米国

6. 致命的ではない職業上の負傷と疾病、米国 1993 年

7. 労働災害および疾病のリスク

8. 反復運動条件の相対リスク

9. 労働災害、ドイツ、1981~93年

10. 金属加工事故におけるグラインダー、ドイツ、1984-93

11. 職業病、ドイツ、1980~93年

12. 感染症、ドイツ、1980~93年

13. Wismut 鉱山での放射線被ばく

14. Wismut ウラン鉱山における職業病 1952-90

フィギュア

サムネイルをポイントすると図のキャプションが表示され、クリックすると記事のコンテキストで図が表示されます.

REC60F1AREC060F2REC100F1REC100T1REC100T2


クリックするとページの先頭に戻ります

表示項目...
33.毒物学

33. 毒物学 (21)

4バナー

 

33.毒物学

章の編集者: エレン・K・シルバーゲルド


目次

表と図

概要
エレン・K・シルバーゲルド、チャプターエディター

毒物学の一般原則

定義と概念
ボー・ホルムバーグ、ヨハン・ホグバーグ、グンナー・ヨハンソン

トキシコキネティクス
ドゥシャン・ジュリック

標的臓器と重要な効果
マレク・ヤクボウスキー

年齢、性別、その他の要因の影響
スポメンカ・テリスマン

毒性反応の遺伝的決定因子
ダニエル・W・ネバートとロス・A・マッキノン

毒性のメカニズム

概要と概念
渡辺フィリップ

細胞損傷と細胞死
ベンジャミン・F・トランプとアイリーン・K・ベレゼスキー

遺伝毒性学
R. リタ ミスラとマイケル P. ウォールクス

免疫毒性学
Joseph G. Vos と Henk van Loveren

標的臓器毒性学
エレン・K・シルバーゲルド

毒性試験方法

バイオマーカー
フィリップ・グランジャン

遺伝毒性評価
デビッド・M・デマリーニとジェームズ・ハフ

In Vitro 毒性試験
ジョアン・ズルロ

構造活性関係
エレン・K・シルバーゲルド

規制毒物学

安全衛生規制における毒物学
エレン・K・シルバーゲルド

ハザード特定の原則 - 日本のアプローチ
池田正幸

生殖毒性物質および神経毒性物質のリスク評価に対する米国のアプローチ
エレン・K・シルバーゲルド

ハザード特定へのアプローチ - IARC
ハリ・ヴァイニオとジュリアン・ウィルボーン

付録 - ヒトに対する発がん性の総合評価: IARC モノグラフ ボリューム 1-69 (836)

発がん性リスク評価: その他のアプローチ
シース・A・ファン・デル・ハイデン

テーブル類 

記事のコンテキストで表を表示するには、下のリンクをクリックしてください.

  1. 重要な臓器と重要な影響の例
  2. 金属の可能な複数の相互作用の基本的な効果
  3. アニリンとアセトアニリドに曝露した労働者のヘモグロビン付加物
  4. 遺伝性でがんになりやすい疾患と DNA 修復の欠陥
  5. ヒト細胞で遺伝毒性を示す化学物質の例
  6. 免疫マーカー検査の分類
  7. 曝露のバイオマーカーの例
  8. ヒトのがんリスクを特定する方法の長所と短所
  9. 肝毒性研究のための in vitro システムの比較
  10. SAR & テストデータの比較: OECD/NTP 分析
  11. 法律による化学物質規制、日本
  12. 化審法試験項目
  13. 化学物質と化審法
  14. 選択された主要な神経毒性インシデント
  15. 神経毒性を測定するための特殊な試験の例
  16. 生殖毒性学におけるエンドポイント
  17. 低線量の外挿手順の比較
  18. 発がん性物質のリスク判定でよく引用されるモデル

フィギュア

サムネイルをポイントすると図のキャプションが表示され、クリックすると記事のコンテキストで図が表示されます.

testTOX050F1TOX050F2TOX050F4TOX050T1TOX050F6TOX210F1TOX210F2TOX060F1TOX090F1TOX090F2TOX090F3TOX090F4TOX110F1TOX260F1TOX260T4


クリックするとページの先頭に戻ります

表示項目...
月曜日、2月28 2011 20:07

一般原理

基本的な概念と定義

作業現場では、産業衛生の方法論は空気中の化学物質のみを測定および制御できますが、皮膚からの吸収、摂取、および作業に関連しない暴露など、作業者の環境で考えられる有害物質の問題の他の側面は検出されず、したがって無制御。 生物学的モニタリングは、このギャップを埋めるのに役立ちます。

生物学的モニタリング ルクセンブルグで開催された欧州経済共同体 (EEC)、国立労働安全衛生研究所 (NIOSH)、および労働安全衛生協会 (OSHA) が共同で主催した 1980 年のセミナーで定義された (Berlin, Yodaiken and Henman 1984)。組織、分泌物、排泄物、呼気、またはこれらの組み合わせのいずれかで、適切な参照と比較して曝露と健康リスクを評価するための病原体またはその代謝物の測定と評価。 監視は、必要に応じて是正措置につながるように設計された、反復的で定期的な予防活動です。 診断手順と混同しないでください。

生物学的モニタリングは、一般環境または職業環境における有毒物質による病気の予防における XNUMX つの重要なツールの XNUMX つであり、残りの XNUMX つは環境モニタリングと健康監視です。

このような疾患の発生の可能性におけるシーケンスは、次のように概略的に表すことができます: ソースにさらされた化学物質 - 内部投与 - 生化学的または細胞への影響 (可逆的) - 健康への影響 - 病気。 環境、生物学、曝露のモニタリングと健康監視の関係を図 1 に示します。 

図 1. 環境、生物学、暴露モニタリングと健康監視の関係

BMO010F1

有毒物質 (工業用化学物質など) が環境に存在すると、空気、水、食品、または皮膚と接触する表面が汚染されます。 これらの媒体中の毒性物質の量は、次の方法で評価されます。 環境モニタリング.

吸収、分布、代謝、および排泄の結果として、特定の 内部線量 毒性物質の量 (特定の時間間隔で生物に吸収または通過した汚染物質の正味量) が効果的に体内に運ばれ、体液で検出可能になります。 受容体との相互作用の結果として、 重要な臓器 (特定の暴露条件下で、最初のまたは最も重要な悪影響を示す臓器)、生化学的および細胞イベントが発生します。 内部線量と誘発された生化学的効果および細胞効果の両方が、生物学的モニタリングによって測定される場合があります。

健康監視 前述の 1980 年の EEC/NIOSH/OSHA セミナーで、「健康の保護と病気の予防を目的とした、暴露された労働者の定期的な医学生理学的検査」と定義されました。

生物学的モニタリングと健康監視は、生化学的および細胞的影響の評価による体内の病原体またはその代謝物の測定から、重要な臓器の早期の可逆的障害の兆候の検出まで、一連の部分です。 確立された疾患の検出は、これらの評価の範囲外です。

生物学的モニタリングの目的

生物学的モニタリングは、(a) 被ばくのモニタリングと (b) 影響のモニタリングに分けられ、それぞれ内部線量と影響の指標が使用されます。

暴露の生物学的モニタリングの目的は、内部線量の評価を通じて健康リスクを評価し、問題の化学物質の生物学的に活性な身体負荷の推定値を達成することです。 その理論的根拠は、労働者の曝露が悪影響を誘発するレベルに達しないようにすることです。 機能的能力の障害、追加のストレスを補う能力の低下、恒常性 (安定した平衡状態) を維持する能力の低下、または他の環境影響に対する感受性の増大がある場合、影響は「悪影響」と呼ばれます。

化学的および分析された生物学的パラメーターに応じて、内部線量という用語は異なる意味を持つ場合があります (Bernard and Lauwerys 1987)。 第 16 に、たとえば XNUMX 回の勤務シフト中に最近吸収された化学物質の量を意味する場合があります。 肺胞の空気中または血液中の汚染物質の濃度の決定は、作業シフト自体の間、または遅くとも翌日に行うことができます (血液または肺胞の空気のサンプルは、暴露期間の終了後 XNUMX 時間まで採取することができます)。 . 第 XNUMX に、化学物質の生物学的半減期が長い場合 (たとえば、血流中の金属)、内部線量は数か月間に吸収された量を反映する可能性があります。

第三に、この用語は保管されている化学物質の量を意味する場合もあります。 この場合、それは蓄積の指標を表し、器官および/または組織内の化学物質の濃度の推定値を提供することができ、そこから沈着すると、ゆっくりと放出されるだけです。 たとえば、血液中の DDT または PCB の測定値は、そのような推定値を提供できます。

最後に、内部線量値は、化学物質がその効果を発揮する部位での化学物質の量を示し、生物学的に有効な線量に関する情報を提供します。 たとえば、この機能の最も有望で重要な用途の XNUMX つは、有毒化学物質とヘモグロビン中のタンパク質または DNA とによって形成される付加物の測定です。

影響の生物学的モニタリングは、重要な臓器に発生する早期かつ可逆的な変化を特定することを目的としており、同時に、健康への悪影響の兆候がある個人を特定することもできます。 この意味で、効果の生物学的モニタリングは、労働者の健康監視のための主要なツールを表しています。

主なモニタリング方法

被ばくの生物学的モニタリングは、以下を測定することによる内部線量の指標の決定に基づいています。

    • 労働者がさらされる血液または尿中の化学物質の量 (まれに牛乳、唾液、または脂肪に含まれる)
    • 同じ体液に含まれる化学物質の XNUMX つまたは複数の代謝産物の量
    • 肺胞空気中の揮発性有機化合物 (溶媒) の濃度
    • DNA または他の大きな分子に付加物を形成し、潜在的な遺伝毒性効果を持つ化合物の生物学的に有効な用量。

           

          血中または尿中の化学物質およびその代謝物の濃度に影響を与える要因については、以下で説明します。

          肺胞の空気中の濃度に関する限り、環境への暴露のレベルに加えて、関与する最も重要な要因は、吸入された物質の溶解度と代謝、肺胞換気、心拍出量、および暴露の長さです (Brugnone et al. 1980)。

          発がん性の可能性がある物質へのヒトの暴露を監視する際に DNA およびヘモグロビン付加物を使用することは、低レベルの暴露を測定するための非常に有望な手法です。 (ただし、人体の高分子に結合するすべての化学物質が遺伝毒性、つまり潜在的に発がん性があるわけではないことに注意する必要があります。付加体の形成は、発がんの複雑なプロセスの XNUMX つのステップにすぎません。 DNA修復の促進や進行などの他の細胞イベントは、間違いなく癌などの疾患を発症するリスクを変更します. したがって、現時点では、付加物の測定は、化学物質への曝露の監視にのみ限定されていると見なされるべきです。 これについては、この章の後半にある記事「遺伝毒性化学物質」で詳しく説明しています。

          効果の生物学的モニタリングは、効果の指標、つまり、初期の可逆的な変化を特定できる指標の決定を通じて行われます。 このアプローチは、作用部位に結合した化学物質の量の間接的な推定を提供する可能性があり、重要な器官の機能的変化を初期段階で評価する可能性を提供します。

          残念なことに、このアプローチの応用例をいくつか挙げることができます。 (1)尿中排泄の増加 d・ミクロソーム酵素を誘導する化学物質および/またはポルフィロゲン剤(例えば、塩素化炭化水素)に暴露された対象におけるグルカル酸およびポルフィリン。

          生物学的モニタリングの利点と限界

          人間の体内に入った後に毒性を発揮する物質の場合、生物学的モニタリングは、環境モニタリングよりも焦点を絞った健康リスクの評価を提供します。 内部線量を反映する生物学的パラメーターは、環境測定よりも全身への悪影響の理解に一歩近づきます。

          生物学的モニタリングは、環境モニタリングよりも多くの利点を提供し、特に以下の評価を可能にします。

            • 長期間にわたる暴露
            • 労働環境における労働者の移動の結果としてのばく露
            • 皮膚を含むさまざまな経路による物質の吸収
            • 職業上および非職業上の両方のさまざまな汚染源の結果としての全体的な暴露
            • 仕事に必要な身体的努力、換気、気候など、曝露の程度以外の要因に応じて被験者が吸収する物質の量
            • 生体内の毒性物質のトキシコキネティクスに影響を与える可能性のある個々の要因に応じて、被験者が吸収する物質の量。 たとえば、年齢、性別、遺伝的特徴、または有毒物質が生体内変換および除去を受ける器官の機能状態。

                       

                      これらの利点にもかかわらず、生物学的モニタリングは今日でもかなりの制限に悩まされており、その最も重要なものは次のとおりです。

                        • 生物学的に監視できる可能性のある物質の数は、現時点ではまだかなり少ないです。
                        • 急性暴露の場合、生物学的モニタリングは、芳香族溶剤などの急速に代謝される物質への暴露についてのみ有用な情報を提供します。
                        • 生物学的指標の重要性は明確に定義されていません。 例えば、生物学的材料で測定された物質のレベルが、現在または累積的な曝露を反映しているかどうかは、常にわかっているわけではありません (尿中のカドミウムや水銀など)。
                        • 一般に、内部線量の生物学的指標は被ばくの程度の評価を可能にしますが、重要臓器に存在する実際の量を測定するデータは提供しません
                        • 多くの場合、有機体が作業環境および一般環境で同時にさらされる他の外因性物質によって監視されている物質の代謝が干渉される可能性についての知識はありません。
                        • 一方では環境曝露のレベルと生物学的指標のレベルの間、他方では生物学的指標のレベルと考えられる健康への影響の間に存在する関係について、常に十分な知識があるわけではありません。
                        • 現在、生物学的暴露指数 (BEI) が存在する生物学的指標の数はかなり限られています。 現在、有害な影響を引き起こす可能性がないと特定されている物質が、後で有害であることが示される可能性があるかどうかを判断するには、フォローアップ情報が必要です。
                        • BEI は、通常、TLV への吸入曝露を受けた労働者と同程度に化学物質に曝露された健康な労働者から採取された検体で観察される可能性が最も高い病原体のレベルを表します (閾値限界値)。時間加重平均 (TWA)。

                                       

                                      生物学的試験を選択するための方法と基準の開発に必要な情報

                                      生物学的モニタリングのプログラミングには、次の基本条件が必要です。

                                        • 人体における外因性物質の代謝に関する知識 (トキシコキネティクス)
                                        • 重要な器官で起こる変化の知識 (トキシコダイナミクス)
                                        • 指標の存在
                                        • 十分に正確な分析方法の存在
                                        • 指標を測定できる、容易に入手できる生物学的サンプルを使用する可能性
                                        • 用量効果および用量反応関係の存在と、これらの関係に関する知識
                                        • 指標の予測的妥当性。

                                                     

                                                    このコンテキストでは、テストの有効性は、検討中のパラメーターが実際の状況を予測する程度です (つまり、より正確な測定機器が示すように)。 有効性は、感度と特異性の 1985 つの特性の組み合わせによって決まります。 テストの感度が高い場合、これは偽陰性がほとんどないことを意味します。 特異性が高い場合、偽陽性はほとんどありません (CEC 1989-XNUMX)。

                                                    被ばく、内部線量と影響の関係

                                                    作業環境における物質の濃度の研究と、曝露された被験者の用量と影響の指標の同時測定により、職業曝露と生物学的サンプル中の物質の濃度との間の関係に関する情報を得ることができます。曝露の後者および初期の影響。

                                                    物質の投与量とそれが生み出す効果との関係を知ることは、生物学的モニタリングのプログラムを実施する場合に不可欠な要件です。 これの評価は 用量効果関係 用量の指標と効果の指標との間に存在する関連度の分析、および用量の指標のあらゆる変動に伴う効果の指標の定量的変動の研究に基づいている。 (章も参照 毒物学、用量関連の関係のさらなる議論について)。

                                                    用量効果関係の研究により、影響の指標が現在有害ではないと考えられている値を超える有毒物質の濃度を特定することが可能です。 さらに、このようにして、無影響レベルがどの程度かを調べることも可能になるかもしれません。

                                                    グループのすべての個人が同じように反応するわけではないため、 用量反応関係言い換えれば、内部線量と比較して影響の出現を評価することにより、グループが暴露にどのように反応するかを研究する. 用語 応答 各用量レベルで効果指標の特定の定量的変動を示すグループ内の被験者の割合を示します。

                                                    生物学的モニタリングの実用化

                                                    生物学的モニタリングプログラムを実際に適用するには、(1) 曝露に関連して使用される指標の挙動、特に曝露の程度、継続性、および持続時間に関連する指標の挙動、(2) 曝露の終了と測定の間の時間間隔に関する情報が必要です。 (3) 指標レベルを変更する可能性のある曝露以外のすべての生理学的および病理学的要因。

                                                    次の記事では、産業界で広く使用されている物質への職業的暴露を監視するために使用される用量と効果の多くの生物学的指標の挙動が示されます。 実際の有用性と制限は、サンプリングの時間と干渉要因に特に重点を置いて、各物質について評価されます。 このような考慮事項は、生物学的試験を選択するための基準を確立するのに役立ちます。

                                                    サンプリング時間

                                                    サンプリングの時間を選択する際には、化学物質のさまざまな速度論的側面を念頭に置く必要があります。 特に、物質がどのように肺、消化管、皮膚から吸収され、続いて体のさまざまな区画に分配され、生体内変換され、最終的に排出されるかを知ることが不可欠です。 化学物質が体内に蓄積する可能性があるかどうかを知ることも重要です.

                                                    有機物質への暴露に関しては、含まれる代謝プロセスの速度が異なり、吸収された線量が多かれ少なかれ急速に排出されるため、生物学的サンプルの収集時間はますます重要になります。

                                                    干渉要因

                                                    生物学的インジケータを正しく使用するには、曝露とは無関係ですが、生物学的インジケータのレベルに影響を与える可能性のある要因についての完全な知識が必要です。 以下は、干渉因子の最も重要なタイプです (Alessio、Berlin、および Foà 1987)。

                                                    たとえば、食事、性別、年齢などの生理学的要因が結果に影響を与える可能性があります。 魚や甲殻類を食べると、尿中のヒ素や血中水銀のレベルが上昇する可能性があります。 男性と同じ血中鉛レベルの女性被験者では、赤血球プロトポルフィリン値が男性被験者の値と比較して有意に高くなっています。 尿中のカドミウムのレベルは年齢とともに増加します。

                                                    指標レベルを歪める可能性のある個人の習慣の中で、喫煙と飲酒は特に重要です。 喫煙は、たばこ葉に自然に存在する物質 (カドミウムなど)、たばこに付着した作業環境に存在する汚染物質 (鉛など)、または燃焼生成物 (一酸化炭素など) を直接吸収する可能性があります。

                                                    アルコール飲料には鉛などの物質が自然に存在するため、アルコール消費は生物学的指標のレベルに影響を与える可能性があります。 たとえば、大量飲酒者は、対照被験者よりも高い血中鉛レベルを示します。 アルコールの摂取は、有毒な工業化合物の生体内変化と除去を妨げる可能性があります。アルコールは、トリクロロエチレン、キシレン、スチレン、トルエンなどの多くの溶媒の代謝を阻害する可能性があります。エタノールと溶媒の両方の分解に不可欠です。 定期的なアルコール摂取は、おそらくミクロソーム酸化システムの誘導により、溶媒代謝を加速することにより、まったく異なる方法で溶媒代謝に影響を与える可能性があります. エタノールは代謝干渉を誘発する可能性のある最も重要な物質であるため、アルコールが消費されていない日にのみ溶媒への曝露の指標を決定することをお勧めします.

                                                    生物学的指標のレベルに対する薬物の影響の可能性については、入手できる情報が少ない。 アスピリンはキシレンからメチル馬尿酸への生物学的変換を妨害する可能性があり、鎮痛剤として広く使用されている薬物であるサリチル酸フェニルは尿中フェノールのレベルを大幅に上昇させる可能性があることが実証されています. アルミニウムベースの制酸剤を摂取すると、血漿および尿中のアルミニウム濃度が上昇する可能性があります。

                                                    トルエン、キシレン、トリクロロエチレン、テトラクロロエチレン、メチルクロロホルムなどの広く使用されている溶媒の代謝には、人種によって顕著な違いが見られます。

                                                    後天的な病理学的状態は、生物学的指標のレベルに影響を与える可能性があります。 毒性物質の特定の作用やその他の理由により、重要な臓器が生物学的モニタリング試験に関して異常な挙動を示す可能性があります。 最初のタイプの状況の例は、尿中カドミウムレベルの挙動です。カドミウムによる尿細管疾患が始まると、尿中排泄が著しく増加し、検査のレベルはもはや曝露の程度を反映しなくなります。 XNUMX 番目のタイプの状況の例は、異常な鉛吸収を示さない鉄欠乏被験者で観察される赤血球プロトポルフィリン レベルの増加です。

                                                    生物学的指標の決定の基礎となる生物学的媒体 (例えば、尿) の生理学的変化は、検査値に影響を与える可能性があります。 実用的な目的のために、作業中に個人から得られるのはスポット尿サンプルのみであり、これらのサンプルの密度が変化することは、指標のレベルが XNUMX 日の間に大きく変動する可能性があることを意味します。

                                                    この問題を克服するために、選択した比重またはクレアチニン値に従って、過剰に希釈または過剰に濃縮されたサンプルを排除することをお勧めします。 特に、比重が 1010 未満または 1030 を超える尿、またはクレアチニン濃度が 0.5 g/l 未満または 3.0 g/l を超える尿は廃棄する必要があります。 何人かの著者はまた、比重に従って指標の値を調整するか、尿中のクレアチニン含有量に従って値を表現することを提案しています.

                                                    生物学的媒体の病理学的変化も、生物学的指標の値に大きな影響を与える可能性があります。 たとえば、金属 (水銀、カドミウム、鉛など) にさらされた貧血患者では、金属の血中濃度は、曝露に基づいて予想されるよりも低い場合があります。 これは、血液循環で有毒金属を運ぶ赤血球のレベルが低いためです。

                                                    したがって、赤血球に結合した毒性物質または代謝産物を全血で測定する場合は、全血中の血球の割合を示すヘマトクリットを測定することが常に推奨されます。

                                                    職場に存在する有毒物質への多重暴露

                                                    職場に存在する複数の有毒物質への複合暴露の場合、代謝干渉が発生し、生物学的指標の挙動を変化させ、解釈に深刻な問題を引き起こす可能性があります. 人間を対象とした研究では、例えば、トルエンとキシレン、キシレンとエチルベンゼン、トルエンとベンゼン、ヘキサンとメチルエチルケトン、テトラクロロエチレンとトリクロロエチレンへの複合暴露で干渉が実証されています。

                                                    特に、溶媒の生体内変化が阻害されると、その代謝産物の尿中排泄が減少し(リスクを過小評価する可能性がある)、血液および呼気中の溶媒レベルが上昇する(リスクを過大評価する可能性がある)ことに注意する必要があります。

                                                    したがって、阻害干渉の程度を解釈するために物質とその代謝産物を同時に測定できる状況では、尿中代謝産物のレベルが予想よりも低いかどうかを確認すると同時に、血液および/または呼気中の溶媒の濃度が高くなります。

                                                    代謝干渉は、単一物質が現在許容されている限界値に近いレベルで存在し、時にはそれを下回るレベルで存在する暴露について説明されています. ただし、職場に存在する各物質への曝露が少ない場合、干渉は通常発生しません。

                                                    生物学的指標の実用化

                                                    生物学的指標は、労働衛生の実践におけるさまざまな目的、特に (1) 個々の労働者の定期的な管理、(2) 労働者グループの暴露の分析、および (3) 疫学的評価に使用できます。 使用されるテストは、誤分類の可能性を最小限に抑えるために、精度、精度、優れた感度、および特異性の機能を備えている必要があります。

                                                    参照値と参照グループ

                                                    参照値は、研究中の有害物質に職業的に暴露されていない一般集団における生物学的指標のレベルです。 曝露が推定される集団での生物学的モニタリングプログラムを通じて得られたデータを比較するには、これらの値を参照する必要があります。 基準値は、一般に職業上および環境暴露の法的限界またはガイドラインである限界値と混同してはなりません (Alessio et al. 1992)。

                                                    グループ分析の結果を比較する必要がある場合、参照グループと調査中のグループの値の分布を知っておく必要があります。これは、統計的な比較を行うことができるからです。 このような場合、性別、年齢、ライフスタイル、食習慣などの類似した特性について、一般集団 (参照グループ) と暴露グループを一致させることが不可欠です。

                                                    信頼できる参照値を得るには、参照グループを構成する被験者が、職業上または環境汚染の特定の条件のために、毒性物質に決してさらされていないことを確認する必要があります.

                                                    有毒物質への暴露を評価する際には、問題の有毒物質に直接暴露していなくても同じ職場で働いている被験者を含めないように注意する必要があります。結果として過小評価される可能性があります。

                                                    回避すべきもう XNUMX つの慣行は、依然として広く行われていますが、文献で報告された値を参照目的で使用することです。これらの値は、他の国の症例リストから導き出され、さまざまな環境汚染状況が存在する地域で収集された可能性があります。

                                                    個々の労働者の定期的な監視

                                                    作業環境の大気中の有害物質のレベルが限界値に近づくと、個々の作業者の定期的な監視が義務付けられます。 可能であれば、曝露の指標と影響の指標を同時に確認することをお勧めします。 このようにして得られたデータは、研究中の物質について提案されている基準値および限界値と比較する必要があります (ACGIH 1993)。

                                                    労働者集団の分析

                                                    使用される生物学的指標の結果が、暴露とは無関係の要因 (食事、尿の濃度または希釈など) によって著しく影響を受ける可能性があり、広い範囲の「正常な」値が存在する場合、グループの分析が必須になります。

                                                    グループ研究が有用な結果をもたらすことを確実にするために、グループは十分に多く、暴露、性別、およびいくつかの毒性物質の場合には年功序列に関して均一でなければなりません. 暴露レベルが長期にわたって一定であるほど、データの信頼性が高くなります。 部署や仕事が頻繁に変わる職場で実施される調査は、ほとんど価値がありません。 グループ研究を正しく評価するには、データを平均値と範囲だけで表現するだけでは十分ではありません。 問題の生物学的指標の値の度数分布も考慮に入れる必要があります。

                                                    疫学的評価

                                                    労働者グループの生物学的モニタリングから得られたデータは、横断的または前向き疫学研究にも使用できます。

                                                    断面研究を使用して、工場のさまざまな部門またはさまざまな業界に存在する状況を比較し、製造プロセスのリスク マップを設定できます。 このタイプのアプリケーションで発生する可能性のある問題は、ラボ間の品質管理がまだ十分に普及していないという事実に依存します。 したがって、異なる研究所が同等の結果を生み出すことを保証することはできません。

                                                    前向き研究は、例えば、環境改善の有効性を確認したり、監視対象の被験者の健康状態と長年にわたる生物学的指標の挙動を関連付けたりするために、暴露レベルの経時的な挙動を評価するのに役立ちます。 こうした長期にわたる研究の成果は、経年変化を伴う問題の解決に非常に役立ちます。 現在、生物学的モニタリングは主に、現在の曝露が「安全」であると判断されるかどうかを評価するための適切な手順として使用されていますが、経時的な状況の評価にはまだ有効ではありません。 現在安全と見なされている特定のレベルの暴露は、将来のある時点でもはや安全と見なされなくなる可能性があります。

                                                    倫理的側面

                                                    潜在的な毒性を評価するためのツールとしての生物学的モニタリングの使用に関連して、いくつかの倫理的な考慮事項が生じます。 このようなモニタリングの目的の XNUMX つは、与えられた効果のどのレベルが望ましくない効果を構成するかを判断するのに十分な情報を収集することです。 十分なデータがない場合、摂動は望ましくないと見なされます。 この種の情報の規制上および法的な影響を評価する必要があります。 したがって、生物学的指標をどのように使用するのが最善かについて、社会的な議論とコンセンサスを求める必要があります。 言い換えれば、生物学的モニタリングによって得られた結果の意味について、労働者、雇用主、地域社会、および規制当局に教育が必要であり、誰も過度に警戒したり、満足したりしないようにする.

                                                    結果とその解釈に関して、テストが実行された個人との適切なコミュニケーションが必要です。 さらに、いくつかの指標の使用が実験的であるかどうかは、すべての参加者に明確に伝えられるべきです。

                                                    1992 年に国際労働衛生委員会によって発行された産業衛生専門家のための国際倫理規定は、「生物学的検査およびその他の調査は、関係する労働者の健康を保護するための有効性の観点から選択されなければならない。それらの感度、特異性、および予測値を十分に考慮してください。」 「信頼できない、または作業割り当ての要件に関して十分な予測値を持たない」テストを使用してはなりません。 (章を参照 倫理問題 さらなる議論とコードのテキストについては。)

                                                    規制と適用の動向

                                                    生物学的モニタリングは、適切な参照データの利用が限られているため、限られた数の環境汚染物質に対してのみ実施できます。 これは、ばく露評価における生物学的モニタリングの使用に重大な制限を課します。

                                                    たとえば、世界保健機関 (WHO) は、鉛、水銀、カドミウムのみの健康基準値を提案しています。 これらの値は、検出可能な悪影響に関連していない血中および尿中のレベルとして定義されています。 米国政府産業衛生士会議 (ACGIH) は、約 26 の化合物について生物学的暴露指数 (BEI) を確立しました。 BEI は、「工業用化学物質への統合暴露の程度の指標である決定要因の値」として定義されています (ACGIH 1995)。

                                                     

                                                    戻る

                                                    月曜日、07月2011 18:49

                                                    人間工学の性質と目的

                                                    定義と範囲

                                                    エルゴノミクス 文字通り仕事の研究または測定を意味します。 この文脈では、仕事という用語は、目的のある人間の機能を意味します。 それは、金銭的利益のための労働としての労働というより制限された概念を超えて、合理的な人間のオペレーターが体系的に目的を追求するすべての活動を組み込むことです。 したがって、スポーツやその他の余暇活動、育児や家のメンテナンスなどの家事労働、教育と訓練、健康と社会サービス、および工学的システムの制御またはそれらへの適応 (たとえば、車両の乗客として) が含まれます。

                                                    研究の焦点である人間のオペレーターは、人工的な環境で複雑な機械を操作する熟練した専門家、個人使用のために新しい機器を何気なく購入した顧客、教室に座っている子供、または教室にいる障害者である可能性があります。車椅子。 人間は非常に適応性がありますが、無限に適応できるわけではありません。 どんな活動にも最適な条件の範囲があります。 人間工学のタスクの XNUMX つは、これらの範囲が何であるかを定義し、制限を超えた場合に発生する望ましくない影響を調査することです。または精神的負荷が高すぎるか低すぎます。

                                                    エルゴノミクスでは、受動的な周囲の状況だけでなく、人間のオペレーターの独自の利点と、その人の能力を最大限に活用することを許可および奨励するように作業状況が設計されている場合に行うことができる貢献についても調べます。 人間の能力は、一般的な人間のオペレーターを参照するだけでなく、高いパフォーマンスが不可欠な特定の状況で呼び出されるより特定の能力に関しても特徴付けることができます。 たとえば、自動車メーカーは、特定のモデルを使用すると予想されるドライバーの身体サイズと強度の範囲を考慮して、シートが快適であること、コントロールが容易に識別可能で手の届くところにあること、明確な安全性があることを確認します。前後の視認性と、内部計器の読み取りが容易であること。 出入りのしやすさも考慮されます。 対照的に、レーシングカーの設計者は、ドライバーがスポーツマンであると想定するため、例えば、乗り降りのしやすさは重要ではなく、実際、ドライバーに関連するデザイン機能全体が重要である可能性があります。特定のドライバーのサイズと好みに合わせて調整され、ドライバーとしての潜在能力とスキルを最大限に発揮できるようにします。

                                                    すべての状況、活動、タスクにおいて、焦点は関係者です。 構造、エンジニアリング、およびその他のテクノロジーは、オペレーターに役立つためのものであり、その逆ではないと想定されています。

                                                    沿革と現状

                                                    約 XNUMX 年前、一部の鉱山や工場での労働時間や労働条件は、安全と健康の観点から容認できないことが認識されており、これらの点で許容限度を設定する法律を制定する必要性は明らかでした。 これらの制限の決定と宣言は、人間工学の始まりと見なすことができます。 偶然にも、それらは現在、国際労働機関 (ILO) の活動を通じて表現されているすべての活動の始まりでした。

                                                    研究、開発、応用は第二次世界大戦までゆっくりと進みました。 これにより、車両、航空機、戦車、銃、大幅に改善されたセンシングおよびナビゲーション デバイスなどの機械および計器の開発が大幅に加速されました。 技術が進歩するにつれて、オペレーターの適応を可能にする柔軟性が高まりました。人間のパフォーマンスがシステムのパフォーマンスを制限していたため、適応がより必要になりました。 動力付きの乗り物が時速数キロでしか走れないのであれば、ドライバーのパフォーマンスを心配する必要はありませんが、乗り物の最高速度が XNUMX 倍または XNUMX 倍になると、ドライバーはより迅速に対応する必要があり、災害を回避するために間違いを修正する時間はありません。 同様に、技術が向上するにつれて、機械的または電気的な故障 (たとえば) について心配する必要がなくなり、ドライバーのニーズについて考えることに注意が向けられるようになります。

                                                    このように、人間工学は、工学技術をオペレータのニーズに適合させるという意味で、工学が進歩するにつれて、より必要になり、同時に実現可能になります。

                                                    人間工学という用語が使用されるようになったのは、1950 年頃、開発産業の優先事項が軍の優先事項から引き継がれたときでした。 その後の 1982 年間の研究と応用の発展は、Singleton (1960) に詳細に記述されています。 国連機関、特に ILO と世界保健機関 (WHO) は、XNUMX 年代にこの分野で活発になりました。

                                                    戦後すぐの産業界では、人間工学に共通する最優先の目標は生産性の向上でした。 これは、人間工学の実現可能な目標でした。なぜなら、非常に多くの産業生産性が、関連する労働者の肉体的努力によって直接決定されていたからです。つまり、組み立ての速度と、持ち上げと移動の速度が生産量の範囲を決定していました。 徐々に、機械の力が人間の筋肉の力に取って代わりました。 しかし、事故は電力が不適切な場所で不適切なタイミングで発生した結果であるという単純な原則に基づいて、より多くの電力が発生すると、より多くの事故が発生します。 事態が急速に進むと、事故の可能性がさらに高まります。 このように、産業界の関心と人間工学の目的は、生産性から安全性へと徐々に移行していきました。 これは 1960 年代と 1970 年代初頭に発生しました。 この頃以降、製造業の多くはバッチ生産からフローおよびプロセス生産に移行しました。 オペレータの役割は、それに応じて直接参加から監視と検査に移行しました。 これにより、オペレーターが行動の現場から離れているため、事故の頻度は低くなりましたが、プロセスに固有のスピードとパワーのために、事故の重大度が高くなる場合がありました.

                                                    生産量が機械の動作速度によって決まる場合、生産性はシステムを稼働させ続けるかどうかの問題になります。つまり、信頼性が目的になります。 したがって、オペレーターは、直接の操作者ではなく、監視者、トラブルシューティング担当者、および保守担当者になります。

                                                    製造業における戦後の変化のこの歴史的なスケッチは、人間工学者が定期的に一連の問題を落として別の問題を取り上げたことを示唆しているかもしれませんが、いくつかの理由からそうではありません. 先に説明したように、人間工学の関心は製造業の関心よりもはるかに広いです。 生産の人間工学に加えて、製品または設計の人間工学があります。つまり、機械または製品をユーザーに適合させます。 たとえば、自動車産業では、人間工学は、コンポーネントの製造と生産ラインだけでなく、最終的なドライバー、同乗者、保守担当者にとっても重要です。 乗り心地、シートの快適さ、ハンドリング、騒音と振動のレベル、コントロールの使いやすさ、内外の視認性などを考慮して、人間工学の品質をレビューすることは、自動車のマーケティングや他者による批判的な評価において日常的に行われています。の上。

                                                    人間のパフォーマンスは通常、関連する変数の許容範囲内で最適化されることが上で示唆されました。 初期のエルゴノミクスの多くは、そのような許容範囲を超えないようにすることで、筋力の出力と運動の範囲と多様性の両方を削減しようとしました. 仕事の状況における最大の変化であるコンピューターの出現は、逆の問題を生み出しました。 人間工学的に適切に設計されていない限り、コンピューターのワークスペースは、姿勢が固定されすぎたり、体の動きが少なすぎたり、関節の動きの特定の組み合わせの繰り返しが多すぎたりする可能性があります。

                                                    この簡単な歴史的レビューは、人間工学の継続的な発展があったにもかかわらず、問題を変えるのではなく、ますます多くの問題を追加する形をとったことを示すことを目的としています. しかし、知識のコーパスは成長し、より信頼性が高く有効なものになり、エネルギー消費基準はエネルギーがどのように、またはなぜ消費されるかに依存しなくなり、姿勢の問題は航空機の座席でもコンピューター画面の前でも同じになり、人間の活動の多くは現在、ビデオスクリーンと、実験室での証拠とフィールド調査の組み合わせに基づいた確立された原則があります。

                                                    人間工学と関連分野

                                                    工学と医学の確立された技術の中間にある科学ベースのアプリケーションの開発は、多くの関連分野に必然的に重複します。 科学的根拠という点では、人間工学に関する知識の多くは、解剖学、生理学、心理学などの人間科学に由来しています。 物理科学は、照明、暖房、騒音、振動などの問題の解決にも貢献しています。

                                                    人間工学におけるヨーロッパのパイオニアのほとんどは、人間科学の研究者であり、人間工学が生理学と心理学の間でバランスがとれているのはこのためです。 エネルギー消費、姿勢、持ち上げを含む力の適用などの問題の背景として、生理学的な方向性が必要です。 情報提示や仕事の満足度などの問題を研究するには、心理的オリエンテーションが必要です。 もちろん、ストレスや疲労、交替勤務など、人文科学を組み合わせたアプローチが必要な問題もたくさんあります。

                                                    この分野のアメリカ人開拓者のほとんどは、実験心理学または工学のいずれかに関わっていたため、彼らの典型的な役職は次のようになっています。人間工学 & 人的要因— ヨーロッパのエルゴノミクスとの違いを反映しています (しかし、核心的な利益ではありません)。 これはまた、労働衛生が医学、特に産業医学と密接な関係にあることから、米国では人的要因や人間工学とはまったく異なると見なされている理由を説明しています. 世界の他の地域の違いはそれほど顕著ではありません。 人間工学は作業中の人間のオペレーターに集中し、労働衛生は周囲環境に存在する人間のオペレーターへの危険に集中します。 したがって、労働衛生士の中心的な関心は、エルゴノミストの範囲外である有毒な危険性です。 産業衛生士は、長期的または短期的な健康への影響を懸念しています。 人間工学者はもちろん健康に関心がありますが、生産性、作業設計、ワークスペース設計など、他の結果についても懸念しています。 安全と健康は、人間工学、労働衛生、労働衛生、および産業医学を貫く一般的な問題です。 したがって、研究、設計、または生産の種類の大規模な機関では、これらの主題がしばしばグループ化されていることがわかっても驚くことではありません。 これにより、これらの個別の主題の専門家チームに基づくアプローチが可能になり、それぞれが施設の労働者だけでなく、その活動や製品によって影響を受ける人々の健康全般の問題に専門的に貢献しています。 対照的に、サービスの設計や提供に関係する機関では、エルゴノミストはエンジニアや他の技術者に近いかもしれません。

                                                    この議論から明らかなように、エルゴノミクスは学際的であり、まだ非常に新しいため、既存の組織にどのように適合させるのが最善かという重要な問題があります。 それは人々に関係しているため、他の多くの分野に重なっています. 特定の組織の歴史と目的に応じて、それを組み込む方法はたくさんあります。 主な基準は、人間工学の目的が理解され、評価されていること、および推奨事項を実施するためのメカニズムが組織に組み込まれていることです。

                                                    人間工学の目的

                                                    人間工学の利点が、生産性と品質、安全と健康、信頼性、仕事の満足度、個人の成長など、さまざまな形で現れることはすでに明らかです。

                                                    この範囲の広さの理由は、その基本的な目的が目的のある活動における効率性、つまり、無駄なインプットやエラー、関係者や他の人への損害を与えることなく、望ましい結果を達成するという最も広い意味での効率性にあるためです。 仕事の設計、作業スペース、作業環境、作業条件が十分に考慮されていないため、無駄なエネルギーや時間を費やすことは効率的ではありません。 状況からのサポートではなく、状況の設計にもかかわらず、望ましい結果を達成することは効率的ではありません。

                                                    人間工学の目的は、作業状況が労働者の活動と調和していることを確認することです。 この目標は自明の理ですが、さまざまな理由から達成は容易ではありません。 人間のオペレーターは柔軟で順応性があり、継続的な学習がありますが、かなり大きな個人差があります。 体格や強さなどの明らかな違いもありますが、文化の違い、スタイルやスキルのレベルの違いなど、他の違いは簡単には識別できません。

                                                    これらの複雑さを考慮すると、解決策は、人間のオペレーターが物事を行うための特に適切な方法を最適化できる柔軟な状況を提供することであると思われるかもしれません。 残念ながら、より効率的な方法が明らかでないことが多いため、このようなアプローチは実行できない場合があり、その結果、労働者は何か間違った方法や間違った条件で何年もやり続ける可能性があります。

                                                    したがって、体系的なアプローチを採用する必要があります。つまり、健全な理論から始めて、測定可能な目標を設定し、これらの目標に対して成功を確認する必要があります。 さまざまな考えられる目的を以下に検討します。

                                                    安全衛生

                                                    安全と健康の目的が望ましいかどうかについて意見の相違はあり得ません。 この難しさは、どちらも直接測定できないという事実に起因しています。彼らの達成は、彼らの存在ではなく、彼らの不在によって評価されます。 問題のデータは、常に安全と健康からの逸脱に関連しています。

                                                    健康の場合、エビデンスの多くは個人ではなく集団に基づいているため、長期的なものです。 したがって、長期にわたって注意深く記録を維持し、危険因子を特定して測定できる疫学的アプローチを採用する必要があります。 たとえば、コンピューター ワークステーションで作業者に要求される XNUMX 日または XNUMX 年間の最大時間は? ワークステーションのデザイン、仕事の種類、人の種類 (年齢、視力、能力など) によって異なります。 健康への影響は、手首の問題から精神的無関心まで多様である可能性があるため、集団内の違いを追跡しながら、非常に多くの集団をカバーする包括的な研究を実施する必要があります.

                                                    安全性は、事故や損害の種類と頻度という点で、否定的な意味でより直接的に測定できます。 さまざまな種類の事故を定義し、多くの場合複数の原因要因を特定することには問題があり、事故の種類と被害の程度 (無から死亡まで) との間にはしばしば遠い関係があります。

                                                    それにもかかわらず、安全と健康に関する膨大な量の証拠が過去 XNUMX 年間にわたって蓄積され、理論、法律、基準、および特定の種類の状況で有効な原則に関連付けることができる一貫性が発見されました。

                                                    生産性と効率

                                                    生産性は通常、単位時間あたりのアウトプットの観点から定義されますが、効率性には他の変数、特にアウトプットとインプットの比率が組み込まれています。 効率性には、達成に関連して行われたことのコストが組み込まれており、人間の観点からは、人間のオペレーターへのペナルティを考慮する必要があります。

                                                    工業的な状況では、生産性は比較的簡単に測定できます。生産量を数えることができ、生産に要した時間を簡単に記録できます。 生産性データは、作業方法、状況、または条件の前後の比較によく使用されます。 これは、人間のオペレーターが実行するだけでなく、状況で実現可能であるという原則に基づいているため、労力とその他のコストの同等性に関する仮定が含まれます。 生産性が高ければ、状況はより良くなるはずです。 実際に何が起こっているかを偽装する可能性のある多くの複雑な要因を十分に考慮して使用する場合、この単純なアプローチを推奨することはたくさんあります. 最善の保護策は、調査対象の側面以外は、状況の前後で何も変わっていないことを確認することです。

                                                    効率はより包括的ですが、常により難しい尺度です。 通常、特定の状況に対して具体的に定義する必要があり、研究の結果を評価する際には、導き出される結論に関して、その関連性と妥当性について定義をチェックする必要があります。 たとえば、自転車は徒歩よりも効率的ですか? 自転車は、所定の時間内に道路を移動できる距離の点ではるかに生産的であり、単位距離あたりのエネルギー消費の点でより効率的です。また、屋内での運動の場合、必要な器具が安価でシンプルであるため、より効率的です。 . 一方、エクササイズの目的は、健康上の理由からエネルギーを消費することや、困難な地形を越えて山に登ることです。 このような状況では、歩く方が効率的です。 したがって、効率測定は、明確に定義されたコンテキストでのみ意味を持ちます。

                                                    信頼性と品質

                                                    上で説明したように、生産性よりも信頼性がハイテク システム (輸送用航空機、石油精製、発電など) では重要な尺度になります。 このようなシステムのコントローラは、パフォーマンスを監視し、自動機械が稼働状態を維持して制限内で機能するように調整を行うことで、生産性と安全性に貢献します。 これらのシステムはすべて、静止しているとき、または設計されたパフォーマンス エンベロープ内で安定して機能しているときに、最も安全な状態になります。 航空機が離陸するときやプロセスシステムがシャットダウンされるときなど、平衡状態の間を移動または移動するとき、それらはより危険になります。 高い信頼性は、安全上の理由だけでなく、計画外のシャットダウンや停止が非常に高価であるため、重要な特性です。 信頼性は、パフォーマンスの後に測定するのは簡単ですが、同様のシステムの過去のパフォーマンスを参照しない限り、予測するのは非常に困難です。 何か問題が発生した場合、人為的エラーが常に原因となりますが、必ずしもコントローラー側のエラーとは限りません。人為的エラーは、設計段階やセットアップおよびメンテナンス中に発生する可能性があります。 このような複雑なハイテク システムでは、設計から発生した障害の評価まで、かなりの継続的な人間工学的インプットが必要であることが現在では認められています。

                                                    品質は信頼性に関連していますが、測定が不可能ではないにしても非常に困難です。 従来、バッチやフローの生産方式では、アウトプット後の検査で品質をチェックしていましたが、現在では生産と品質維持を両立させることが原則として確立されています。 したがって、各オペレーターは検査官としての責任を並行して負っています。 これは通常、より効果的であることが証明されていますが、単に生産率に基づいた労働インセンティブを放棄することを意味する場合があります. 人間工学的に言えば、オペレータを反復作業用にプログラムされた一種のロボットとして扱うのではなく、責任ある人間として扱う方が理にかなっています。

                                                    仕事の満足度と自己啓発

                                                    労働者または人間のオペレーターは、ロボットではなく人として認識されるべきであるという原則から、責任、態度、信念、および価値観を考慮する必要があるということになります。 これは簡単なことではありません。多くの変数があり、そのほとんどは検出可能ですが定量化できず、個人差や文化差が大きいためです。 それにもかかわらず、オペレーターの観点から合理的に実行可能な限り満足のいく状況であることを保証する目的で、作業の設計と管理に多大な努力が注がれています。 いくつかの測定は調査手法を使用して可能であり、いくつかの原則は自律性やエンパワーメントなどの作業機能に基づいて利用できます。

                                                    これらの取り組みには時間と費用がかかることを受け入れたとしても、実際に作業を行っている人々の提案、意見、態度に耳を傾けることで、かなりの見返りが得られる可能性があります。 彼らのアプローチは、外部の作業設計者のアプローチと同じではない可能性があり、作業設計者または管理者が行った仮定と同じではない可能性があります。 これらの見解の違いは重要であり、関係者全員の戦略に新鮮な変化をもたらす可能性があります。

                                                    人間が継続的な学習者であるか、適切な条件が与えられれば、そうなる可能性があることは十分に確立されています。 重要な条件は、将来のパフォーマンスを改善するために使用できる過去と現在のパフォーマンスに関するフィードバックを提供することです。 さらに、そのようなフィードバック自体がパフォーマンスへのインセンティブとして機能します。 したがって、誰もが、パフォーマーと、より広い意味でのパフォーマンスの責任者を獲得します。 したがって、自己啓発を含め、パフォーマンスの向上から得られるものはたくさんあります。 人間工学の適用の一面として個人の成長を図るという原則には、より優れた設計者と管理者のスキルが必要ですが、うまく適用できれば、上記の人間のパフォーマンスのすべての側面を改善できます。

                                                    人間工学の適用の成功は、多くの場合、適切な態度や視点を開発するだけで得られます。 関与する人々は必然的に人間の努力の中心的な要素であり、彼らの利点、制限、ニーズ、および願望を体系的に考慮することは本質的に重要です.

                                                    まとめ

                                                    人間工学は、作業状況、作業条件、および実行されるタスクを改善することを目的とした、作業中の人々の体系的な研究です。 特定の状況での変化に対する推奨の根拠となる関連性のある信頼できる証拠を取得すること、および人間工学から利用できる継続的に発展する専門知識に貢献する、より一般的な理論、概念、ガイドライン、および手順を開発することに重点が置かれています。

                                                     

                                                    戻る

                                                    月曜日、12月20 2010 19:16

                                                    定義と概念

                                                    曝露、用量および反応

                                                    毒性 生物に悪影響を与える化学物質の固有の能力です。

                                                    生体異物 「異物」、つまり生体にとって異物の用語です。 その反対は内因性化合物です。 生体異物には、医薬品、工業用化学物質、自然発生する毒物、環境汚染物質が含まれます。

                                                    危険 特定の設定または状況で毒性が発現する可能性。

                                                    リスク 特定の悪影響が発生する確率です。 多くの場合、特定の集団における特定の期間の症例の割合として表されます。 リスクの推定は、実際のケースに基づくことも、外挿に基づく将来のケースの予測に基づくこともできます。

                                                    毒性評価 & 毒性分類 規制目的で使用できます。 毒性評価は、毒性効果を引き起こす用量または曝露レベルの任意の等級付けです。 格付けは、「超毒性」、「高毒性」、「中毒性」などです。 最も一般的な評価は、急性毒性に関するものです。 毒性分類は、最も重要な毒性効果に従って化学物質を一般的なカテゴリーに分類することに関するものです。 このようなカテゴリには、アレルギー性、神経毒性、発がん性などが含まれます。 この分類は、警告および情報として管理上の価値がある場合があります。

                                                      用量効果関係 は、個人レベルでの用量と効果の関係です。 用量の増加は、影響の強さを増加させるか、より深刻な影響をもたらす可能性があります。 用量効果曲線は、生物全体、細胞または標的分子のレベルで得ることができる。 死亡や癌などの一部の毒性効果は等級付けされていませんが、「すべてかゼロか」の影響です。

                                                      用量反応関係 線量と特定の効果を示す個人のパーセンテージとの関係です。 線量が増加すると、通常、被ばくした集団のより多くの個人が影響を受けます。

                                                    用量効果と用量反応関係を確立することは、毒物学にとって不可欠です。 医学(疫学)研究において、因子と疾患との間の因果関係を受け入れるためにしばしば使用される基準は、効果または反応が用量に比例するというものです。

                                                    化学物質について、影響の種類ごとに 100 つずつ、いくつかの用量反応曲線を描くことができます。 ほとんどの毒性効果の用量反応曲線 (大規模な集団で研究した場合) は、シグモイド形状をしています。 通常、応答が検出されない低用量範囲があります。 用量が増加するにつれて、反応は上昇曲線をたどり、通常は XNUMX% の反応でプラトーに達します。 用量反応曲線は、集団内の個人間の変動を反映しています。 曲線の傾きは、化学物質ごとに、また効果の種類によって異なります。 特定の効果を持つ一部の化学物質 (発がん物質、イニシエーター、変異原物質) の場合、用量反応曲線は、特定の用量範囲内で用量ゼロから直線になる場合があります。 これは、閾値が存在せず、少量の線量でもリスクがあることを意味します。 その用量範囲を超えると、リスクは線形速度よりも大きく増加する可能性があります。

                                                    XNUMX 日の曝露量の変動と生涯の曝露時間の合計は、結果 (反応) にとって、平均または平均または統合された用量レベルと同じくらい重要である可能性があります。 高いピーク暴露は、より均一な暴露レベルよりも有害である可能性があります。 これは、一部の有機溶剤の場合です。 一方、一部の発がん物質については、XNUMX 回の投与を複数回に分けて同じ総投与量で行うと、腫瘍の発生に効果的であることが実験的に示されています。

                                                    A 線量 多くの場合、生体内に侵入する生体異物の量として表されます (mg/kg 体重などの単位)。 投与量は、さまざまな (多かれ少なかれ有益な) 方法で表すことができます。 被ばく線量、これは特定の期間 (通常、労働衛生では XNUMX 時間) 中に吸入された汚染物質の空気濃度、または 保持された or 吸収線量 (産業衛生では、 体への負担) は、暴露中または暴露後の特定の時点で体内に存在する量です。 の 組織線量 特定の組織内の物質の量であり、 目標用量 重要な分子に結合した物質 (通常は代謝産物) の量です。 目標用量は、組織内の特定の高分子 XNUMX mg あたりの結合化学物質の mg として表すことができます。 この概念を適用するには、分子レベルでの毒性作用のメカニズムに関する情報が必要です。 目標用量は、毒性効果とより正確に関連しています。 被ばく線量や身体への負担はより簡単に入手できるかもしれませんが、これらは影響との正確な関連性は低くなります。

                                                    線量の概念には、常に表現されているわけではありませんが、時間の側面が含まれることがよくあります。 ハーバーの法則による理論線量は D = ct、 コラボレー D は投与量、 c は空気中の生体異物の濃度であり、 t 化学物質への暴露期間。 この概念が標的器官または分子レベルで使用される場合、一定時間にわたる組織または分子の mg あたりの量が使用される場合があります。 通常、時間の側面は、単回暴露や急性影響よりも、反復暴露や慢性影響を理解する上でより重要です。

                                                    付加効果 化学物質の組み合わせへの曝露の結果として発生し、個々の毒性が単純に相互に追加されます(1 + 1 = 2). 化学物質が同じメカニズムを介して作用する場合、実際には必ずしもそうではありませんが、それらの効果の相加性が想定されます。 化学物質間の相互作用は、阻害を引き起こす可能性があります (拮抗)、個々の化学物質の効果の加算 (1+1 2) から予想される効果よりも小さい効果です。 あるいは、化学物質の組み合わせは、追加によって予想されるよりも顕著な効果を生み出す可能性があります (個人間の反応の増加または集団における反応の頻度の増加)。 相乗効果 (1+1 >2)。

                                                    待ち時間 最初の曝露から検出可能な効果または反応が現れるまでの時間。 この用語は、しばしば発がん性の影響に使用され、腫瘍は曝露開始から長時間経過した後、場合によっては曝露停止後も長期間にわたって現れることがあります。

                                                    A 線量閾値 それ以下では観察可能な影響が生じない用量レベルです。 急性毒性効果などの特定の効果には閾値が存在すると考えられています。 しかし、発がん効果のような他のものではありません(DNA付加物形成イニシエーターによる). ただし、特定の母集団に反応がないというだけで、閾値が存在する証拠と見なすべきではありません。 応答がないのは、単純な統計的現象が原因である可能性があります。低頻度で発生する悪影響は、小さな集団では検出できない可能性があります。

                                                    LD50 (実効用量) は、動物集団で 50% の致死率を引き起こす用量です。 LD50 古い文献では、化学物質の急性毒性の尺度としてしばしば与えられます。 LDが高いほど50、低い方が急性毒性です。 毒性の高い化学物質(LD値が低い)50) であると言われています 強力な. 急性毒性と慢性毒性の間には必ずしも相関関係はありません。 ED50 (実効用量) は、動物の 50% で致死以外の特定の影響を引き起こす用量です。

                                                    ノエル(NOAEL) 観察されない(有害な)効果レベル、または毒性効果を引き起こさない最高用量を意味します。 NOEL を確立するには、複数回の投与、大規模な母集団、および反応の欠如が単なる統計的現象ではないことを確認するための追加情報が必要です。 ロエル 用量反応曲線上で観察された最小有効用量、または効果を引き起こす最小用量です。

                                                    A 安全係数 は、動物実験から得られた NOEL または LOEL を除算してヒトの暫定的な許容用量を求める、正式な恣意的な数値です。 これは、食品毒性学の分野でよく使用されますが、職業毒性学でも使用される場合があります。 安全係数は、小さな母集団から大きな母集団へのデータの外挿にも使用できます。 安全係数は 10 から0 10へ3. 安全係数 1,000 は通常、深刻度の低い影響 (刺激など) から保護するのに十分であり、非常に深刻な影響 (がんなど) には XNUMX もの大きな係数が使用される場合があります。 用語 安全係数 という用語に置き換えたほうがよいでしょう。 保護 要因 あるいは、 不確実性要因. 後者の用語の使用は、特定の化学物質、毒性効果、または暴露状況について、正確な用量反応データを動物からヒトに変換できるかどうかなど、科学的な不確実性を反映しています。

                                                    外挿 ある種から別の種へのデータの変換、またはデータが存在しない用量反応領域への XNUMX セットの用量反応データ (通常は高用量範囲) から得られる毒性の理論的定性的または定量的推定 (リスク外挿) です。 観察範囲外の毒性反応を予測するには、通常、外挿を行う必要があります。 数学的モデリングは、生体内での化学物質の挙動の理解 (トキシコキネティック モデリング)、または特定の生物学的事象が発生する統計的確率の理解 (生物学的または機構に基づくモデル) に基づく外挿に使用されます。 一部の国家機関は、規制目的でリスクを予測するための正式な方法として、洗練された外挿モデルを開発しました。 (この章の後のリスク評価の議論を参照してください。)

                                                    全身効果 吸収経路から離れた組織における毒性効果です。

                                                    対象臓器 曝露後に影響を受ける主要または最も敏感な臓器です。 同一の化学物質が、被ばく線量、線量率、性別、種などの異なる経路で体内に侵入しても、異なる標的臓器に影響を与える可能性があります。 化学物質間、または化学物質と他の要因との間の相互作用は、さまざまな標的臓器にも影響を与える可能性があります。

                                                    急性の影響 限られた暴露後および暴露後短時間 (数時間、数日) に発生し、可逆的または不可逆的である可能性があります。

                                                    慢性的な影響 長期間(数か月、数年、数十年)暴露した後に発生する、および/または暴露が終わった後も持続する。

                                                    急性 暴露 は短時間の露出ですが、 慢性暴露 長期(場合によっては生涯にわたる)暴露です。

                                                    公差 化学物質への暴露が繰り返されると、前処理なしで予想されるよりも低い反応が生じる可能性があります。

                                                    取り込みと処分

                                                    輸送プロセス

                                                    . 異物が生体内に入り、損傷部位に到達するためには、細胞とその膜を含むいくつかの障壁を通過する必要があります。 ほとんどの有毒物質は、拡散によって受動的に膜を通過します。 これは、水性チャネルを通過する小さな水溶性分子の場合、または脂溶性分子の場合、膜の脂質部分への溶解と拡散によって発生する可能性があります。 エタノールは、水溶性と脂溶性を併せ持つ小分子で、細胞膜を介して急速に拡散します。

                                                    弱酸と弱塩基の拡散. 弱酸および弱塩基は、イオン化されていない脂溶性の形態では膜を容易に通過できますが、イオン化された形態は極性が強すぎて通過できません。 これらの物質のイオン化の程度は、pH に依存します。 したがって、メンブレン全体に pH 勾配が存在する場合、それらは片側に蓄積します。 弱酸および弱塩基の尿中排泄は、尿の pH に大きく依存します。 胎児または胚の pH は母体の pH よりもやや高く、胎児または胚に弱酸がわずかに蓄積します。

                                                    促進拡散. 物質の通過は、膜内の担体によって促進される場合があります。 促進拡散は、タンパク質が介在し、選択性が高く、可飽和であるという点で、酵素プロセスに似ています。 他の物質は、生体異物の促進された輸送を阻害する可能性があります。

                                                    能動輸送. 一部の物質は、細胞膜を介して活発に輸送されます。 この輸送は、酵素のプロセスに類似したプロセスで担体タンパク質によって媒介されます。 能動輸送は促進拡散に似ていますが、濃度勾配に逆らって発生する場合があります。 それにはエネルギーの投入が必要であり、代謝阻害剤がそのプロセスをブロックする可能性があります。 ほとんどの環境汚染物質は積極的に輸送されません。 XNUMX つの例外は、腎臓での活発な尿細管分泌と酸代謝物の再吸収です。

                                                    食作用 マクロファージなどの特殊化された細胞が、その後の消化のために粒子を飲み込むプロセスです。 この輸送プロセスは、例えば、肺胞内の粒子の除去にとって重要です。

                                                    バルクフロー. また、呼吸による呼吸器系の空気の動きや、血液、リンパ液、尿などの動きによって物質が体内を運ばれます。

                                                    濾過。 静水圧または浸透圧により、水は内皮の細孔を通って大量に流れます。 十分に小さい溶質は、水と一緒にろ過されます。 ろ過は、すべての組織の毛細血管床である程度発生しますが、腎臓糸球体での一次尿の形成において特に重要です。

                                                    吸着

                                                    吸収とは、環境から生物への物質の取り込みです。 この用語は通常、バリア組織への入り口だけでなく、循環血液へのさらなる輸送も含みます。

                                                    肺吸収. 肺は、空気中の小さな粒子、ガス、蒸気、エアロゾルの沈着と吸収の主要な経路です。 水溶性の高いガスと蒸気の場合、取り込みの大部分は鼻と呼吸器系で発生しますが、溶解性の低い物質の場合、主に肺胞で発生します。 肺胞は非常に大きな表面積(約100m2 人間で)。 さらに、拡散障壁は非常に小さく、わずか XNUMX つの薄い細胞層と、肺胞の空気から全身の血液循環までの距離がマイクロメートルのオーダーです。 これにより、肺は酸素と二酸化炭素の交換だけでなく、他のガスや蒸気の交換においても非常に効率的になります. 一般に、肺胞壁を横切る拡散は非常に速いため、取り込みが制限されません。 吸収率は、流量 (肺換気量、心拍出量) と溶解度 (血液: 空気分配係数) に依存します。 もう XNUMX つの重要な要素は、代謝による除去です。 肺吸収に対するこれらの要因の相対的な重要性は、物質によって大きく異なります。 身体活動は、肺換気量と心拍出量の増加、および肝血流の減少をもたらします (したがって、生体内変化率)。 多くの吸入物質では、これにより肺吸収が著しく増加します。

                                                    経皮吸収. 皮膚は非常に効率的なバリアです。 体温調節の役割とは別に、微生物、紫外線、その他の有害物質から生物を保護し、過度の水分損失からも保護するように設計されています. 真皮での拡散距離は、数十分の一ミリ程度です。 さらに、ケラチン層は、ほとんどの物質の拡散に対して非常に高い耐性を持っています。 それにもかかわらず、一部の物質、例えば有機リン系殺虫剤や有機溶剤などの毒性の高い脂溶性物質では、毒性をもたらす重大な経皮吸収が発生する可能性があります。 液体物質にさらされた後、かなりの吸収が起こる可能性があります。 蒸気の経皮吸収は、蒸気圧が非常に低く、水や皮膚への親和性が高い溶媒にとって重要な場合があります。

                                                    消化管吸収 偶発的または意図的な摂取後に発生します。 もともと吸入されて気道に沈着した大きな粒子は、咽頭への粘液線毛輸送の後に飲み込まれる可能性があります。 事実上、すべての可溶性物質は胃腸管で効率的に吸収されます。 腸の低い pH は、例えば金属の吸収を促進する可能性があります。

                                                    その他のルート. 毒性試験やその他の実験では、利便性のために特別な投与経路がよく使用されますが、これらはまれであり、通常は職業上の状況には関係ありません. これらの経路には、静脈内 (IV)、皮下 (sc)、腹腔内 (ip)、および筋肉内 (im) 注射が含まれます。 一般に、物質はこれらの経路によってより高い速度で、より完全に吸収されます。特に IV 注射後は顕著です。 これにより、持続時間は短いが高濃度のピークが生じ、用量の毒性が高まる可能性があります。

                                                    販売

                                                    生体内での物質の分布は、さまざまな組織への血流とその物質に対する親和性だけでなく、取り込みと排出の速度に依存する動的なプロセスです。 水溶性の小さい非荷電分子、一価陽イオン、およびほとんどの陰イオンは容易に拡散し、最終的には体内で比較的均一に分布します。

                                                    流通量 ある時点で体内にある物質の量を、その時点での血液、血漿、または血清中の濃度で割った値です。 多くの物質は生体内に均一に分布していないため、この値は物理量としての意味を持ちません。 XNUMX l/kg 体重未満の分布量は、血液 (または血清または血漿) に優先的に分布することを示し、XNUMX を超える値は、脂溶性物質が脂肪組織などの末梢組織に優先的に分布することを示します。

                                                    累積 血液や血漿よりも高いレベルで、組織や臓器に物質が蓄積することです。 それはまた、有機体における時間の経過に伴う漸進的な蓄積を指す場合もあります. 多くの生体異物は脂溶性が高く、脂肪組織に蓄積する傾向がありますが、骨に特別な親和性を持つものもあります。 例えば、骨中のカルシウムは、鉛、ストロンチウム、バリウム、およびラジウムの陽イオンと交換される可能性があり、骨中のヒドロキシル基はフッ化物と交換される可能性があります。

                                                    障壁. 脳、精巣、胎盤の血管には、タンパク質などの大きな分子の通過を阻害する特別な解剖学的特徴があります。 これらの機能は、しばしば血液脳関門、血液精巣関門、および血液胎盤関門と呼ばれ、物質の通過を妨げるという誤った印象を与える可能性があります. これらの障壁は、細胞膜を通って拡散する可能性のある生体異物にとってほとんどまたはまったく重要ではありません。

                                                    血の結合. 物質は、赤血球または血漿成分に結合している場合もあれば、血液中に結合していない場合もあります。 一酸化炭素、ヒ素、有機水銀、および六価クロムは赤血球との親和性が高く、無機水銀と三価クロムは血漿タンパク質を好みます。 他の多くの物質も血漿タンパク質に結合します。 非結合画分のみが濾過または排泄器官への拡散に利用できます。 したがって、血液結合は生体内の滞留時間を増加させる可能性がありますが、標的器官による取り込みを減少させます。

                                                    制圧

                                                    制圧 体内の物質が消失することです。 除去には、体からの排泄または特定の測定方法では捕捉されない他の物質への変換が含まれる場合があります。 消失速度は、消失速度定数、生物学的半減期、またはクリアランスによって表すことができます。

                                                    濃度-時間曲線. 血液 (または血漿) 中の濃度対時間の曲線は、生体異物の取り込みと配置を説明する便利な方法です。

                                                    曲線下面積 (AUC) は、経時的な血中 (血漿) 濃度の積分です。 代謝飽和やその他の非線形プロセスがない場合、AUC は物質の吸収量に比例します。

                                                    生物学的ハーフタイム (または半減期) は、暴露終了後、生体内の量が半分になるまでに必要な時間です。 物質の総量を評価することは困難な場合が多いため、血中(血漿)中濃度などの測定値が使用されます。 ハーフタイムは、線量や曝露時間などによって変化する可能性があるため、注意して使用する必要があります。 さらに、多くの物質は、いくつかの半減期を持つ複雑な減衰曲線を持っています。

                                                    バイオアベイラビリティ 体循環に入る投与量の割合です。 前全身クリアランスがない場合、または 初回通過代謝、分数は XNUMX です。 経口ばく露では、消化管内容物、腸壁または肝臓内での代謝が全身前クリアランスの原因である可能性があります。 初回通過代謝は物質の全身吸収を減少させ、代わりに代謝産物の吸収を増加させます。 これにより、異なる毒性パターンが生じる可能性があります。

                                                    在庫一掃 物質が完全に除去された単位時間あたりの血液 (血漿) の量です。 腎クリアランスと区別するために、例えば、総、代謝、または血液 (血漿) という接頭辞がしばしば追加されます。

                                                    固有クリアランス 物質を変換する内因性酵素の能力であり、単位時間あたりの体積でも表されます。 臓器内の内因性クリアランスが血流よりもはるかに低い場合、代謝は制限されていると言われます. 逆に、内因性クリアランスが血流よりもはるかに高い場合、代謝は血流制限されます。

                                                    排泄

                                                    排泄は、生物からの物質とその生体内変化生成物の出口です。

                                                    尿および胆汁への排泄. 腎臓は最も重要な排泄器官です。 一部の物質、特に高分子量の酸は、胆汁とともに排泄されます。 胆汁に排泄された物質の一部は、腸で再吸収されることがあります。 このプロセス、 腸肝循環、コンジュゲートの腸内加水分解後のコンジュゲート物質では一般的です。

                                                    その他の排泄経路. 有機溶媒やアセトンなどの分解生成物などの一部の物質は揮発性が高く、吸入後にかなりの割合が呼気によって排出される可能性があります。 小さな水溶性分子と脂溶性分子は、胎盤を介して胎児に容易に分泌され、哺乳動物の乳汁に分泌されます。 母親にとって、授乳は持続性脂溶性化学物質の定量的に重要な排泄経路となり得る. 子孫は、妊娠中および授乳中に母親を介して二次的に暴露される可能性があります。 水溶性化合物は、汗や唾液中にある程度排泄されることがあります。 これらのルートは、一般的にあまり重要ではありません。 しかし、大量の唾液が生成されて飲み込まれると、唾液の排泄が化合物の再吸収に寄与する可能性があります。 水銀などの一部の金属は、毛髪のケラチンのスルフヒドリル基に永久に結合することによって排出されます。

                                                    トキシコキネティック モデル

                                                    数学的モデルは、異物の取り込みと処分を理解し、説明するための重要なツールです。 ほとんどのモデルはコンパートメントです。つまり、生物は XNUMX つ以上のコンパートメントで表されます。 コンパートメントは、物質が均一かつ瞬時に分布すると想定される、化学的および物理的に理論的なボリュームです。 単純なモデルは指数項の和として表すことができますが、より複雑なモデルでは、解を求めるためにコンピュータ上で数値的な手順が必要になります。 モデルは、記述的モデルと生理学的モデルの XNUMX つのカテゴリに分類できます。

                                                    In 記述的な モデル、測定データへのフィッティングは、モデルパラメータの数値またはモデル構造自体を変更することによって実行されます。 モデル構造は通常、生物の構造とはほとんど関係がありません。 記述的アプローチの利点は、仮定がほとんど行われないことと、追加のデータが必要ないことです。 記述モデルの欠点は、外挿の有用性が限られていることです。

                                                    生理学的モデル 生理学的、解剖学的およびその他の独立したデータから構成されています。 その後、モデルは改良され、実験データと比較して検証されます。 生理学的モデルの利点は、外挿目的で使用できることです。 例えば、吸入された物質の取り込みと体内動態に対する身体活動の影響は、換気と心拍出量の既知の生理学的調整から予測できます。 生理学的モデルの欠点は、大量の独立したデータが必要なことです。

                                                    生体内変換

                                                    生体内変換 体内の外来化合物 (生体異物) の代謝変換をもたらすプロセスです。 このプロセスは、生体異物の代謝と呼ばれることがよくあります。 原則として、代謝は脂溶性生体異物を効果的に排泄できる大きな水溶性代謝物に変換します。

                                                    肝臓は生体内変化の主要部位です。 腸から取り込まれたすべての生体異物は、単一の血管によって肝臓に運ばれます (大静脈ポルタ)。 異物が少量摂取されると、全身循環や他の臓器に到達する前に肝臓で完全に代謝されることがあります (初回通過効果)。 吸入された生体異物は、全身循環を介して肝臓に分配されます。 その場合、他の臓器に到達する前に、投与量のほんの一部が肝臓で代謝されます。

                                                    肝細胞には、生体異物を酸化するいくつかの酵素が含まれています。 この酸化は、通常、化合物を活性化します。つまり、親分子よりも反応性が高くなります。 ほとんどの場合、酸化された代謝産物は、第 XNUMX 段階で他の酵素によってさらに代謝されます。 これらの酵素は、代謝物を内因性基質と結合させ、分子がより大きくなり、極性が高くなるようにします。 これにより、排泄が促進されます。

                                                    生体異物を代謝する酵素は、肺や腎臓などの他の臓器にも存在します。 これらの器官では、特定の生体異物の代謝において、特定の質的に重要な役割を果たしている可能性があります。 ある器官で形成された代謝産物は、別の器官でさらに代謝される可能性があります。 腸内の細菌も生体内変化に関与している可能性があります。

                                                    生体異物の代謝物は、腎臓または胆汁を介して排泄されます。 また、肺から吐き出されたり、体内の内因性分子に結合したりすることもあります。

                                                    生体内変化と毒性の関係は複雑です。 生体内変化は、生存に必要なプロセスと見なすことができます。 体内に有害物質が蓄積するのを防ぐことにより、生物を毒性から保護します。 しかし、反応性中間代謝物が生体内変化で形成される可能性があり、これらは潜在的に有害です。 これを代謝活性化といいます。 したがって、生体内変化も毒性を誘発する可能性があります。 共役していない酸化された中間代謝物は、細胞構造に結合して損傷する可能性があります。 例えば、異物代謝物が DNA に結合すると、突然変異が誘発される可能性があります (「遺伝毒性学」を参照)。 生体内変換システムが過負荷になると、必須タンパク質または脂質膜の大規模な破壊が発生する可能性があります. これは、細胞死を引き起こす可能性があります (「細胞損傷と細胞死」を参照)。

                                                    生体内変化と同じ意味でよく使われる言葉です。 これは、体内の酵素によって触媒される化学分解または合成反応を示します。 食品からの栄養素、内因性化合物、生体異物はすべて体内で代謝されます。

                                                    代謝活性化 反応性の低い化合物が反応性の高い分子に変換されることを意味します。 これは通常、フェーズ 1 の反応中に発生します。

                                                    代謝不活化 活性分子または毒性分子が活性の低い代謝物に変換されることを意味します。 これは通常、フェーズ 2 の反応中に発生します。 場合によっては、不活性化された代謝産物が、例えば酵素切断によって再活性化されることがあります。

                                                    フェーズ1反応 異物代謝の最初のステップを指します。 これは通常、化合物が酸化されていることを意味します。 酸化は通常、化合物の水溶性を高め、さらなる反応を促進します。

                                                    チトクロムP450酵素 フェーズ 1 反応で生体異物を優先的に酸化する酵素のグループです。 さまざまな酵素は、特定の特性を持つ生体異物の特定のグループを処理するために特化されています。 内因性分子も基質です。 チトクローム P450 酵素は、生体異物によって特定の方法で誘導されます。 チトクローム P450 の誘導データを取得することは、以前の暴露の性質に関する情報を提供する可能性があります (「毒性反応の遺伝的決定要因」を参照)。

                                                    フェーズ2反応 生体異物代謝の第 XNUMX 段階を指します。 これは通常、酸化された化合物が内因性分子と共役 (結合) していることを意味します。 この反応は、水溶性をさらに増加させます。 多くの抱合代謝物は、腎臓を介して活発に排泄されます。

                                                    トランスフェラーゼ フェーズ 2 反応を触媒する酵素のグループです。 それらは、生体異物をグルタチオン、アミノ酸、グルクロン酸、硫酸塩などの内因性化合物と結合させます。

                                                    グルタチオン 第 2 相反応で生体異物と共役する内因性分子、トリペプチドです。 それはすべての細胞に(そして高濃度で肝細胞に)存在し、通常は活性化された生体異物から保護します. グルタチオンが枯渇すると、活性化された生体異物代謝物とタンパク質、脂質、または DNA との間で毒性反応が発生する可能性があります。

                                                    誘導 生体内変化に関与する酵素が、生体異物暴露への反応として (活性または量で) 増加することを意味します。 場合によっては、数日以内に酵素活性が数倍に増加することがあります。 誘導は多くの場合、フェーズ 1 とフェーズ 2 の両方の反応が同時に増加するようにバランスが取れています。 これは、より迅速な生体内変化につながる可能性があり、耐性を説明できます。 対照的に、不均衡な誘導は毒性を高める可能性があります。

                                                    阻害 XNUMX つの生体異物が同じ酵素によって代謝される場合、生体内変化が起こる可能性があります。 XNUMX つの基質は競合する必要があり、通常はいずれかの基質が優先されます。 その場合、第 XNUMX の基質は代謝されないか、ゆっくりと代謝されるだけです。 誘導と同様に、阻害が増加するだけでなく、毒性が減少する可能性があります。

                                                    酸素活性化 特定の生体異物の代謝物によって引き起こされる可能性があります。 それらは、活性酸素種の生成下で自動酸化する可能性があります。 スーパーオキシド、過酸化水素、およびヒドロキシルラジカルを含むこれらの酸素由来種は、細胞内の DNA、脂質、およびタンパク質を損傷する可能性があります。 酸素活性化は、炎症プロセスにも関与しています。

                                                    遺伝的変異 個人間の違いは、フェーズ 1 およびフェーズ 2 酵素をコードする多くの遺伝子に見られます。 特定の個体が他の個体よりも生体異物の毒性影響を受けやすい理由は、遺伝的多様性によって説明できるかもしれません。

                                                     

                                                    戻る

                                                    月曜日、2月28 2011 20:12

                                                    品質保証

                                                    個々の労働者の健康、福利、雇用可能性、または健康と安全の問題に対する雇用主のアプローチに影響を与える決定は、質の高いデータに基づいている必要があります。 これは特に生物学的モニタリングデータの場合に当てはまり、したがって、結果の信頼性、正確性、および精度を確保するために、作業集団からの生物学的標本の分析作業を行う研究所の責任です。 この責任は、検体採取のための適切な方法とガイダンスを提供することから、結果が適切な形式で個々の労働者のケアを担当する医療専門家に返されることを保証することにまで及びます。 これらすべての活動は、品質保証の表現によってカバーされています。
                                                    品質保証プログラムの中心的な活動は、分析の精度と精度の管理と維持です。 生物学的モニタリング研究所は、多くの場合、臨床環境で開発され、臨床化学の分野から品質保証技術と哲学を取り入れてきました。 実際、血液および尿中の有毒化学物質および生物学的影響指標の測定は、主要な病院にある臨床化学および臨床薬理サービス研究所で行われるものと本質的に違いはありません。
                                                    分析者個人の品質保証プログラムは、適切な方法の選択と確立から始まります。 次の段階は、精度を維持するための内部品質管理手順の開発です。 その場合、検査室は分析の正確さを満足させる必要があり、これには外部品質評価が含まれる可能性があります(以下を参照)。 ただし、品質保証には分析品質管理のこれらの側面以上のものが含まれることを認識することが重要です。

                                                    方法の選択
                                                    生物学的モニタリングにおける分析方法を提示するテキストがいくつかあります。 これらは有用なガイダンスを提供しますが、適切な品質のデータを生成する前に、個々の分析者が行う必要がある多くの作業があります。 品質保証プログラムの中心となるのは、その信頼性、精度、および精度に最も影響を与えるメソッドの部分を詳細に指定する必要があるラボ プロトコルの作成です。 実際、臨床化学、毒物学、および法医学における研究所の国家認定は、通常、研究所のプロトコルの質に依存しています。 適切なプロトコルの開発は通常、時間のかかるプロセスです。 検査室が新しい方法を確立したい場合、既存の検査室からその性能が証明されたプロトコルを取得することが最も費用対効果が高いことがよくあります。たとえば、確立された国際的な品質保証プログラムでの検証を通じてです。 新しいラボが特定の分析技術、たとえば高速液体クロマトグラフィーではなくガスクロマトグラフィーに専念している場合、多くの場合、優れた実績を持ち、同じ分析アプローチを使用しているラボを特定することができます。 検査室は、雑誌の記事やさまざまな国家品質評価スキームの主催者を通じて特定できることがよくあります。

                                                    内部品質管理
                                                    分析結果の品質は、実際に達成された方法の精度に依存し、これは、定義されたプロトコルへの厳密な順守に依存します。 精度は、分析実行中に定期的に「品質管理サンプル」を含めることによって最もよく評価されます。 たとえば、血中鉛分析の管理では、実際の労働者サンプルが 500 ~ 1986 回ごとに、品質管理サンプルが分析に導入されます。 20 回の実行あたりの精度管理サンプル数を減らすことで、より安定した分析メソッドを監視できます。 血中鉛分析用の品質管理サンプルは、無機鉛が添加された 1977 ml の血液 (ヒトまたはウシ) から調製されます。 個々のアリコートは低温で保存されます (Bullock、Smith、および Whitehead 27.2)。 それぞれの新しいバッチが使用される前に、1981 のアリコートが異なる機会に別々の実行で分析され、品質管理サンプルのこのバッチの平均結果とその標準偏差が確立されます (Whitehead 1977)。 これら XNUMX つの図を使用して、シューハート管理図を作成します (図 XNUMX)。 後続の実行に含まれる品質管理サンプルの分析結果がチャートにプロットされます。 次に、分析者は、これらのサンプルの結果が平均値の XNUMX または XNUMX 標準偏差 (SD) 内に収まるかどうかに応じて、分析実行の承認または拒否のルールを使用します。 コンピュータモデリングによって検証された一連のルールは、ウェストガードらによって提案されています。 (XNUMX)サンプルを制御するためのアプリケーション。 品質管理へのこのアプローチは、臨床化学の教科書に記載されており、品質保証の導入への簡単なアプローチは Whitehead (XNUMX) で説明されています。 これらの品質管理技術は、分析のたびに使用される校正サンプルとは別に、品質管理サンプルの準備と分析に依存していることを強調しなければなりません。

                                                    図 27.2 品質管理サンプルのシューハート管理図

                                                    BMO020F1.jpg

                                                    このアプローチは、さまざまな生物学的モニタリングまたは生物学的効果モニタリング アッセイに適用できます。 血液または尿サンプルのバッチは、測定対象の毒性物質または代謝産物のいずれかを添加することによって調製できます。 同様に、酵素やタンパク質の測定のために、血液、血清、血漿、または尿を分注し、急速冷凍または凍結乾燥して保存することができます。 ただし、人間の血液に基づくサンプルからの分析者への感染リスクを避けるために注意が必要です。
                                                    明確に定義されたプロトコルと許容性のためのルールを慎重に順守することは、品質保証プログラムの重要な最初の段階です。 どの検査室も、それを使用する医療専門家とその品質管理および品質評価のパフォーマンスについて話し合い、驚くべきまたは異常な結果を調査する準備ができていなければなりません。

                                                    外部品質評価
                                                    実験室が適切な精度で結果を出すことができることを確立したら、次の段階は測定値の正確さ (「真実性」)、つまり測定値と実際の存在量との関係を確認することです。 これは試験所が単独で行うのは難しい作業ですが、定期的な外部品質評価スキームに参加することで達成できます。 これらは、しばらくの間、臨床化学の実践に不可欠な部分でしたが、生物学的モニタリングには広く利用できませんでした. 例外は血中鉛分析で、1970 年代からスキームが利用可能でした (例、Bullock、Smith、および Whitehead 1986)。 同じバッチからのサンプルを分析している他の研究所から報告された結果と分析結果を比較することで、他の研究所と比較した研究所のパフォーマンスの評価、およびその精度の測定が可能になります。 いくつかの国内および国際的な品質評価スキームが利用可能です。 これらのスキームの多くは、参加しているすべての研究所からの分析対象物の結果の平均値 (実際の濃度の尺度として取得) の有効性が参加者の数とともに増加するため、新しい研究所を歓迎します。 多くの参加者が参加するスキームは、分析方法に従って実験室のパフォーマンスを分析することもできるため、パフォーマンス特性の低い方法の代替案についてアドバイスすることができます。 一部の国では、このようなスキームへの参加が試験所認定の不可欠な部分となっています。 外部品質評価スキームの設計と運用に関するガイドラインは、WHO によって公開されています (1981)。
                                                    確立された外部品質評価スキームがない場合、限定された範囲の分析物について商用ベースで入手可能な認定標準物質を使用して精度をチェックすることができます。 外部の品質評価スキームによって回覧されるサンプルの利点は、(1) 分析者が結果を事前に把握していないこと、(2) 濃度範囲が示されていること、(3) 決定的な分析方法を使用する必要がないことです。採用されているため、関連する材料は安価です。

                                                    分析前の品質管理
                                                    検査室に提示されたサンプルが適切な時期に採取されなかったり、汚染を受けていたり、輸送中に劣化していたり​​、ラベル表示が不適切または不正確だったりすると、検査室で良好な精度と精度を達成するために費やされた努力が無駄になります。 サンプリングされた材料を適切に管理せずに個人を侵襲的なサンプリングにさらすことも、専門家としての悪い習慣です。 サンプリングは多くの場合、ラボ分析者の直接の管理下にはありませんが、生物学的モニタリングの完全な品質プログラムでは、これらの要因を考慮に入れる必要があり、ラボは提供されたシリンジとサンプル容器が汚染されていないことを確認し、サンプリング技術とサンプルの保管と輸送。 シフトまたは勤務週内の正しいサンプリング時間の重要性と、サンプリングされた材料のトキシコキネティクスへの依存性が現在認識されており (ACGIH 1993; HSE 1992)、この情報は、サンプルの収集を担当する医療専門家が利用できるようにする必要があります。 .

                                                    分析後の品質管理
                                                    高品質の分析結果は、解釈可能な形式で適切なタイミングで専門家に伝達されない場合、個人または医療専門家にとってほとんど役に立たない可能性があります. 各生物学的モニタリング研究所は、サンプルを提出する医療専門家に、異常な、予想外の、または不可解な結果を時間内に警告し、適切な措置を講じることができるようにするための報告手順を作成する必要があります。 検査結果の解釈、特に連続するサンプル間の濃度の変化は、多くの場合、アッセイの精度に関する知識に依存します。 サンプル収集から結果の返却までの総合的な品質管理の一環として、医療専門家は、結果の解釈を支援するために、生物学的モニタリング検査室の精度と精度、および参照範囲と勧告および法定制限に関する情報を提供する必要があります。 

                                                     

                                                    クリックするとページの先頭に戻ります

                                                    近年の産業界の変化を考慮せずに作業分析を語ることは困難です。なぜなら、活動の性質とそれらが実行される条件は、近年かなりの進化を遂げているからです。 これらの変化を引き起こした要因は数多くありますが、その影響が決定的に重要であることが判明した要因が 1986 つあります。 一方では、ますます加速する技術進歩と、情報技術によってもたらされた激変が、仕事に革命をもたらしました (De Keyser XNUMX)。 一方、経済市場の不確実性により、人事管理と作業組織にはより柔軟な対応が求められています。 労働者が生産プロセスについて、ルーティン指向ではなく、間違いなく体系化された広い視野を得た場合、同時に、環境、チーム、生産ツールとの排他的なつながりを失ったことになります。 これらの変化を冷静に見ることは困難ですが、私たちは新しい産業景観が生み出されたという事実に直面しなければなりません。それは、その中で自分の居場所を見つけることができる労働者にとってはより豊かになることもありますが、労働者にとっては落とし穴や心配事に満ちていることもあります。取り残されたり、排除されたりします。 ただし、XNUMX つのアイデアが企業で採用されており、多くの国でのパイロット実験によって確認されています。関連する分析を使用し、さまざまな作業間の交渉にすべてのリソースを使用することで、変更を導き、その悪影響を和らげることが可能である必要があります。俳優。 トレーニング、新しい組織モードの設定、ツールと仕事の設計など、さまざまな種類の介入を導くために、タスクと活動をより適切に説明できるツールとして、今日、私たちが仕事の分析を配置しなければならないのは、この文脈の中にあります。システム。 分析が開発された理論的および文化的文脈、分析が追求する特定の目標、分析者が収集する証拠、またはいずれかに対する分析者の関心に応じて、多数の分析が存在するため、分析については XNUMX つの分析だけでなく、分析についても言及します。特異性または一般性。 この記事では、作業分析のいくつかの特徴を提示し、集団作業の重要性を強調することに限定します。 私たちの結論は、このテキストの制限により、より深く追求することが妨げられている他の道を強調します.

                                                    作業分析の特徴

                                                    コンテキスト

                                                    作業分析の主な目的が、オペレーターが何を行うかを説明することである場合、 ありませんまたは する必要があります、それをより正確にその文脈に置くことは、研究者にとって不可欠であると思われることがよくあります. 彼らは、彼ら自身の見解によれば、しかしおおむね同様の方法で、 コンテキスト, 状況, 環境, 仕事用ドメイン, 仕事の世界 or 作業環境. 問題は、これらの用語間のニュアンスよりも、それらに有用な意味を与えるために説明する必要がある変数の選択にあります。 確かに世界は広く、業界は複雑で、参考にできる特徴は無数にあります。 この分野の著者には XNUMX つの傾向が見られます。 最初のものは、文脈の記述を、読者の興味を捉え、適切な意味論的枠組みを読者に提供する手段と見なします。 XNUMX つ目は、異なる理論的視点を持っています。コンテキストとアクティビティの両方を受け入れようとし、オペレーターの行動に影響を与えることができるコンテキストの要素のみを記述します。

                                                    セマンティックフレームワーク

                                                    コンテクストには喚起力があります。 情報に通じた読者にとっては、検出、診断、および調整のタスクが優勢な遠隔地でのコマンドと監視を通じて、作業の全体像を呼び出すために継続的なプロセスに従事している制御室のオペレーターについて読むだけで十分です。 十分に意味のあるコンテキストを作成するために、どの変数を記述する必要がありますか? それはすべて読者次第です。 それにもかかわらず、いくつかの重要な変数については文献でコンセンサスが得られています。 の 自然 経済セクターの種類、生産またはサービスの種類、サイトの規模と地理的位置が役立ちます。

                                                    生産工程は、 ツールまたはマシン とその 自動化のレベル 特定の制約と特定の必要な条件を推測できるようにします。 の 人員構成、年齢、資格および経験のレベルとともに、分析がトレーニングまたは組織の柔軟性の側面に関係する場合は常に重要なデータです。 の 仕事の組織 確立されたものは、技術よりも会社の哲学に依存しています。 その説明には、特に、勤務スケジュール、意思決定の集中化の程度、および労働者に対して行使される管理の種類が含まれます。 場合によっては、他の要素を追加することもできます。 それらは、会社の歴史と文化、経済状況、労働条件、およびリストラ、合併、投資に関連しています。 著者の数と少なくとも同数の分類体系が存在し、数多くの記述的なリストが流通しています。 フランスでは、単純な記述方法を一般化するための特別な努力がなされており、特に、特定の要因がオペレーターにとって満足できるかどうかに応じてランク付けできるようになっています (RNUR 1976; Guelaud et al. 1977)。

                                                    活動に関する関連要因の説明

                                                    Rasmussen、Pejtersen、および Schmidts (1990) によって記述された複雑なシステムの分類は、コンテキストと演算子への影響を同時にカバーする最も野心的な試みの 1990 つです。 その主なアイデアは、それを構成するさまざまな要素を体系的に統合し、個々の戦略を開発できる自由度と制約を引き出すことです。 その網羅的な目的は操作を困難にしますが、グラフを含む複数の表現モードを使用して制約を説明することには、多くの読者にとって魅力的なヒューリスティックな価値があります。 他のアプローチは、より的を絞ったものです。 著者が求めているのは、正確な活動に影響を与える要因の選択です。 したがって、変化する環境におけるプロセスの制御に関心を持って、Brehmer (1) は、操作者の制御と予測に影響を与える一連のコンテキストの時間的特性を提案しています (図 1992 を参照)。 この著者の類型論は、動的な状況のコンピュータ化されたシミュレーションである「ミクロ世界」から開発されましたが、著者自身は、それ以来、他の多くの人々とともに、連続プロセス産業にそれを使用しました (Van Daele 1989)。 特定の活動については、環境の影響がよく知られており、要因の選択はそれほど難しくありません。 したがって、作業環境での心拍数に関心がある場合、気温、タスクの物理的制約、または被験者の年齢とトレーニングの説明に限定することがよくあります。関連する要素を取り出します。 他の人にとっては、選択はより困難です。 たとえば、ヒューマンエラーに関する研究は、それらを生み出す要因が数多くあることを示しています (Reason 1990)。 理論的知識が不十分な場合、状況分析と活動分析を組み合わせた統計処理のみが、関連する状況要因を引き出すことができる場合があります (Fadier XNUMX)。

                                                    図 1. Brehmer (1990) によって提案されたミクロ世界の分類法の基準と副基準

                                                    ERG040T1

                                                    タスクまたはアクティビティ?

                                                    タスク

                                                    タスクは、その目的、制約、および達成に必要な手段によって定義されます。 企業内の機能は、通常、一連のタスクによって特徴付けられます。 実現されたタスクは、多くの理由で会社によってスケジュールされた所定のタスクとは異なります。オペレーターの戦略は個人内および個人間で異なり、環境は変動し、ランダムなイベントはしばしば所定のフレームワークの外にある応答を必要とします。 最後に、 タスク 実行条件を正確に把握してスケジュールされているとは限らないため、リアルタイムでの適応が必要になります。 しかし、活動中にタスクが更新されたとしても、場合によっては変換されることもありますが、依然として中心的な参照のままです。

                                                    特に英語の文献では、アンケート、目録、およびタスクの分類法が多数あります。読者は、Fleishman と Quaintance (1984) および Greuter と Algera (1989) で優れたレビューを見つけることができます。 これらのツールの一部は、研究対象の機能に応じてチェックが付けられた要素 (タスクを説明するための動作動詞など) のリストにすぎません。 他の人は、グローバルから特定へと順序付けられた連結要素としてタスクを特徴付ける、階層的な原則を採用しています。 これらのメソッドは標準化されており、多数の関数に適用できます。 それらは使いやすく、分析段階が大幅に短縮されます。 しかし、特定の作業を定義するという問題の場合、それらはあまりにも静的で一般的すぎて役に立ちません。

                                                    次に、研究者側でより多くのスキルを必要とする機器があります。 分析の要素は事前に定義されていないため、それらを特徴付けるのは研究者次第です。 フラナガン (1954) の既に時代遅れになったクリティカル インシデント テクニックは、観察者がその機能の難しさを参照して機能を説明し、個人が直面しなければならないインシデントを特定するもので、このグループに属します。

                                                    これは、認知課題分析 (Roth and Woods 1988) によって採用された経路でもあります。 この手法は、仕事の認知的要件を明らかにすることを目的としています。 これを行う 2 つの方法は、仕事を目標、制約、および手段に分解することです。 図 100 は、最初に患者の生存という非常にグローバルな目標によって特徴付けられる麻酔科医のタスクが、一連のサブ目標にどのように分解できるかを示しています。これらのサブ目標は、それ自体が行動と使用される手段として分類できます。 手術室での 1991 時間以上の観察とその後の麻酔科医へのインタビューは、この機能の要件の総観的な「写真」を得るために必要でした。 この手法は非常に手間がかかりますが、タスクのすべての目標がそれらを達成する手段を備えているかどうかを判断する際に人間工学的に役立ちます。 また、タスクの複雑さ (特定の困難や相反する目標など) を理解し、特定の人的エラーの解釈を容易にします。 しかし、他の方法と同様に、記述言語がないという欠点があります (Grant and Mayes XNUMX)。 さらに、問題の目標を達成するために行われる認知プロセスの性質に関して、仮説を定式化することはできません。

                                                    図 2. タスクの認知分析: 全身麻酔

                                                    ERG040F1

                                                    他のアプローチは、特定のタスクを達成するために必要な情報処理に関する仮説を作成することにより、特定のタスクに関連する認知プロセスを分析しました。 この種のよく使われる認知モデルは Rasmussen の (1986) であり、タスクの性質と被験者にとっての慣れ具合に応じて、スキルに基づく習慣と反射神経、後天的ルールのいずれかに基づいて、1970 つの可能なレベルの活動を提供します。 -ベースの手順または知識ベースの手順。 しかし、3 年代に人気の頂点に達した他のモデルや理論は今でも使用されています。 したがって、人間を割り当てられた目標と観察された目標の間の不一致のコントローラーと見なす最適制御の理論は、認知プロセスに適用されることがあります。 また、相互接続されたタスクとフローチャートのネットワークによるモデリングは、認知タスク分析の著者に刺激を与え続けています。 図 XNUMX は、エネルギー制御課題における一連の行動を簡単に説明したもので、特定の精神操作に関する仮説を立てています。 これらの試みはすべて、文脈の要素だけでなく、タスク自体とその根底にある認知プロセスを同じ説明にまとめ、仕事の動的な特徴も反映するという研究者の関心を反映しています。

                                                    図 3. エネルギー制御タスクにおける一連の行動の決定要因の簡単な説明: 許容できないエネルギー消費の場合

                                                    ERG040F2

                                                    仕事の科学的組織化の到来以来、所定の仕事の概念は否定的に批判されてきた、多くの労働者に歓迎されていない制限。 今日、面付けの側面がかなり柔軟になり、作業者がタスクの設計により頻繁に貢献したとしても、タスクに割り当てられた時間はスケジュール計画に必要であり、作業組織の重要な要素であり続けています。 時間の定量化は、常に否定的な方法で認識されるべきではありません。 これは、ワークロードの貴重な指標となります。 労働者にかかる時間的プレッシャーを測定する単純だが一般的な方法は、タスクの実行に必要な時間を利用可能な時間で割った商を決定することからなる。 この商が 1992 に近づくほど、圧力は大きくなります (Wickens XNUMX)。 さらに、定量化は、柔軟かつ適切な人事管理に使用できます。 たとえば、カナダの規制で、タスクの予測分析の手法が一般化されている看護師の場合を考えてみましょう。 必要な看護の計画 (PRN 80) (Kepenne 1984) またはそのヨーロッパの変種の 80 つ。 このようなタスクリストと実行時間のおかげで、毎朝、患者の数と病状を考慮して、ケアスケジュールと人員の配置を確立できます。 PRN 4 は制約ではなく、多くの病院で看護要員の不足が存在することを示しています。なぜなら、この技術により、望ましいものと観察されたもの、つまり、必要なスタッフの数と利用可能な数、さらには計画されたタスクと実行されたタスクの間でも。 計算された時間は平均的なものであり、状況の変動によって常に適用されるわけではありませんが、このマイナス面は、調整を受け入れ、それらの調整の実行に担当者が参加できる柔軟な組織によって最小限に抑えられます。

                                                    図 4. PRN80 に基づく、存在する要員数と必要な要員数の不一致

                                                    ERG040F3

                                                    活動、証拠、およびパフォーマンス

                                                    アクティビティは、作業が発生するためにオペレーターが使用する動作とリソースのセットとして定義されます。つまり、商品の変換または生産、またはサービスの提供です。 この活動は、さまざまな方法で観察することで理解できます。 Faverge (1972) は、XNUMX つの分析形式について説明しています。 XNUMX つ目は、次の観点からの分析です。 ジェスチャー & 姿勢観察者は、オペレーターの目に見える活動の中で、認識可能で作業中に繰り返される行動のクラスを見つけます。 これらの活動は、多くの場合、正確な反応と結び付けられています。たとえば、心拍数により、各活動に関連する身体的負荷を評価できます。 分析の XNUMX 番目の形式は、 情報取り込み. 直接の観察を通じて、またはカメラや眼球運動のレコーダーの助けを借りて発見されるのは、オペレーターが周囲の情報フィールドで拾った一連の信号です。 この分析は、オペレーターによって実行される情報処理をよりよく理解しようとする際に、認知人間工学において特に役立ちます。 XNUMX 番目のタイプの分析は、 規制. アイデアは、環境の変動または彼自身の状態の変化に対処するために、オペレーターによって実行される活動の調整を特定することです。 そこでは、分析内でのコンテキストの直接的な介入が見られます。 この分野で最も頻繁に引用される研究プロジェクトの 1972 つは、Sperandio (XNUMX) の研究プロジェクトです。 この著者は、航空交通管制官の活動を研究し、航空交通量の増加に伴う重要な戦略変更を特定しました。 彼はそれらを、タスクの要件を満たし続けながら、許容可能な負荷レベルを維持することを目的とすることにより、アクティビティを簡素化する試みと解釈しました. XNUMXつ目は、次の観点からの分析です。 思考プロセス. このタイプの分析は、高度に自動化されたポストのエルゴノミクスで広く使用されています。 実際、コンピューター化された補助装置、特にオペレーター用のインテリジェントな補助装置の設計には、オペレーターが特定の問題を解決するためにどのように推論するかを完全に理解する必要があります。 スケジューリング、予測、および診断に関連する推論は、分析の対象であり、その例を図 5 に示します。しかし、精神活動の証拠は推測することしかできません。 眼球運動や問題解決時間など、観察可能な行動の特定の側面とは別に、これらの分析のほとんどは口頭での反応に頼っています。 近年、特定の活動を達成するために必要な知識に特に重点が置かれ、研究者はそれらを最初から仮定するのではなく、分析自体を通じて明らかにしようとしています.

                                                    図 5.精神活動の分析。 応答時間が長いプロセスの制御における戦略: 診断におけるコンピュータ化されたサポートの必要性

                                                    ERG040T2

                                                    このような取り組みにより、オペレーターが自分の限界を認識し、自分の能力に合わせた戦略を適用する限り、非常に異なるレベルの知識でほぼ同じパフォーマンスが得られるという事実が明らかになりました。 したがって、熱電プラントの始​​動に関する我々の研究 (De Keyser and Housiaux 1989) では、始動はエンジニアとオペレーターの両方によって行われました。 これら 1991 つのグループが持っていた理論的知識と手続き的知識は、インタビューとアンケートによって明らかにされたもので、非常に異なっていました。 特にオペレーターは、プロセスの機能リンクの変数について誤った理解をすることがありました。 それにもかかわらず、XNUMXつのグループのパフォーマンスは非常に接近していました。 しかし、オペレーターは、起動の制御を検証するために、より多くの変数を考慮に入れ、より頻繁に検証を行いました。 このような結果は、専門家が自分のリソースを管理できるようにするメタナレッジの存在に言及した Amalberti (XNUMX) によっても得られました。

                                                    この試験は 活動の証拠 引き出すのは適切ですか? これまで見てきたように、その性質は、計画された分析の形式に密接に依存します。 その形式は、観察者が行う方法論的ケアの程度によって異なります。 挑発 証拠は区別される 自発的 証拠と 随伴 から それに続きます 証拠。 一般的に言えば、作品の性質が許せば、付随的かつ自発的な証拠が好まれます。 それらには、記憶の信頼性の低さ、観察者の干渉、被験者側での再構築の合理化の影響など、さまざまな欠点がありません。 これらの違いを説明するために、言語化の例を取り上げます。 自発的な言語化は、観察者の要求なしに自発的に表現された言葉の交換、またはモノローグです。 誘発された言語化は、オブザーバーの特定の要求で行われる言語化です。たとえば、認知に関する文献でよく知られている「声を出して考えてください」という被験者への要求などです。 どちらのタイプも作業中にリアルタイムで実行できるため、同時に実行できます。

                                                    また、インタビューや、被験者が自分の作品のビデオテープを見たときの言語化のように、その後のこともあります。 言語化の妥当性に関しては、読者は、ニスベットとデ・キャンプ・ウィルソン (1977) およびホワイト (1988) の間の論争によって提起されたこの点に関する疑念と、研究における重要性を認識している多数の著者によって示唆された予防措置を無視してはなりません。遭遇した方法論的困難を考慮した精神活動の研究 (Ericson and Simon 1984; Savoyant and Leplat 1983; Caverni 1988; Bainbridge 1986)。

                                                    この証拠の編成、その処理、および形式化には、記述言語が必要であり、場合によっては現場での観察を超えた分析が必要です。 たとえば、証拠から推測される精神活動は仮説のままです。 今日では、人工知能に由来する言語を使用して記述されることが多く、スキーム、生産ルール、接続ネットワークに関する表現を利用しています。 さらに、産業界の複雑さを考慮して、そのようなコンピューター化されたシミュレーションから得られた結果の妥当性は議論の対象となっていますが、特定の精神活動を正確に特定するために、マイクロ世界のコンピューター化されたシミュレーションの使用が広まっています。 最後に、フィールドから抽出された特定の精神活動の認知モデリングについて言及する必要があります。 最もよく知られているのは、ISPRA (Decortis and Cacciabue 1990) で実施された原子力発電所の運転員の診断と、 Centre d'études et de recherches de médecine aérospatiale (CERMA) (Amalberti et al. 1989)。

                                                    これらのモデルのパフォーマンスと実際の生きているオペレーターのパフォーマンスとの不一致の測定は、活動分析において実り多い分野です。 性能 アクティビティの結果であり、タスクの要件に対してサブジェクトが与える最終的な応答です。 それは、生産性のレベルで表現されます。生産性、品質、エラー、インシデント、アクシデント、さらには、よりグローバルなレベルである欠勤や離職などです。 しかし、個人レベルでも特定する必要があります。満足度、ストレス、疲労、または仕事量の主観的な表現、および多くの生理学的反応もパフォーマンス指標です。 データのセット全体のみが活動の解釈を可能にします。つまり、人間の限界内にとどまりながら、望ましい目標を促進するかどうかを判断できます。 ある点まで観察者を導く一連の規範が存在します。 しかし、これらの規範はそうではありません 立地—彼らは、文脈、その変動、および労働者の状態を考慮していません。 これが、エルゴノミクスの設計において、ルール、規範、およびモデルが存在する場合でも、設計者ができるだけ早くプロトタイプを使用して製品をテストし、ユーザーのアクティビティとパフォーマンスを評価することをお勧めする理由です。

                                                    個人または集団作業?

                                                    ほとんどの場合、仕事は集合的な行為ですが、ほとんどの仕事分析はタスクまたは個々の活動に焦点を当てています。 とはいえ、今日の技術の進化は、作業組織と同様に、作業者と機械の間であれ、単にグループ内であれ、分散作業を強調しています。 この分布を考慮に入れるために、著者はどのような経路を探ってきましたか (Rasmussen、Pejtersen、および Schmidts 1990)? 彼らは、構造、交換の性質、構造的不安定性のXNUMXつの側面に焦点を当てています。

                                                    Structure

                                                    構造を人々の分析の要素、サービスの分析の要素、またはネットワーク内で活動する企業のさまざまな部門の要素と見なすかどうかにかかわらず、それらを結び付けるリンクの記述は依然として問題です。 私たちは、権威の構造を示す企業内の組織図に非常に精通しており、そのさまざまな形式が企業の組織哲学を反映しています。より柔軟な構造。 分散型活動については、別の説明も可能です。例を図 6 に示します。最近では、企業がグローバル レベルで情報交換を表す必要性から、情報システムの再考が必要になっています。 設計スキーマや実体関係属性マトリックスなどの特定の記述言語のおかげで、今日では集合レベルでの関係構造を非常に抽象的な方法で記述することができ、コンピューター化された管理システムを作成するための出発点として機能することができます。 .

                                                    図 6. 統合ライフサイクル設計

                                                    ERG040F5

                                                    交換の性質

                                                    エンティティを結合するリンクの説明だけでは、交換の内容自体についてはほとんどわかりません。 もちろん、関係の性質 (場所から場所への移動、情報の転送、階層的依存など) を指定することはできますが、これでは不十分なことがよくあります。 チーム内のコミュニケーションの分析は、言及された主題、チーム内の共通言語の作成、状況が重要な場合のコミュニケーションの修正などを含む、集合的な仕事の本質を捉えるための好まれる手段になっています (Tardieu、Nanci、Pascot 1985; ローランド 1986; ナバロ 1990; ヴァン デール 1992; ラコステ 1983; モレイ、サンダーソン、ヴィンセント 1989)。 これらの相互作用に関する知識は、コンピューター ツールの作成、特にエラーを理解するための意思決定支援に特に役立ちます。 この証拠の使用に関連するさまざまな段階と方法論的困難は、Falzon (1991) によって十分に説明されています。

                                                    構造不安定性

                                                    構造的不安定性の分野、つまり、文脈的要因の影響下での集合的作業の絶え間ない再構成の分野を開いたのは、タスクではなく活動に関する作業です。 フランスの森林火災に対処する集団活動を長期にわたって分析した Rogalski (1991) や、鉄道事故に対処するために設定された組織構造を研究した Bourdon と Weill Fassina (1994) などの研究は、どちらも非常に有益です。 それらは、コンテキストが交換の構造、関与するアクターの数とタイプ、コミュニケーションの性質、および作業に不可欠なパラメーターの数をどのように形成するかを明確に示しています。 このコンテキストが変動すればするほど、タスクの固定された説明が現実から遠ざかります。 この不安定性に関する知識と、その中で発生する現象をよりよく理解することは、予測不可能な事態に備えて計画を立てたり、危機の中で共同作業に携わる人々により良いトレーニングを提供したりするために不可欠です。

                                                    結論

                                                    説明した作業分析のさまざまなフェーズは、人的要因の設計サイクルの反復部分です (図 6 を参照)。 人的要因が考慮されるツール、ワークステーション、工場など、技術的なオブジェクトのこの設計では、特定の情報が必要になります。 一般に、デザイン サイクルの初期段階では、環境の制約、実行されるジョブの種類、およびユーザーのさまざまな特性に関するデータが必要になります。 この初期情報により、作業要件を考慮してオブジェクトの仕様を作成できます。 しかし、これはある意味、実際の作業状況に比べて粗いモデルにすぎません。 これは、モデルとプロトタイプが必要である理由を説明しています。モデルとプロトタイプは、最初からジョブ自体ではなく、将来のユーザーのアクティビティを評価できるようにするものです。 したがって、制御室のモニターに表示される画像の設計は、実行される作業の完全な認知分析に基づくことができますが、プロトタイプが実際に機能するかどうかを正確に判断できるのは、アクティビティのデータに基づく分析のみです。実際の作業状況で役立つ (Van Daele 1988)。 完成した技術オブジェクトが運用されると、ユーザーのパフォーマンスと、事故や人的ミスなどの機能不全の状況に重点が置かれます。 この種の情報を収集することで、完成したオブジェクトの信頼性と使いやすさを向上させる最終的な修正を行うことができます。 原子力産業と航空産業の両方が例として役立ちます。運用フィードバックには、発生したすべてのインシデントの報告が含まれます。 このようにして、デザイン ループは XNUMX 周します。

                                                     

                                                    戻る

                                                    月曜日、12月20 2010 19:18

                                                    トキシコキネティクス

                                                    人間の生物は、分子細胞レベルから組織や臓器に至るまで、さまざまなレベルの組織で複雑な生物学的システムを表しています。 有機体は開放系であり、動的平衡における多数の生化学反応を通じて環境と物質とエネルギーを交換します。 環境は汚染されているか、さまざまな有毒物質で汚染されている可能性があります。

                                                    職場環境や生活環境から有毒物質の分子やイオンがこのような強く調整された生物系に浸透すると、正常な細胞の生化学的プロセスが可逆的または不可逆的に乱されたり、細胞を傷つけたり破壊したりする可能性があります(「細胞損傷と細胞死」を参照)。

                                                    環境から生物体内の毒性作用部位への毒性物質の浸透は、次の XNUMX つの段階に分けることができます。

                                                    1. 暴露段階には、さまざまな毒物と環境要因 (光、温度、湿度など) の影響との間で発生するすべてのプロセスが含まれます。 化学変化、分解、生物分解 (微生物による)、および毒物の崩壊が起こる可能性があります。
                                                    2. トキシコキネティック段階は、生物への毒性物質の吸収と、体液による輸送、組織や臓器への分布と蓄積、代謝産物への生体内変換、および生物からの毒性物質および/または代謝産物の排除 (排泄) に続くすべてのプロセスを含みます。
                                                    3. トキシコダイナミクス相とは、毒性物質 (分子、イオン、コロイド) と細胞上または細胞内の特定の作用部位 (受容体) との相互作用を指し、最終的に毒性効果を生み出します。

                                                     

                                                    ここでは、環境中の毒物にさらされた後の人体内部のトキシコキネティックス プロセスだけに注目します。

                                                    環境に存在する毒物の分子またはイオンは、侵入点に応じて、皮膚や粘膜、または呼吸器や消化管の上皮細胞を介して生物に浸透します。 つまり、毒性物質の分子とイオンは、これらの生物学的システムの細胞膜と、細胞内の複雑な内膜システムを通過する必要があります。

                                                    トキシコキネティックおよびトキシコダイナミクスのすべてのプロセスは、分子細胞レベルで発生します。 多くの要因がこれらのプロセスに影響を与え、これらは次の XNUMX つの基本グループに分けることができます。

                                                    • 毒物の化学構造と物理化学的性質
                                                    • 細胞の構造、特に細胞周囲の膜とその内部オルガネラの特性と機能。

                                                     

                                                    毒物の物理化学的性質

                                                    1854 年、ロシアの毒物学者 EV ペリカンは、物質の化学構造とその生物活性との関係、つまり構造活性相関 (SAR) に関する研究を開始しました。 化学構造は物理化学的特性を直接決定し、その一部は生物活性に関与しています。

                                                    化学構造を定義するために、多数のパラメーターを記述子として選択できます。記述子はさまざまなグループに分類できます。

                                                    1. 物理化学:

                                                    • 一般—融点、沸点、蒸気圧、解離定数 (pKa)
                                                    • 電気—イオン化ポテンシャル、誘電率、双極子モーメント、質量電荷比など
                                                    • 量子化学 - 原子電荷、結合エネルギー、共鳴エネルギー、電子密度、分子反応性など

                                                     

                                                     2. 立体: 分子の体積、形状と表面積、部分構造の形状、分子の反応性など
                                                     3. 構造: 結合の数 環の数 (多環式化合物)、分岐の程度など

                                                     

                                                    各毒物について、特定の活動メカニズムに関連する一連の記述子を選択する必要があります。 ただし、トキシコキネティックスの観点からは、XNUMX つのパラメーターがすべての毒物にとって一般的に重要です。

                                                    • ネルンスト分配係数 (P) は、XNUMX 相オクタノール (油)-水系における毒物分子の溶解度を確立し、それらの脂溶性または水溶性と相関します。 このパラメーターは、生体内の毒物分子の分布と蓄積に大きく影響します。
                                                    • 解離定数 (pKa) は、特定の pH における有毒物質の分子の荷電陽イオンと陰イオンへのイオン化 (電解解離) の程度を定義します。 この定数は、50% のイオン化が達成される pH を表します。 分子は親油性または親水性の場合がありますが、イオンは体液および組織の水にのみ溶けます。 pKを知るa Henderson-Hasselbach の式を使用して、各 pH に対する物質のイオン化の程度を計算することができます。

                                                     

                                                    吸入された粉塵やエアロゾルの場合、粒子のサイズ、形状、表面積、密度もトキシコキネティクスとトキシコダイナミクスに影響を与えます。

                                                    膜の構造と性質

                                                    ヒトおよび動物の真核細胞は、物質の輸送を調節し、細胞の恒常性を維持する細胞質膜によって取り囲まれています。 細胞小器官(核、ミトコンドリア)も膜を持っています。 細胞の細胞質は、複雑な膜構造、小胞体、およびゴルジ複合体 (内膜) によって区画化されています。 これらの膜はすべて構造的に似ていますが、脂質とタンパク質の含有量が異なります。

                                                    膜の構造的枠組みは、脂質分子 (リン脂質、スフィンゴ脂質、コレステロール) の二重層です。 リン脂質分子の主鎖はグリセロールであり、16 つの -OH 基が 18 ~ XNUMX 個の炭素原子を持つ脂肪族脂肪酸によってエステル化され、XNUMX 番目の基はリン酸基と窒素化合物 (コリン、エタノールアミン、セリン) によってエステル化されます。 スフィンゴ脂質では、スフィンゴシンが塩基です。

                                                    脂質分子は、極性の親水性の「頭」(アミノアルコール、リン酸、グリセロール)と非極性のツイン「尾」(脂肪酸)で構成されているため、両親媒性です。 脂質二重層は、親水性の頭が膜の外面と内面を構成し、親油性の尾部が水、さまざまなイオン、分子を含む膜内部に向かって伸びるように配置されています。

                                                    タンパク質と糖タンパク質は、脂質二重層に挿入されるか (内因性タンパク質)、膜表面に付着します (外因性タンパク質)。 これらのタンパク質は、膜の構造的完全性に寄与しますが、酵素、担体、孔壁、または受容体としても機能する可能性があります。

                                                    膜は、機能的な必要性に応じて、脂質とタンパク質の異なる割合で分解および再構築できる動的構造を表しています。

                                                    細胞内外への物質輸送の調節は、外膜と内膜の基本的な機能の XNUMX つです。

                                                    一部の親油性分子は、脂質二重層を直接通過します。 親水性分子とイオンは細孔を介して輸送されます。 膜は、さまざまなサイズの特定の細孔を開いたり閉じたりすることで、変化する条件に対応します。

                                                    次のプロセスとメカニズムは、毒性物質を含む物質の膜を介した輸送に関与しています。

                                                    • 脂質二重層を介した拡散
                                                    • 細孔を通した拡散
                                                    • キャリアによる輸送(促進拡散)。

                                                     

                                                    アクティブなプロセス:

                                                    • キャリアによる能動輸送
                                                    • エンドサイトーシス(ピノサイトーシス)。

                                                     

                                                    これは、高濃度または高電位の領域から低濃度または電位の領域 (「下り坂」) への、脂質二重層または細孔を通る分子およびイオンの移動を表します。 濃度または電荷の違いは、両方向のフラックスの強度に影響を与える駆動力です。 平衡状態では、流入は流出と等しくなります。 拡散速度はフィッケの法則に従い、利用可能な膜の表面、濃度 (電荷) 勾配の差、および特性拡散係数に正比例し、膜の厚さに反比例すると述べています。

                                                    小さな親油性分子は、ネルンスト分配係数に従って、膜の脂質層を容易に通過します。

                                                    大きな親油性分子、水溶性分子、およびイオンは、それらの通過に水性細孔チャネルを使用します。 サイズと立体配置は、分子の通過に影響を与えます。 イオンの場合、サイズの他に、電荷のタイプが決定的になります。 細孔壁のタンパク質分子は、正または負の電荷を獲得できます。 狭い細孔は選択的である傾向があります。負に帯電した配位子は陽イオンのみを通過させ、正に帯電した配位子は陰イオンのみを通過させます。 ポアズイユの法則に従って、細孔径が大きくなると、流体力学的流れが支配的になり、イオンと分子が自由に通過できるようになります。 このろ過は、浸透圧勾配の結果です。 場合によっては、イオンが特定の複雑な分子を貫通することがあります—イオノフォア—これは、抗生物質効果を持つ微生物 (ノナクチン、バリノマイシン、グラマシジンなど) によって生成されます。

                                                    促進または触媒拡散

                                                    これには、膜内の担体、通常はタンパク質分子 (パーミアーゼ) の存在が必要です。 担体は、基質-酵素複合体に似た物質を選択的に結合します。 同様の分子 (毒性物質を含む) は、飽和点に達するまで、特定の担体をめぐって競合する可能性があります。 有毒物質は担体をめぐって競合する可能性があり、担体に不可逆的に結合すると、輸送がブロックされます。 輸送速度は、キャリアの種類ごとに特徴的です。 輸送が両方向に行われる場合、交換拡散と呼ばれます。

                                                    能動輸送

                                                    細胞にとって重要ないくつかの物質を輸送するために、特別なタイプの担体が使用され、濃度勾配または電位に逆らって輸送します(「上り坂」)。 キャリアは非常に立体特異的で、飽和する可能性があります。

                                                    上り坂の輸送にはエネルギーが必要です。 必要なエネルギーは、酵素アデノシントリホスファターゼ (ATP-アーゼ) による ATP 分子の ADP への触媒切断によって得られます。

                                                    毒素は、キャリアの競合的または非競合的阻害、または ATP アーゼ活性の阻害によって、この輸送を妨害する可能性があります。

                                                    エンドサイトーシス

                                                    エンドサイトーシス 細胞膜が物質を包囲して小胞​​を形成し、細胞を介して物質を輸送する輸送メカニズムとして定義されます。 材料が液体の場合、このプロセスは 飲作用. 場合によっては、物質が受容体に結合し、この複合体が膜小胞によって輸送されます。 このタイプの輸送は、特に胃腸管の上皮細胞、および肝臓と腎臓の細胞によって使用されます。

                                                    毒物の吸収

                                                    人々は、職場や生活環境に存在する多数の有毒物質にさらされており、これらの有毒物質は、次の XNUMX つの主要な入口から人体に侵入する可能性があります。

                                                    • 汚染された空気の吸入による気道経由
                                                    • 汚染された食べ物、水、飲み物の摂取による胃腸管経由
                                                    • 真皮、皮膚浸透による皮膚を通して。

                                                     

                                                    産業におけるばく露の場合、有毒物質の主な侵入経路は吸入であり、皮膚浸透がこれに続きます。 農業では、皮膚吸収による農薬曝露は、吸入と皮膚浸透を組み合わせた場合とほぼ同じです。 一般集団は、主に汚染された食品、水、飲料の摂取によって暴露され、次に吸入によって暴露され、皮膚浸透による暴露はそれほど多くありません。

                                                    気道からの吸収

                                                    肺での吸収は、多数の空気中の有毒物質 (ガス、蒸気、煙、霧、煙、粉塵、エアロゾルなど) の主な取り込み経路です。

                                                    気道 (RT) は、表面が 30 m の膜を持つ理想的なガス交換システムを表しています。2 (有効期限) ~ 100m2 (深いインスピレーション)、その背後には約2,000kmの毛細血管のネットワークがあります。 進化の過程で開発されたこのシステムは、肋骨で保護された比較的小さな空間(胸腔)に収められています。

                                                    解剖学的および生理学的に、RT は XNUMX つのコンパートメントに分けることができます。

                                                    • RT の上部、または鼻咽頭 (NP) は、鼻孔から始まり、咽頭および喉頭まで伸びています。 この部分は空調システムとして機能します
                                                    • 気管気管支樹 (TB) は、さまざまなサイズの多数の管を含み、肺に空気をもたらします。
                                                    • ブドウのようなクラスターに配置された何百万もの肺胞 (気嚢) で構成される肺コンパートメント (P)。

                                                     

                                                    親水性の毒物は、鼻咽頭領域の上皮によって容易に吸収されます。 NP 領域と TB 領域の上皮全体が水の膜で覆われています。 親油性毒物は部分的に NP と TB に吸収されますが、大部分は肺胞毛細血管膜を介した拡散によって肺胞に吸収されます。 吸収率は、肺の換気量、心拍出量 (肺を通る血流)、毒物の血中溶解度、およびその代謝率に依存します。

                                                    肺胞では、ガス交換が行われます。 肺胞壁は、上皮、基底膜の間質性フレームワーク、結合組織、および毛細血管内皮で構成されています。 有毒物質の拡散は、約 0.8 μm の厚さを持つこれらの層を介して非常に急速に進みます。 肺胞では、毒物が空気相から液相 (血液) に移動します。 毒物の吸収率 (空気から血液への分布) は、肺胞の空気中の濃度と血液のネルンスト分配係数 (溶解度係数) に依存します。

                                                    血液中で毒物は、単純な物理的プロセスによって液相に溶解するか、または化学的親和性または吸着によって血球および/または血漿成分に結合する可能性があります。 血液の水分含有量は 75% であるため、親水性のガスや蒸気は血漿 (アルコールなど) に高い溶解度を示します。 親油性毒物(ベンゼンなど)は、通常、細胞または卵白などの巨大分子に結合しています。

                                                    肺への暴露の最初から、吸収と脱着という 0 つの反対のプロセスが発生しています。 これらのプロセス間の平衡は、肺胞の空気と血液中の毒物の濃度に依存します。 曝露開始時の血中毒物濃度は 100 で、血中残留率はほぼ XNUMX% です。 曝露を続けると、吸収と脱着の間の平衡が達成されます。 親水性毒物は急速に平衡に達し、吸収率は血流よりも肺換気に依存します。 親油性毒物は平衡に達するまでにより長い時間を必要とし、ここでは不飽和の血液の流れが吸収率を支配します。

                                                    RT での粒子およびエアロゾルの沈着は、物理的および生理学的要因、ならびに粒子サイズに依存します。 つまり、粒子が小さいほど、RT に深く浸透します。

                                                    高度にばく露された人 (例えば、鉱夫) の肺における粉塵粒子の滞留が比較的一定して低いことは、粒子のクリアランスのための非常に効率的なシステムが存在することを示唆しています。 RT (気管気管支) の上部では、粘膜繊毛ブランケットがクリアランスを行います。 肺の部分では、(1) 粘膜繊毛ブランケット、(2) 食作用、(3) 肺胞壁を介した粒子の直接浸透の XNUMX つの異なるメカニズムが働いています。

                                                    気管気管支ツリーの 17 の分岐の最初の 23 は、繊毛上皮細胞を所有しています。 これらの繊毛は、ストロークによって粘液ブランケットを口に向かって絶えず動かします。 この粘膜線毛ブランケットに沈着した粒子は、口の中で飲み込まれます (摂取)。 粘液ブランケットも肺胞上皮の表面を覆い、粘液線毛ブランケットに向かって移動します。 さらに、特殊な移動細胞である食細胞は、肺胞内の粒子と微生物を飲み込み、次の XNUMX つの方向に移動します。

                                                    • それらを口に運ぶ粘液繊毛ブランケットに向かって
                                                    • 肺胞壁の細胞間隙を通って肺のリンパ系へ。 また、粒子はこの経路によって直接侵入することができます。

                                                     

                                                    消化管による吸収

                                                    誤って飲み込んだり、汚染された食べ物や飲み物を摂取したり、RT から除去された粒子を飲み込んだりすると、毒物が摂取される可能性があります。

                                                    食道から肛門までの消化管全体は、基本的に同じように作られています。 粘膜層 (上皮) は、結合組織によって支えられ、毛細血管と平滑筋のネットワークによって支えられています。 胃の表面上皮は、吸収/分泌表面積を増やすために非常に皺が寄っています。 腸の領域には多数の小さな突起物 (絨毛) があり、「ポンピング」によって物質を吸収することができます。 腸で吸収される有効面積は約100m2.

                                                    消化管 (GIT) では、すべての吸収プロセスが非常に活発です。

                                                    •  脂質層および/または細胞膜の細孔を介した拡散による経細胞輸送、および細孔ろ過
                                                    •  細胞間の接合部を通る傍細胞拡散
                                                    •  促進された拡散と能動輸送
                                                    •  エンドサイトーシスと絨毛のポンプ機構。

                                                     

                                                    有毒な金属イオンの中には、必須元素の特殊な輸送システムを使用するものがあります。タリウム、コバルト、マンガンは鉄システムを使用しますが、鉛はカルシウム システムを使用するようです。

                                                    多くの要因が、GIT のさまざまな部分での毒物の吸収速度に影響を与えます。

                                                    • 毒物の物理化学的性質、特にネルンスト分配係数と解離定数。 粒子の場合、粒子サイズが重要です。サイズが小さいほど、溶解度が高くなります
                                                    • GITに存在する食物の量(希釈効果)
                                                    • GIT の各部分での滞留時間
                                                    • 上皮の吸収面積と吸収能力
                                                    • 解離した毒物の吸収を支配する局所pH。 胃の酸性pHでは、解離していない酸性化合物がより迅速に吸収されます
                                                    • 蠕動(筋肉による腸の動き)と局所血流
                                                    • 胃および腸の分泌物は、毒性物質を多かれ少なかれ可溶性の製品に変換します。 胆汁は、より可溶性の複合体を生成する乳化剤です(ヒドロトロフィ)
                                                    • 吸収過程で相乗効果または拮抗効果を生み出す可能性のある他の毒物への複合曝露
                                                    • 錯化剤/キレート剤の存在
                                                    • RT(約1.5kg)のミクロフローラの作用で、毒物の生体内変化を行うことができる約60種類の細菌種。

                                                     

                                                    腸肝循環についても言及する必要があります。 極性毒物および/または代謝物 (グルクロニドおよび他のコンジュゲート) は、胆汁とともに十二指腸に排泄されます。 ここで、微生物叢の酵素が加水分解を行い、遊離した生成物は再吸収され、門脈によって肝臓に輸送されます。 肝毒性物質の場合、このメカニズムは非常に危険であり、一時的に肝臓に蓄積する可能性があります。

                                                    毒性物質が肝臓で毒性の低い代謝物または非毒性の代謝物に生体内変換される場合、摂取は危険性の低い侵入口となる可能性があります。 GIT で吸収された後、これらの毒物は門脈によって肝臓に運ばれ、そこで生体内変化によって部分的に解毒されます。

                                                    皮膚からの吸収(真皮、経皮)

                                                    皮膚 (1.8 m2 体の開口部の粘膜とともに、体の表面を覆っています。 それは、身体の完全性と恒常性を維持し、他の多くの生理学的タスクを実行する、物理的、化学的、および生物学的因子に対する障壁を表しています。

                                                    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

                                                    • 脂質膜 (バリア) を介した拡散による経表皮吸収。大部分は親油性物質 (有機溶媒、殺虫剤など) によるもので、一部の親水性物質は細孔を介してわずかに吸収されます。
                                                    • 膜バリアを迂回して、毛包への毛茎の周りの経毛包吸収。 この吸収は、皮膚の毛深い領域でのみ発生します
                                                    • 総皮膚面積の約 0.1 ~ 1% の断面積を有する汗腺のダクトを介した吸収 (相対吸収はこの割合です)
                                                    • 機械的、熱的、化学的または皮膚疾患による損傷時の皮膚からの吸収。 ここでは、脂質バリアを含む皮膚層が破壊され、毒物や有害物質が侵入する道が開かれています.

                                                     

                                                    皮膚からの吸収率は、多くの要因によって異なります。

                                                    • 毒物の濃度、媒体の種類(媒体)、その他の物質の存在
                                                    • 皮膚の水分量、pH、温度、局所血流、発汗、汚染された皮膚の表面積、皮膚の厚さ
                                                    • 性別、年齢、個人差、民族や人種による違いなどによる皮膚の解剖学的・生理学的特徴。

                                                    血液とリンパによる毒物の輸送

                                                    これらの入り口のいずれかによって吸収された後、毒物は血液、リンパ液、またはその他の体液に到達します。 血液は、毒物とその代謝物の主要な運搬手段です。

                                                    血液は液体循環器官であり、必要な酸素と生命維持に必要な物質を細胞に運び、代謝の老廃物を取り除きます。 血液には、多くの生理学的機能に関与する細胞成分、ホルモン、およびその他の分子も含まれています。 血液は、心臓の活動によって押し出された、比較的十分に閉鎖された高圧の血管循環系内を流れます。 高圧のため液漏れが発生します。 リンパ系は、軟部組織や臓器を介して枝分かれする小さくて薄い壁のリンパ毛細血管の細かいメッシュの形で、排水システムを表します。

                                                    血液は、液相 (血漿、55%) と固体血球 (45%) の混合物です。 血漿には、タンパク質 (アルブミン、グロブリン、フィブリノゲン)、有機酸 (乳酸、グルタミン酸、クエン酸) およびその他の多くの物質 (脂質、リポタンパク質、糖タンパク質、酵素、塩、生体異物など) が含まれています。 血球要素には、赤血球 (Er)、白血球、網状赤血球、単球、および血小板が含まれます。

                                                    毒物は分子やイオンとして吸収されます。 血液 pH の一部の毒物は、この液体中で XNUMX 番目の形態としてコロイド粒子を形成します。 毒物の分子、イオン、およびコロイドは、血液中を移動するさまざまな可能性があります。

                                                    •  物理的または化学的に血液要素、主にErに結合すること
                                                    •  遊離状態で血漿に物理的に溶解する
                                                    •  XNUMXつまたは複数のタイプの血漿タンパク質に結合するか、有機酸と複合体を形成するか、血漿の他の画分に結合します。

                                                     

                                                    血液中の毒性物質のほとんどは、部分的に血漿中に遊離状態で存在し、部分的に赤血球および血漿成分に結合しています。 分布は、これらの成分に対する毒性物質の親和性に依存します。 すべての画分は動的平衡状態にあります。

                                                    一部の毒物は、血液要素によって運ばれます。大部分は赤血球によって運ばれ、白血球によって運ばれることはほとんどありません。 毒物は、Er の表面に吸着するか、間質のリガンドに結合することができます。 それらが Er に浸透すると、ヘム (一酸化炭素やセレンなど) またはグロビン (Sb) に結合することができます。111、ポー210)。 Er によって運ばれる有毒物質には、ヒ素、セシウム、トリウム、ラドン、鉛、ナトリウムなどがあります。 六価クロムは排他的にErに結合し、三価クロムは血漿のタンパク質に結合します。 亜鉛の場合、Er とプラズマの間で競合が発生します。 鉛の約 96% は Er によって輸送されます。 有機水銀は主に Er に結合し、無機水銀は主に血漿アルブミンによって運ばれます。 ベリリウム、銅、テルル、ウランのごく一部が Er によって運ばれます。

                                                    毒物の大部分は、血漿または血漿タンパク質によって輸送されます。 多くの電解質は、解離していない分子がプラズマ画分に遊離または結合した状態で平衡状態にあるイオンとして存在します。 この有毒物質のイオン画分は非常に拡散性が高く、毛細血管の壁を通って組織や臓器に浸透します。 ガスや蒸気はプラズマに溶解できます。

                                                    血漿タンパク質は総表面積が約600~800kmあります2 有毒物質の吸収のために提供されます。 アルブミン分子は、約 109 の陽イオン性リガンドと 120 の陰イオン性リガンドをイオンの処分で所有しています。 ジニトロクレゾールおよびオルトクレゾール、芳香族炭化水素のニトロ誘導体およびハロゲン化誘導体、フェノールなどの化合物と同様に、多くのイオンがアルブミン (銅、亜鉛、カドミウムなど) によって部分的に運ばれます。

                                                    グロブリン分子 (アルファおよびベータ) は、有毒物質の小分子、一部の金属イオン (銅、亜鉛、鉄) およびコロイド粒子を輸送します。 フィブリノーゲンは、特定の小分子に対して親和性を示します。 多くの種類の結合が毒物の血漿タンパク質への結合に関与する可能性があります: ファン デル ワールス力、電荷の引力、極性基と非極性基の間の会合、水素橋、共有結合。

                                                    血漿リポタンパク質は、PCB などの親油性毒物を輸送します。 他の血漿画分も輸送媒体として機能します。 血漿タンパク質に対する毒性物質の親和性は、分布中の組織および器官内のタンパク質に対する毒性物質の親和性を示唆しています。

                                                    有機酸 (乳酸、グルタミン、クエン酸) は、いくつかの毒物と複合体を形成します。 アルカリ土類および希土類、ならびに陽イオンの形態の一部の重元素は、有機オキシ酸およびアミノ酸とも錯体を形成しています。 これらの複合体はすべて拡散性があり、組織や臓器に容易に分布します。

                                                    トランスフェリンやメタロチオネインなどの血漿中の生理学的キレート剤は、陽イオンを求めて有機酸やアミノ酸と競合し、安定したキレートを形成します。

                                                    拡散性遊離イオン、一部の複合体、および一部の遊離分子は、血液から組織や臓器に容易に除去されます。 イオンと分子の遊離部分は、結合部分と動的平衡状態にあります。 血液中の毒性物質の濃度は、組織や臓器への分布速度、またはそれらから血液への移動速度を支配します。

                                                    生物における毒物の分布

                                                    人間の体は次のように分けられます。 コンパートメント. (1) 内臓、(2) 皮膚と筋肉、(3) 脂肪組織、(4) 結合組織と骨。 この分類は、ほとんどの場合、血管 (血液) 灌流の程度に基づいています。 たとえば、総重量のわずか 12% を占める内臓 (脳を含む) は、総血液量の約 75% を受け取ります。 一方、結合組織と骨 (総体重の 15%) は、総血液量の XNUMX% しか受け取りません。

                                                    十分に灌流された内臓は、通常、最短時間で最高濃度の毒物を達成し、血液とこのコンパートメントの間の平衡を達成します. 灌流の少ない組織による毒性物質の取り込みははるかに遅くなりますが、灌流が低いため、保持は高くなり、滞留期間 (蓄積) がはるかに長くなります。

                                                    毒性物質の細胞内分布には XNUMX つの要素が重要です。さまざまな組織や器官の細胞内の水分、脂質、タンパク質の含有量です。 上記のコンパートメントの順序は、セル内の水分含有量の減少にも密接に従います。 親水性の毒物は体液と水分含有量の高い細胞により迅速に分配され、親油性の毒物は脂質含有量の高い細胞 (脂肪組織) に分配されます。

                                                    この生物は、以下のような特定の臓器や組織への、主に親水性のいくつかのグループの毒性物質の浸透を損なういくつかの障壁を持っています。

                                                    • 血液脳関門 (脳脊髄関門) は、脳や CNS への高分子や親水性毒物の浸透を制限します。 この障壁は、内皮細胞の密接に結合した層で構成されています。 したがって、親油性毒物はそれを透過することができます
                                                    • 母親の血液から胎児への毒性物質の浸透に同様の影響を与える胎盤関門
                                                    • 毛細血管の壁にある組織血液学的バリアであり、イオンだけでなく、小および中サイズの分子、一部のより大きな分子も透過します。

                                                     

                                                    前述のように、血漿中の遊離形態の毒性物質 (分子、イオン、コロイド) のみが、分布に関与する毛細血管壁を通過できます。 この遊離画分は、結合画分と動的平衡状態にあります。 血液中の毒性物質の濃度は、臓器や組織の濃度と動的平衡にあり、それらからの保持 (蓄積) または動員を支配します。

                                                    生体の状態、臓器の機能状態(特に神経液性調節)、ホルモンバランス、およびその他の要因が分布に影響を与えます。

                                                    特定のコンパートメントでの毒性物質の保持は、一般に一時的なものであり、他の組織への再分布が発生する可能性があります。 保持と蓄積は、吸収率と排出率の差に基づいています。 コンパートメントでの滞留期間は、生物学的半減期で表されます。 これは、有毒物質の 50% が組織または臓器から除去され、生物から再分配、移動、または排除される時間間隔です。

                                                    生体内変化プロセスは、さまざまな臓器や組織での分布と保持中に発生します。 生体内変化は、より極性が高く、より親水性の代謝物を生成し、より簡単に排除されます。 親油性毒性物質の生体内変化率が低いと、一般にコンパートメントに蓄積します。

                                                    毒性物質は、特定のコンパートメントでの親和性、優勢な保持および蓄積に従って、XNUMX つの主要なグループに分けることができます。

                                                    1. 体液に溶ける毒素は、コンパートメントの水分量に応じて均一に分布しています。 多くの一価陽イオン (例: リチウム、ナトリウム、カリウム、ルビジウム) と一部の陰イオン (例: 塩素、臭素) は、このパターンに従って分布しています。
                                                    2. 親油性毒性物質は、脂質が豊富な臓器 (CNS) および組織 (脂肪、脂肪) に対して高い親和性を示します。
                                                    3. コロイド粒子を形成する毒物は、臓器や組織の細網内皮系 (RES) の特殊な細胞によって捕捉されます。 三価および四価の陽イオン (ランタン、セシウム、ハフニウム) は、組織や臓器の RES に分布しています。
                                                    4. 骨および結合組織に対して高い親和性を示す毒物(骨向性元素、ボーンシーカー)には、二価カチオン(例、カルシウム、バリウム、ストロンチウム、ラドン、ベリリウム、アルミニウム、カドミウム、鉛)が含まれます。

                                                     

                                                    脂質が豊富な組織への蓄積

                                                    体重 70kg の「標準的な男性」には、体重の約 15% の脂肪組織が含まれており、肥満とともに 50% まで増加します。 ただし、この脂質画分は均一に分布していません。 脳 (CNS) は脂質が豊富な器官であり、末梢神経は脂質が豊富なミエリン鞘とシュワン細胞で包まれています。 これらの組織はすべて、親油性毒物が蓄積する可能性があります。

                                                    適切なネルンスト分配係数を持つ多数の非電解質および非極性毒性物質、ならびに多数の有機溶媒 (アルコール、アルデヒド、ケトンなど)、塩素化炭化水素 (DDT などの有機塩素系殺虫剤を含む)、一部の不活性ガス(ラドン)など

                                                    脂肪組織は、血管新生が低く、生体内変化率が低いため、毒物を蓄積します。 ここで、毒性物質の蓄積は、毒性効果の標的がないため、一種の一時的な「中和」を表している可能性があります。 しかし、このコンパートメントから循環への毒性物質の動員の可能性により、生物に対する潜在的な危険が常に存在します。

                                                    脳 (CNS) または末梢神経系のミエリン鞘の脂質が豊富な組織に毒物が沈着すると、非常に危険です。 神経毒性物質は、標的のすぐ隣に置かれます。 内分泌腺の脂質が豊富な組織に保持された毒性物質は、ホルモン障害を引き起こす可能性があります。 血液脳関門にもかかわらず、親油性の多くの神経毒が脳 (CNS) に到達します: 麻酔薬、有機溶剤、殺虫剤、四エチル鉛、有機水銀剤など。

                                                    細網内皮系での保持

                                                    各組織や臓器では、特定の割合の細胞が食作用に特化しており、微生物、粒子、コロイド粒子などを飲み込んでいます。 このシステムは網内系 (RES) と呼ばれ、固定された細胞と移動する細胞 (食細胞) で構成されます。 これらの細胞は非活性型で存在します。 上述の微生物および粒子の増加は、細胞を飽和点まで活性化する。

                                                    コロイド状の毒物は、臓器や組織のRESによって捕捉されます。 分布はコロイドの粒子サイズに依存します。 より大きな粒子の場合、肝臓での保持が優先されます。 コロイド粒子が小さいほど、脾臓、骨髄、肝臓の間で多かれ少なかれ均一な分布が生じます。 RES からのコロイドのクリアランスは非常に遅いですが、小さな粒子は比較的速くクリアされます。

                                                    骨への蓄積

                                                    約 60 の要素がオステオトロピック要素、またはボーン シーカーとして識別できます。

                                                    オステオトロピック要素は、次の XNUMX つのグループに分けることができます。

                                                    1. 骨の生理学的構成要素を表す、または置き換える要素。 XNUMX のそのような要素がより多くの量で存在します。 他のものは微量に現れます。 慢性暴露の条件下では、鉛、アルミニウム、水銀などの有毒金属も骨細胞のミネラルマトリックスに入る可能性があります.
                                                    2. カルシウムと同様のイオン直径を持つカチオンを形成するアルカリ土類およびその他の元素は、骨ミネラル中でカルシウムと交換可能です。 また、一部の陰イオンは、骨ミネラルの陰イオン (リン酸、ヒドロキシル) と交換可能です。
                                                    3. マイクロコロイド(希土類)を形成する元素は、骨ミネラルの表面に吸着している可能性があります。

                                                     

                                                    標準的な男性の骨格は、総体重の 10 ~ 15% を占めており、これは骨向性毒物を貯蔵する可能性のある貯蔵庫となる可能性があります。 骨は、54% のミネラルと 38% の有機マトリックスからなる高度に特殊化された組織です。 骨のミネラルマトリックスはハイドロキシアパタイト、Ca10(PO4)6(ああ)2 ここで、Ca と P の比率は約 1.5 対 100 です。 吸着可能な鉱物の表面積は約XNUMXm2 骨XNUMXgあたり。

                                                    骨格の骨の代謝活動は、次の XNUMX つのカテゴリに分けることができます。

                                                    • 吸収と新しい骨の形成、または既存の骨のリモデリングのプロセスが非常に広範囲に及ぶ活動的な代謝骨。
                                                    • リモデリングまたは成長率が低い安定した骨。

                                                     

                                                    胎児、幼児、幼児の代謝性骨 (「利用可能な骨格」を参照) は、骨格のほぼ 100% を占めています。 年齢とともに、この代謝骨の割合は減少します。 暴露中の毒性物質の取り込みは、代謝骨およびよりゆっくりと回転するコンパートメントに現れます。

                                                    毒物が骨に取り込まれるには、次の XNUMX つの方法があります。

                                                    1. イオンの場合、生理学的に存在するカルシウム陽イオンまたは陰イオン (リン酸塩、ヒドロキシル) とのイオン交換が起こります。
                                                    2. コロイド粒子を形成する毒物は、鉱物表面に吸着します。

                                                     

                                                    イオン交換反応

                                                    骨のミネラルであるヒドロキシアパタイトは、複雑なイオン交換システムを表しています。 カルシウム陽イオンは、さまざまな陽イオンと交換できます。 骨に存在する陰イオンは、陰イオンによって交換することもできます: リン酸塩はクエン酸塩および炭酸塩と、ヒドロキシルはフッ素と交換されます。 交換できないイオンは、鉱物の表面に吸着することができます。 毒物イオンがミネラルに取り込まれると、ミネラルの新しい層がミネラルの表面を覆い、毒物を骨構造に埋めます。 イオン交換は、イオンの濃度、pH、および液体の量に応じて、可逆的なプロセスです。 したがって、例えば、食事中のカルシウムの増加は、ミネラル格子中の毒物イオンの沈着を減少させる可能性があります。 イオン交換は継続しますが、年齢とともに代謝骨の割合が減少することが言及されています。 加齢に伴い、骨密度が実際に低下する骨密度の吸収が起こります。 この時点で、骨の毒物が放出される可能性があります (例: 鉛)。

                                                    骨ミネラルに取り込まれたイオンの約 30% は緩く結合されており、交換され、天然のキレート剤によって捕捉され、15 日間の生物学的半減期で排泄されます。 残りの 70% はよりしっかりと結合されています。 この画分の動員と排泄は、骨のタイプに応じて 2.5 年以上の生物学的半減期を示します (リモデリング プロセス)。

                                                    キレート剤 (Ca-EDTA、ペニシラミン、BAL など) はかなりの量の重金属を動員することができ、尿中への排泄が大幅に増加します。

                                                    コロイド吸着

                                                    鉱物表面にコロイド粒子が膜として吸着(100m)2 ファンデルワールス力または化学吸着による。 ミネラル表面のコロイドのこの層は、形成されたミネラルの次の層で覆われており、毒物は骨構造にさらに埋もれています. 動員と排除の速度は、改造プロセスに依存します。

                                                    髪や爪への蓄積

                                                    髪と爪にはケラチンが含まれており、スルフヒドリル基は水銀や鉛などの金属カチオンをキレート化することができます.

                                                    細胞内の毒物分布

                                                    最近、組織や臓器の細胞内の毒性物質、特に一部の重金属の分布が重要になっています。 超遠心分離技術を使用すると、細胞のさまざまな画分を分離して、金属イオンやその他の毒性物質の含有量を決定できます。

                                                    動物実験では、細胞に浸透した後、いくつかの金属イオンが特定のタンパク質であるメタロチオネインに結合することが明らかになりました。 この低分子量タンパク質は、肝臓、腎臓、その他の臓器や組織の細胞に存在します。 そのスルフヒドリル基は、XNUMX 分子あたり XNUMX つのイオンと結合できます。 金属イオンの存在が増加すると、このタンパク質の生合成が誘導されます。 カドミウムイオンは最も強力な誘導物質です。 メタロチオネインは、重要な銅イオンと亜鉛イオンの恒常性を維持する役割も果たします。 メタロチオネインは、亜鉛、銅、カドミウム、水銀、ビスマス、金、コバルト、およびその他の陽イオンを結合できます。

                                                    毒性物質の生体内変化と除去

                                                    さまざまな組織や器官の細胞内に保持されている間、毒物は酵素にさらされて生体内変換 (代謝) され、代謝物が生成されます。 毒物および/または代謝産物の除去には多くの経路があります: 肺を介した呼気、腎臓を介した尿、胃腸を介した胆汁、皮膚を介した汗、口粘膜を介した唾液、腸を介した牛乳乳腺、および正常な成長と細胞代謝回転による髪と爪によって。

                                                    吸収された毒物の除去は、侵入口によって異なります。 肺では、吸収/脱着プロセスがすぐに開始され、毒物は吐き出された空気によって部分的に除去されます。 他の侵入経路によって吸収された毒性物質の排除は長期化され、血液による輸送後に始まり、最終的には分布と生体内変化の後に完了します。 吸収中、血中と組織および臓器中の毒物の濃度の間に平衡が存在します。 排泄は毒物の血中濃度を低下させ、組織から血中への毒物の動員を誘発する可能性があります。

                                                    多くの要因が、身体からの毒物とその代謝物の排出速度に影響を与える可能性があります。

                                                    • 毒性物質の物理化学的性質、特にネルンスト分配係数 (P)、解離定数 (pKa)、極性、分子構造、形状と重量
                                                    • 暴露レベルと暴露後除去の時間
                                                    • 入り口
                                                    • 血液および血液灌流との交換レートが異なる身体コンパートメントでの分布
                                                    • 親油性毒物からより親水性の代謝物への生体内変化率
                                                    • 生物の全体的な健康状態、特に排泄器官(肺、腎臓、GIT、皮膚など)の健康状態
                                                    • 除去を妨げる可能性のある他の毒物の存在。

                                                     

                                                    ここでは、コンパートメントの 1 つのグループを区別します。 急速交換システム— これらのコンパートメントでは、毒性物質の組織濃度は血液の濃度に似ています。 および (2) 低速交換システム結合と蓄積により、毒性物質の組織濃度が血中よりも高い場合、脂肪組織、骨格、および腎臓は、ヒ素や亜鉛などの毒性物質を一時的に保持することができます.

                                                    毒物は、XNUMX つ以上の排泄経路から同時に排泄されることがあります。 ただし、通常は XNUMX つのルートが支配的です。

                                                    科学者たちは、特定の毒物の排泄を記述する数学的モデルを開発しています。 これらのモデルは、XNUMX つまたは両方のコンパートメント (交換システム)、生体内変化などからの動きに基づいています。

                                                    肺を介した呼気による排出

                                                    揮発性の高い毒物(有機溶媒など)では、肺を介した排出(脱着)が一般的です。 血液への溶解度が低いガスや蒸気はこの方法で迅速に除去されますが、血液への溶解度が高い毒物は他の経路で除去されます。

                                                    消化管または皮膚に吸収された有機溶媒は、十分な蒸気圧がある場合、血液が肺を通過するたびに吐き出された空気によって部分的に排泄されます。 飲酒運転の疑いがある場合に使用される飲酒検査は、この事実に基づいています。 呼気中の CO 濃度は、CO-Hb 血中濃度と平衡状態にあります。 放射性ガスのラドンは、骨格に蓄積されたラジウムの崩壊により、吐き出された空気中に現れます。

                                                    吐き出された空気による毒性物質の排出量は、暴露後の時間との関係で、通常、XNUMX 段階の曲線で表されます。 第 XNUMX 段階は、血液からの毒物の除去を表し、短い半減期を示します。 XNUMX 番目の遅い段階は、組織や臓器との血液の交換による排泄です (クイック交換システム)。 XNUMX 番目の非常にゆっくりとした段階は、血液と脂肪組織および骨格との交換によるものです。 毒物がそのようなコンパートメントに蓄積されていない場合、曲線は XNUMX 段階になります。 場合によっては、XNUMX 相曲線も可能です。

                                                    ばく露後の呼気中のガスおよび蒸気の測定は、作業員のばく露評価に使用されることがあります。

                                                    腎排泄

                                                    腎臓は、生物の恒常性を維持しながら、多数の水溶性毒物および代謝産物の排泄に特化した器官です。 各腎臓には、排泄を行うことができる約 XNUMX 万個のネフロンがあります。 腎排泄は、次の XNUMX つの異なるメカニズムを含む非常に複雑なイベントです。

                                                    • ボーマン嚢による糸球体濾過
                                                    • 近位尿細管の能動輸送
                                                    • 遠位尿細管の受動輸送。

                                                     

                                                    腎臓から尿への毒性物質の排泄は、ネルンスト分配係数、尿の解離定数と pH、分子サイズと形状、より親水性の代謝産物への代謝速度、および腎臓の健康状態に依存します。

                                                    毒物またはその代謝産物の腎排泄の動態は、血液との交換速度が異なるさまざまな身体コンパートメントにおける特定の毒物の分布に応じて、XNUMX、XNUMX、または XNUMX 段階の排泄曲線で表すことができます。

                                                    唾液

                                                    一部の薬物および金属イオンは、唾液によって口の粘膜から排泄される可能性があります。たとえば、鉛 (「リード線」)、水銀、ヒ素、銅、臭化物、ヨウ化物、エチル アルコール、アルカロイドなどです。 その後、毒物は飲み込まれ、GIT に到達し、そこで糞便によって再吸収または排泄されます。

                                                    多くの非電解質は汗によって皮膚から部分的に排出されます: エチルアルコール、アセトン、フェノール、二硫化炭素、塩素化炭化水素。

                                                    ミルク

                                                    多くの金属、有機溶剤、および一部の有機塩素系農薬 (DDT) は、母乳中の乳腺を介して分泌されます。 この経路は、授乳中の乳児にとって危険である可能性があります。

                                                    ヘア

                                                    髪の分析は、いくつかの生理学的物質の恒常性の指標として使用できます。 また、一部の有毒物質、特に重金属への曝露は、この種のバイオアッセイによって評価できます。

                                                    体内からの有毒物質の除去は、次の方法で増やすことができます。

                                                    • 胃洗浄、輸血または透析による機械的転座
                                                    • 食事によって有毒物質を動員する生理的条件の作成、ホルモンバランスの変化、利尿薬の適用による腎機能の改善
                                                    • 錯化剤(クエン酸塩、シュウ酸塩、サリチル酸塩、リン酸塩)またはキレート剤(Ca-EDTA、BAL、ATA、DMSA、ペニシラミン)の投与; この方法は、厳格な医学的管理下にある人にのみ適応されます。 キレート剤の適用は、治療の過程で暴露された労働者の体から重金属を除去するためによく使用されます。 この方法は、全身負担や過去の暴露レベルの評価にも使用されます。

                                                     

                                                    ばく露判定

                                                    血液、呼気、尿、汗、糞便、および毛髪中の毒物および代謝物の測定は、ヒトへの暴露の評価 (暴露試験) および/または中毒の程度の評価にますます使用されています。 したがって、生物学的暴露限界 (生物学的 MAC 値、生物学的暴露指数 - BEI) が最近確立されました。 これらのバイオアッセイは、有機体の「内部暴露」、つまり、すべての侵入口による作業環境と生活環境の両方での身体の総暴露を示します (「毒性試験方法: バイオマーカー」を参照)。

                                                    多重暴露による複合効果

                                                    職場および/または生活環境にいる人々は、通常、さまざまな物理的および化学的因子に同時にまたは連続してさらされています。 また、薬の服用、喫煙、飲酒、添加物を含む食品の摂取なども考慮する必要があります。 これは、通常、多重露光が発生していることを意味します。 物理的および化学的作用物質は、トキシコキネティックスおよび/またはトキシコダイナミクス プロセスの各段階で相互作用し、次の XNUMX つの影響をもたらす可能性があります。

                                                    1. 独立した. 各薬剤は、異なる作用機序により異なる効果を生み出します。
                                                    2. 相乗的. 組み合わせた効果は、それぞれの単独の効果よりも大きくなります。 ここでは、XNUMX つのタイプを区別します。(a) 組み合わせた効果が各薬剤によって個別に生成された効果の合計に等しい相加効果と、(b) 組み合わせた効果が相加効果より大きい増強効果です。
                                                    3. 拮抗的. 複合効果は相加効果よりも低くなります。

                                                     

                                                    ただし、複合効果に関する研究はまれです。 この種の研究は、さまざまな要因とエージェントの組み合わせにより、非常に複雑です。

                                                    人体が XNUMX つ以上の毒物に同時にまたは連続して暴露された場合、トキシコキネティック プロセスの速度を増減させる複合効果の可能性を考慮する必要があると結論付けることができます。

                                                     

                                                    戻る

                                                    月曜日、2月28 2011 20:15

                                                    金属および有機金属化合物

                                                    アルミニウム、アンチモン、無機ヒ素、ベリリウム、カドミウム、クロム、コバルト、鉛、アルキル鉛、金属水銀およびその塩、有機水銀化合物、ニッケル、セレン、バナジウムなどの有毒金属および有機金属化合物は、しばらくの間、すべてとして認識されてきました。暴露された人に潜在的な健康リスクをもたらす。 場合によっては、職業的に暴露された労働者における内部線量と結果として生じる影響/反応との関係に関する疫学的研究が研究されており、健康に基づく生物学的限界値の提案が可能になっています (表 1 を参照)。

                                                    表 1. 金属: 米国産業衛生専門家会議 (ACGIH)、Deutsche Forschungsgemeinschaft (DFG)、および Lauwerys and Hoet (L および H) によって提案された基準値および生物学的限界値

                                                    金属

                                                    サンプル

                                                    参照1 値*

                                                    ACGIH (BEI) 制限2

                                                    DFG (BAT) 制限3

                                                    L および H リミット4 (TMPC)

                                                    アルミ

                                                    血清/血漿

                                                    尿

                                                    <1 μg/100 ml

                                                    <30μg/g

                                                     

                                                    200 μg/l (シフト終了時)

                                                    150 μg/g (シフト終了時)

                                                    アンチモン

                                                    尿

                                                    <1μg/g

                                                       

                                                    35 μg/g (シフト終了時)

                                                    砒素

                                                    尿(無機ヒ素とメチル化代謝物の合計)

                                                    <10μg/g

                                                    50 μg/g (週の終わり)

                                                     

                                                    50 μg/g (TWA の場合: 0.05 mg/m3 ); 30 μg/g (TWA の場合: 0.01 mg/m3 ) (シフト終了)

                                                    ベリリウム

                                                    尿

                                                    <2μg/g

                                                         

                                                    カドミウム

                                                    尿

                                                    <0.5 μg/100 ml

                                                    <2μg/g

                                                    0.5μg/100ml

                                                    5μg/g

                                                    1.5μg/100ml

                                                    15μg/ l

                                                    0.5μg/100ml

                                                    5μg/g

                                                    クロム

                                                    (可溶性化合物)

                                                    血清/血漿

                                                    尿

                                                    <0.05 μg/100 ml

                                                    <5μg/g

                                                    30 μg/g (シフトの終わり、週の終わり); 10 μg/g (シフト中増加)

                                                     

                                                    30 μg/g (シフト終了時)

                                                    コバルト

                                                    血清/血漿

                                                    尿

                                                    <0.05 μg/100 ml

                                                    <0.2 μg/100 ml

                                                    <2μg/g

                                                    0.1 μg/100 ml (勤務終了時、勤務終了時)

                                                    15 μg/l (シフトの終わり、週の終わり)

                                                    0.5μg/100ml (EKA)**

                                                    60μg/l (EKA)**

                                                    30 μg/g (シフトの終わり、週の終わり)

                                                    Lead

                                                    血(鉛)

                                                    血液中のZPP

                                                    尿(鉛)

                                                    ALA 尿

                                                    <25 μg/100 ml

                                                    <40 μg/100 ml 血液

                                                    <2.5μg/g Hb

                                                    <50μg/g

                                                    <4.5mg/g

                                                    30 μg/100 ml (重要ではない)

                                                    女性 <45 歳:

                                                    30μg/100ml

                                                    男性:70μg/100ml

                                                    女性 <45 歳:

                                                    6 mg/l; 男性: 15 mg/l

                                                    40μg/100ml

                                                    40 μg/100 ml 血液または 3 μg/g Hb

                                                    50μg/g

                                                    5mg / g

                                                    マンガン

                                                    尿

                                                    <1 μg/100 ml

                                                    <3μg/g

                                                         

                                                    水銀無機

                                                    尿

                                                    <1 μg/100 ml

                                                    <5μg/g

                                                    1.5 μg/100 ml (勤務終了時、勤務終了時)

                                                    35 μg/g (プレシフト)

                                                    5μg/100ml

                                                    200μg/ l

                                                    2 μg/100 ml (シフト終了時)

                                                    50 μg/g (シフト終了時)

                                                    ニッケル

                                                    (可溶性化合物)

                                                    血清/血漿

                                                    尿

                                                    <0.05 μg/100 ml

                                                    <2μg/g

                                                     

                                                    45μg/l (EKA)**

                                                    30μg/g

                                                    Selenium

                                                    血清/血漿

                                                    尿

                                                    <15 μg/100 ml

                                                    <25μg/g

                                                         

                                                    バナジウム

                                                    血清/血漿

                                                    尿

                                                    <0.2 μg/100 ml

                                                    <0.1 μg/100 ml

                                                    <1μg/g

                                                     

                                                    70 μg/g クレアチニン

                                                    50μg/g

                                                    * 尿値はクレアチニン XNUMX グラムあたりです。
                                                    ** EKA = 発がん性物質の曝露相当量。
                                                    1 Lauwerys と Hoet 1993 からいくつかの変更を加えて撮影。
                                                    2 ACGIH 1996-97 より。
                                                    3 1996年DFGより。
                                                    4 Lauwerys and Hoet 1993 から取得した暫定的な最大許容濃度 (TMPC)。

                                                    生体物質中の金属の正確で正確な測定を求める際の問題の XNUMX つは、目的の金属物質が培地中に非常に低いレベルで存在することが多いことです。 生物学的モニタリングが尿のサンプリングと分析で構成される場合、よくあることですが、通常は「スポット」サンプルで実行されます。 したがって、通常、尿の希釈の結果を補正することが推奨されます。 クレアチニン XNUMX グラムあたりの結果の表示は、最も頻繁に使用される標準化の方法です。 あまりにも希薄または高濃度の尿サンプルで実行される分析は信頼できないため、繰り返す必要があります。

                                                    アルミ

                                                    産業界では、労働者はアルミニウムを含む粉塵の吸入や摂取によって、無機アルミニウム化合物に暴露される可能性があります。 アルミニウムは経口経路ではほとんど吸収されませんが、クエン酸塩を同時に摂取することで吸収が増加します. 肺に沈着したアルミニウムの吸収率は不明です。 バイオアベイラビリティは、おそらく粒子の物理化学的特性に依存します。 吸収されたアルミニウムの主な排泄経路は尿です。 血清中および尿中のアルミニウム濃度は、最近の曝露の強さとアルミニウムの身体負荷の両方によって決まります。 職業的に暴露されていない人の場合、血清中のアルミニウム濃度は通常 1 μg/100 ml 未満であり、尿中のクレアチニンが 30 μg/g を超えることはめったにありません。 腎機能が正常な被験者では、アルミニウムの尿中排泄は、血清/血漿中のアルミニウム濃度よりもアルミニウム暴露の感度の高い指標です。

                                                    溶接工のデータによると、尿中のアルミニウム排泄の動態には 20 段階のメカニズムが関与しており、最初の段階の生物学的半減期は約 100 時間です。 数年間暴露された労働者では、体内の金属の蓄積が効果的に起こり、血清中および尿中のアルミニウム濃度もアルミニウムの身体負荷の影響を受けます. アルミニウムは体のいくつかのコンパートメントに保存され、これらのコンパートメントからさまざまな速度で何年にもわたって排泄されます。 体内(骨、肝臓、脳)にアルミニウムが大量に蓄積することは、腎不全に苦しむ患者にも見られます。 透析を受けている患者は、血清アルミニウム濃度が慢性的に 20 μg/100 ml を超えると、骨毒性および/または脳症のリスクがありますが、さらに低い濃度でも毒性の徴候を検出することが可能です。 欧州共同体委員会は、アルミニウムの毒性を防ぐために、血漿中のアルミニウム濃度が 10 μg/100 ml を超えてはならないことを推奨しています。 6 μg/100 ml を超えるレベルは、モニタリング頻度の増加と健康監視につながるはずであり、XNUMX μg/XNUMX ml を超える濃度は、アルミニウムの身体負荷が過剰に蓄積されている証拠と見なされるべきです。

                                                    アンチモン

                                                    無機アンチモンは、摂取または吸入によって体内に入る可能性がありますが、吸収率は不明です。 吸収された五価化合物は主に尿とともに排泄され、三価化合物は糞便を介して排泄されます。 長期暴露後、一部のアンチモン化合物が保持される可能性があります。 血清および尿中のアンチモンの正常な濃度は、おそらくそれぞれ 0.1 μg/100 ml および 1 μg/g クレアチニン未満です。

                                                    五価アンチモンにばく露された労働者に関する予備研究は、0.5 mg/mXNUMX への時間加重平均ばく露が3 シフト中に尿中アンチモン濃度が 35 μg/g クレアチニンの増加につながります。

                                                    無機ヒ素

                                                    無機ヒ素は、消化管や気道を介して体内に入る可能性があります。 吸収された砒素は主に、未変化のまま、またはメチル化後に腎臓から排出されます。 無機ヒ素もグルタチオン複合体として胆汁中に排泄されます。

                                                    低用量の砒酸への単回経口曝露の後、投与された用量の 25% および 45% が、それぞれ XNUMX 日および XNUMX 日以内に尿中に排泄されます。

                                                    無機の 10 価または 20 価のヒ素への曝露後、尿中排泄物は 10 ~ 20% の無機ヒ素、60 ~ 80% のモノメチルアルソン酸、および XNUMX ~ XNUMX% のカコジル酸で構成されます。 無機ヒ素への職業暴露後、尿中のヒ素種の割合はサンプリングの時間に依存します。

                                                    海洋生物に存在する有機ヒ素も胃腸管に容易に吸収されますが、大部分は変化せずに排泄されます。

                                                    ヒ素の長期的な毒性効果 (遺伝子への毒性効果を含む) は、主に無機ヒ素への暴露に起因します。 したがって、生物学的モニタリングは、無機ヒ素化合物への暴露を評価することを目的としています。 この目的のために、無機ヒ素(Asi)、尿中のモノメチルアルソン酸 (MMA)、およびカコジル酸 (DMA) が最適な方法です。 ただし、魚介類の摂取は依然としてDMAの排泄率に影響を与える可能性があるため、検査を受ける労働者は採尿前の48時間は魚介類を食べないようにする必要があります.

                                                    無機ヒ素に職業的にさらされておらず、最近海洋生物を摂取していない人では、通常、これら 10 つのヒ素種の合計が尿中クレアチニン XNUMX μg/g を超えません。 飲料水に多量のヒ素が含まれる地域では、より高い値が見られます。

                                                    魚介類を消費しない場合、50 および 200 μg/mXNUMX への時間加重平均ばく露は推定されています。3 無機ヒ素は、代謝産物の合計の平均尿中濃度につながります (Asi、MMA、DMA) は、それぞれ 54 および 88 μg/g クレアチニンのシフト後の尿サンプルに含まれています。

                                                    溶解度の低い無機ヒ素化合物(ガリウムヒ素など)への曝露の場合、尿中のヒ素の測定は吸収量を反映しますが、体(肺、胃腸管)に送達される総量は反映しません。

                                                    毛髪中のヒ素は、毛髪の成長期に吸収された無機ヒ素の量の良い指標です。 海洋起源の有機ヒ素は、無機ヒ素ほど毛髪に吸収されないようです。 毛の長さに沿ったヒ素濃度の測定は、曝露時間と曝露期間の長さに関する貴重な情報を提供する可能性があります。 ただし、周囲の空気がヒ素で汚染されている場合は、内因性ヒ素と外部から髪に付着したヒ素を区別することができないため、髪中のヒ素の測定は推奨されません。 毛髪中のヒ素レベルは、通常 1 mg/kg 未満です。 爪に含まれる砒素は、髪に含まれる砒素と同じ意味を持ちます。

                                                    尿レベルと同様に、血中ヒ素レベルは最近吸収されたヒ素の量を反映している可能性がありますが、ヒ素曝露の強度とその血中濃度との関係はまだ評価されていません.

                                                    ベリリウム

                                                    職業被ばく者がベリリウムを摂取する主な経路は吸入である。 長期間暴露すると、最終的な貯蔵場所である肺組織や骨格にかなりの量のベリリウムが貯蔵される可能性があります。 吸収されたベリリウムの排泄は、主に尿を介して行われ、糞便ではごくわずかです。

                                                    血中および尿中のベリリウム濃度を測定することができますが、現在、これらの分析は金属への暴露を確認するための定性的試験としてのみ使用できます。露出とすでに体内に保存されている量によって。 さらに、通常、外部被ばくは十分に特徴付けられておらず、分析方法の感度と精度が異なるため、被ばくした労働者のベリリウム排泄に関する限られた公開データを解釈することは困難です。 ベリリウムの正常な尿中および血清レベルは、おそらくそれを下回っています
                                                    それぞれ、2 μg/g クレアチニンおよび 0.03 μg/100 ml。

                                                    しかし、尿中のベリリウム濃度が正常であることは、過去にベリリウムに暴露した可能性を排除するのに十分な証拠ではありません。 実際、ベリリウムの尿中排泄の増加は、労働者が過去にベリリウムに暴露したことがあり、その結果肺肉芽腫症を発症した場合でも、常に見つかるわけではありません。肺。

                                                    カドミウム

                                                    職業環境では、カドミウムの吸収は主に吸入によって行われます。 しかし、消化管吸収は、カドミウムの内部線量に大きく寄与する可能性があります。 カドミウムの重要な特徴の XNUMX つは、体内での生物学的半減期が長いことです。
                                                    10年。 組織では、カドミウムは主にメタロチオネインに結合しています。 血液中では、主に赤血球に結合しています。 カドミウムが蓄積する性質を考慮して、カドミウムに慢性的に暴露されている人口グループの生物学的監視プログラムは、現在の暴露と統合された暴露の両方を評価することを試みるべきです。

                                                    中性子放射化によって、現在実行することが可能です インビボの 主な貯蔵場所である腎臓と肝臓に蓄積されたカドミウムの量の測定。 ただし、これらの手法は日常的に使用されるわけではありません。 これまでのところ、産業界の労働者の健康監視や一般集団に関する大規模な研究では、カドミウムへの曝露は通常、尿や血液中の金属を測定することによって間接的に評価されてきました.

                                                    ヒトにおけるカドミウムの作用の詳細な動力学はまだ完全には解明されていませんが、実用的な目的のために、血中および尿中のカドミウムの重要性に関して次の結論を定式化することができます. 新たに曝露した労働者では、血液中のカドミウム濃度が徐々に上昇し、XNUMX ~ XNUMX か月後には曝露の強度に対応する濃度に達します。 長期間にわたって継続的にカドミウムにさらされている人では、血液中のカドミウム濃度は、主に最近数か月の平均摂取量を反映しています。 血液中のカドミウムレベルに対するカドミウムの体内負荷の相対的な影響は、大量のカドミウムを蓄積し、暴露から除去された人においてより重要である可能性があります. 暴露の停止後、血液中のカドミウム濃度は比較的急速に低下し、最初の半減期は XNUMX ~ XNUMX か月です。 ただし、身体への負荷によっては、対照被験者よりも高いレベルが維持される場合があります。 ヒトと動物を対象としたいくつかの研究では、尿中のカドミウムのレベルは次のように解釈できることが示されています。まだ発生していない場合、尿中のカドミウムのレベルは、腎臓に蓄積されたカドミウムの量に応じて徐々に増加します. 主に一般集団および中程度にカドミウムに暴露された労働者に蔓延するこのような条件下では、尿中のカドミウムと腎臓のカドミウムの間には有意な相関関係があります。 カドミウムへの曝露が過剰である場合、生体内のカドミウム結合部位は次第に飽和状態になり、継続的な曝露にもかかわらず、腎皮質のカドミウム濃度は横ばいになります。

                                                    この段階から、吸収されたカドミウムはその臓器にそれ以上保持できなくなり、尿中に急速に排泄されます。 そしてこの段階では、尿中のカドミウム濃度は、体への負担と最近の摂取量の両方に影響されます。 曝露が続くと、一部の被験者は腎臓に損傷を与え、腎臓に貯蔵されたカドミウムが放出され、循環カドミウムの再吸収が抑制される結果、尿中のカドミウムがさらに増加する可能性があります。 しかし、急性曝露のエピソードの後、尿中のカドミウム濃度は、体への負担の増加を反映することなく、急速かつ一時的に増加することがあります.

                                                    最近の研究は、尿中のメタロチオネインが同じ生物学的意義を持っていることを示しています. メタロチオネインの尿中濃度とカドミウムの尿中濃度の間には、曝露の強度や腎機能の状態とは関係なく、良好な相関関係が観察されています。

                                                    血中および尿中のカドミウムの正常レベルは、通常 0.5 μg/100 ml 未満であり、
                                                    それぞれ 2 μg/g クレアチニン。 それらは、非喫煙者よりも喫煙者で高くなります。 カドミウムに慢性的にさらされている労働者では、尿中カドミウム濃度が 10 μg/g クレアチニンを超えない場合、腎機能障害のリスクは無視できます。 このレベルを超える尿中排泄につながる体内のカドミウムの蓄積を防止する必要があります。 しかし、一部のデータは、特定の腎臓マーカー (その健康上の重要性はまだ不明) が 3 ~ 5 μg/g クレアチニンの尿中カドミウム値で異常になる可能性があることを示唆しているため、5 μg/g クレアチニンの生物学的下限値を提案することは妥当と思われます。 . 血液については、長期暴露に対して 0.5 μg/100 ml の生物学的限界が提案されています。 しかし、食物やタバコを介してカドミウムにさらされる一般集団や、通常は腎機能の低下に苦しむ高齢者の場合、腎皮質の臨界レベルが低くなる可能性があります.

                                                    クロム

                                                    クロムの毒性は、主に六価化合物に起因します。 XNUMX 価化合物の吸収は、XNUMX 価化合物の吸収よりも相対的に高くなります。 排泄は主に尿を介して行われます。

                                                    非職業的にクロムに暴露された人の場合、血清中および尿中のクロム濃度は通常、それぞれ 0.05 μg/100 ml および 2 μg/g クレアチニンを超えません。 可溶性六価クロム塩への最近の暴露 (例えば、電気めっきやステンレス鋼溶接機) は、作業シフトの最後に尿中のクロム レベルを監視することで評価できます。 何人かの著者によって実施された研究は、次の関係を示唆しています: 0.025 または 0.05 mg/mXNUMX の TWA 曝露3 六価クロムの暴露期間終了時の平均濃度は、それぞれ 15 または 30 μg/g クレアチニンです。 この関係は、グループ単位でのみ有効です。 0.025 mg/mXNUMX への暴露後3 95 価クロムの場合、5% 信頼限界値の下限は約 40 μg/g クレアチニンです。 ステンレス鋼溶接工を対象とした別の研究では、0.1 μg/l 程度の尿中クロム濃度が XNUMX mg/mXNUMX への平均曝露に相当することがわかりました。3 三酸化クロム。

                                                    六価クロムは容易に細胞膜を通過しますが、細胞内に入ると三価クロムに還元されます。 赤血球中のクロム濃度は、赤血球の寿命中の六価クロムへの曝露強度の指標になる可能性がありますが、これは三価クロムには当てはまりません。

                                                    尿中のクロムのモニタリングが健康リスクの推定にどの程度役立つかは、まだ評価されていません。

                                                    コバルト

                                                    吸入およびある程度の経口経路で吸収されると、コバルト (生物学的半減期は数日) は主に尿とともに排出されます。 可溶性コバルト化合物にさらされると、血中および尿中のコバルト濃度が上昇します。

                                                    血中および尿中のコバルト濃度は、主に最近の曝露によって影響を受けます。 職業的に暴露されていない被験者では、尿中コバルトは通常 2 μg/g クレアチニン未満であり、血清/血漿コバルトは 0.05 μg/100 ml 未満です。

                                                    0.1 mg/m の TWA ばく露の場合3 および 0.05 mg/m3、それぞれ約30から75μg/ lおよび30から40μg/ lの範囲の平均尿レベルが報告されています(シフト終了時のサンプルを使用)。 労働時間中にコバルトの尿中レベルが徐々に増加するため、サンプリング時間は重要です。

                                                    製油所でコバルト酸化物、コバルト塩、またはコバルト金属粉末にさらされた労働者では、TWA 0.05 mg/m3 月曜日と金曜日のシフトの終わりに採取された尿中の平均コバルト濃度は、それぞれ 33 および 46 μg/g クレアチニンであることがわかっています。

                                                    Lead

                                                    無機鉛は、肺や消化管に吸収される蓄積毒素であり、明らかに最も広く研究されている金属です。 したがって、すべての金属汚染物質の中で、生物学的方法による最近の曝露または身体負荷を評価する方法の信頼性は、鉛が最も優れています。

                                                    定常状態の暴露状況では、全血中の鉛が軟部組織中の鉛濃度の最良の指標であり、したがって最近の暴露の最良の指標であると考えられています。 しかし、血中鉛レベル (Pb-B) の上昇は、鉛暴露レベルの増加に伴い次第に小さくなります。 職業暴露が長期化した場合、組織貯蔵所から鉛が継続的に放出されるため、暴露を停止しても Pb-B が暴露前 (バックグラウンド) の値に戻るとは限りません。 正常な血中および尿中の鉛レベルは、一般にそれぞれ 20 μg/100 ml および 50 μg/g クレアチニン未満です。 これらのレベルは、被験者の食生活や居住地によって影響を受ける可能性があります。 WHO は、成人男性労働者の最大許容血中鉛濃度として 40 μg/100 ml、出産可能年齢の女性の最大許容血中鉛濃度を 30 μg/100 ml と提案しています。 小児では、血中鉛濃度の低下が中枢神経系への悪影響と関連しています。 尿中の鉛レベルは、Pb-B の増加に伴って指数関数的に増加し、定常状態では主に最近の暴露を反映しています。

                                                    キレート剤(例えば、CaEDTA)の投与後に尿中に排泄される鉛の量は、移動可能な鉛のプールを反映する。 対照被験者では、EDTA 24 グラムの静脈内投与後 600 時間以内に尿中に排泄される鉛の量は、通常 XNUMX μg を超えません。 一定の曝露下では、キレート化可能な鉛の値は、主に血液と軟部組織の鉛プールを反映しているようであり、骨に由来する部分はごくわずかです.

                                                    骨 (指骨、脛骨、踵骨、脊椎) の鉛濃度を測定するための蛍光 X 線技術が開発されましたが、現在、この技術の検出限界により、その使用は職業被ばく者に制限されています。

                                                    毛髪中の鉛の測定は、可動性の鉛プールを評価する方法として提案されています。 しかし、職業環境では、毛髪に内因的に取り込まれた鉛と、毛髪の表面に吸着しただけの鉛とを区別することは困難です。

                                                    乳歯 (乳歯) の歯髄周囲象牙質における鉛濃度の測定は、幼児期の鉛への曝露を推定するために使用されてきました。

                                                    生物学的プロセスへの鉛の干渉を反映するパラメータは、鉛への曝露の強度を評価するためにも使用できます。 現在使用されている生物学的パラメーターは、尿中のコプロポルフィリン (COPRO-U)、尿中のデルタ-アミノレブリン酸 (ALA-U)、赤血球プロトポルフィリン (EP、または亜鉛プロトポルフィリン)、デルタ-アミノレブリン酸脱水酵素 (ALA-D)、および赤血球中のピリミジン-5'-ヌクレオチダーゼ (P5N)。 定常状態では、これらのパラメーターの変化は、鉛の血中濃度と正 (COPRO-U、ALA-U、EP) または負 (ALA-D、P5N) に相関します。 血液中の鉛濃度が約 40 μg/100 ml の値に達すると、COPRO (主に III 異性体) と ALA の尿中排泄が増加し始めます。 赤血球プロトポルフィリンは、血液中の鉛濃度が男性で約 35 μg/100 ml、女性で約 25 μg/100 ml になると有意に増加し始めます。 鉛への職業的暴露の終了後、赤血球のプロトポルフィリンは、血中の鉛の現在のレベルに比例して上昇したままです。 この場合、EP レベルは、血中の鉛よりも尿中に排泄されたキレート可能な鉛の量とよりよく相関しています。

                                                    わずかな鉄欠乏も、赤血球中のプロトポルフィリン濃度の上昇を引き起こします。 赤血球酵素、ALA-D および P5N は、鉛の阻害作用に非常に敏感です。 血中鉛濃度が 10 ~ 40 μg/100 ml の範囲内では、両方の酵素の活性と血中鉛の間に密接な負の相関関係があります。

                                                    アルキル鉛

                                                    一部の国では、テトラエチル鉛とテトラメチル鉛が自動車燃料のアンチノック剤として使用されています。 血液中の鉛はテトラアルキル鉛への暴露の良い指標ではありませんが、尿中の鉛は過剰暴露のリスクを評価するのに役立つようです.

                                                    マンガン

                                                    職業環境では、マンガンは主に肺から体内に入ります。 消化管を介した吸収は低く、おそらく恒常性メカニズムに依存しています。 マンガンの排泄は胆汁を介して行われ、尿とともに排泄される量はごくわずかです。

                                                    尿、血液、および血清または血漿中のマンガンの正常な濃度は、通常、それぞれクレアチニン 3 μg/g、1 μg/100 ml、および 0.1 μg/100 ml 未満です。

                                                    個人的には、血液中のマンガンも尿中のマンガンも外部被ばくパラメーターと相関していないようです。

                                                    生物学的物質中のマンガン濃度と慢性マンガン中毒の重症度との間に直接的な関係はないようです. マンガンへの職業的暴露の後、中枢神経系への初期の有害な影響が、正常値に近い生物学的レベルですでに検出されている可能性があります。

                                                    金属水銀およびその無機塩

                                                    金属水銀の主な摂取経路は吸入です。 金属水銀の消化管吸収はごくわずかです。 無機水銀塩は、胃腸管だけでなく、肺 (無機水銀エアロゾルの吸入) からも吸収されます。 金属水銀およびその無機塩は皮膚から吸収される可能性があります。

                                                    水銀の生物学的半減期は、腎臓では XNUMX か月程度ですが、中枢神経系ではさらに長くなります。

                                                    無機水銀は、主に糞便や尿とともに排泄されます。 少量は唾液腺、涙腺、汗腺から排泄されます。 水銀は、水銀蒸気にさらされた後の数時間の呼気に検出されることもあります。 慢性暴露条件下では、少なくともグループごとに、最近の水銀蒸気への暴露強度と血液または尿中の水銀濃度との間に関係があります。 一般的な作業室の空気を監視するために静的サンプルが使用された初期の調査では、平均的な水銀-空気、Hg-空気の濃度が 100 μg/mXNUMX であることが示されました。3 血中 (Hg–B) および尿 (Hg–U) 中の平均水銀レベルは、それぞれ 6 μg Hg/100 ml および 200 ~ 260 μg/l に相当します。 より最近の観察、特に労働者の気道に近い外部微小環境の寄与を評価するものは、空気 (μg/m3)/尿 (μg/g クレアチニン)/血液 (μg/100ml) 水銀の関係は、約 1/1.2/0.045 です。 水銀蒸気に暴露された労働者に関するいくつかの疫学研究は、長期暴露の場合、Hg-U と Hg-B の臨界影響レベルは、それぞれ約 50 μg/g クレアチニンと 2 μg/100 ml であることを示しています。

                                                    しかし、いくつかの最近の研究は、中枢神経系または腎臓への悪影響の兆候が、50 μg/g クレアチニン未満の尿中水銀レベルですでに観察されていることを示しているようです.

                                                    正常な尿中および血中レベルは、一般にそれぞれ 5 μg/g クレアチニンおよび 1 μg/100 ml 未満です。 これらの値は、魚の消費と歯の水銀アマルガム充填の数によって影響を受ける可能性があります.

                                                    有機水銀化合物

                                                    有機水銀化合物は、すべての経路で容易に吸収されます。 血液中では、主に赤血球に見られます (約 90%)。 ただし、非常に安定で生体内変換に耐性のある短鎖アルキル化合物 (主にメチル水銀) と、無機水銀を遊離するアリールまたはアルコキシアルキル誘導体とを区別する必要があります。 インビボの. 後者の化合物については、血中および尿中の水銀濃度は、おそらく曝露強度を示しています。

                                                    定常状態では、全血中および毛髪中の水銀は、メチル水銀の体内負荷およびメチル水銀中毒の兆候のリスクと相関しています。 アルキル水銀に慢性的にさらされている人では、血中および毛髪中の水銀レベルがそれぞれ 20 μg/100 ml および 50 μg/g を超えると、中毒の初期の徴候 (感覚異常、感覚障害) が発生する可能性があります。

                                                    ニッケル

                                                    ニッケルは蓄積毒素ではなく、吸収されたほとんどすべての量が主に尿を介して排泄され、生物学的半減期は 17 ~ 39 時間です。 職業的に暴露されていない被験者では、ニッケルの尿中濃度と血漿中濃度は通常、それぞれクレアチニン 2 μg/g および 0.05 μg/100 ml 未満です。

                                                    血漿中および尿中のニッケル濃度は、金属ニッケルおよびその可溶性化合物への最近の暴露 (例えば、ニッケル電気めっきまたはニッケル電池製造中) の良い指標です。 正常範囲内の値は、通常、重要でない暴露を示し、増加した値は過剰暴露を示します。

                                                    可溶性ニッケル化合物に暴露された労働者について、生物学的限界値 30 μg/g クレアチニン (シフト終了時) が尿中のニッケルに対して暫定的に提案されています。

                                                    難溶性または不溶性ニッケル化合物にさらされた労働者では、体液中のレベルの上昇は一般に、肺に貯蔵された量からの顕著な吸収または漸進的な放出を示します。 しかし、ニッケルの血漿または尿濃度が著しく上昇することなく、かなりの量のニッケルが気道 (鼻腔、肺) に沈着する可能性があります。 したがって、「正常な」値は慎重に解釈する必要があり、必ずしも健康リスクがないことを示しているわけではありません。

                                                    Selenium

                                                    セレンは必須微量元素です。 可溶性セレン化合物は、肺や消化管から容易に吸収されるようです。 セレンは主に尿中に排泄されますが、暴露量が非常に多い場合は、ジメチルセレン蒸気として呼気中に排泄されることもあります。 血清および尿中の正常なセレン濃度は、毎日の摂取量に依存しており、世界のさまざまな地域でかなり異なる場合がありますが、通常はそれぞれ 15 μg/100 ml および 25 μg/g クレアチニン未満です。 尿中のセレン濃度は、主に最近の曝露を反映しています。 曝露の強度と尿中のセレン濃度との関係はまだ確立されていません。

                                                    血漿(または血清)および尿中の濃度は主に短期暴露を反映しているようですが、赤血球のセレン含有量はより長期の暴露を反映しているようです.

                                                    血液または尿中のセレンを測定すると、セレンの状態に関する情報が得られます。 現在では、露出過多ではなく、欠乏を検出するために使用されることが多くなっています。 セレンへの長期暴露の健康リスク、および潜在的な健康リスクと生物学的媒体中のレベルとの関係に関する入手可能なデータがあまりにも限られているため、生物学的閾値を提案することはできません.

                                                    バナジウム

                                                    産業界では、バナジウムは主に肺経由で吸収されます。 経口吸収は低いようです (1% 未満)。 バナジウムは、生物学的半減期が約 20 ~ 40 時間で尿中に排泄され、糞便中にはわずかに排泄されます。 尿中のバナジウムは最近の曝露の良い指標と思われるが、摂取と尿中のバナジウム濃度との関係はまだ十分に確立されていない. シフト後のバナジウム尿中濃度とシフト前のバナジウムの尿中濃度の違いは、就業日の暴露の評価を可能にするが、暴露停止の 1 日後 (月曜日の朝) の尿中バナジウムは体内の金属の蓄積を反映することが示唆されている。 . 非職業暴露者では、尿中のバナジウム濃度は通常 50 μg/g クレアチニン未満です。 暫定的な生物学的限界値である XNUMX μg/g クレアチニン (シフト終了時) が、尿中のバナジウムに対して提案されています。

                                                     

                                                    戻る

                                                    月曜日、07月2011 19:01

                                                    人間工学と標準化

                                                    Origins

                                                    人間工学の分野における標準化の歴史は比較的短いものです。 それは 1970 年代の初めに最初の委員会が国内レベルで設立されたときに始まり (たとえば、ドイツの標準化機関 DIN 内)、ISO (国際標準化機構) TC の設立後も国際レベルで継続しました。 (技術委員会) 159「エルゴノミクス」、1975 年。その間、エルゴノミクスの標準化は地域レベルでも行われています。たとえば、CEN 内のヨーロッパ レベルで (欧州委員会正規化)、122年にTC 1987「人間工学」を設立した。後者の委員会の存在は、人間工学の知識と原則の標準化のための委員会を設立する重要な理由の1970つが法的(および準法的)に見られるという事実を強調している。製品や作業システムの設計に人間工学の原則と知見を適用する必要がある、特に安全と健康に関する規制。 十分に確立された人間工学の調査結果の適用を要求する国内法は、XNUMX 年にドイツの人間工学委員会が設立された理由であり、ヨーロッパ指令、特に機械指令 (安全基準に関連するもの) は、ヨーロッパに関する人間工学委員会を設立する責任がありました。レベル。 法的規制は通常、あまり具体的ではないため、どの人間工学の原則と調査結果を適用するかを指定するタスクは、人間工学標準化委員会に与えられた、または取り上げられました。 特にヨーロッパのレベルでは、人間工学の標準化は、機械の安全性に関する幅広い同等の条件を提供するタスクに貢献し、大陸自体内での機械の自由貿易に対する障壁を取り除くことができると認識されています。

                                                    展望

                                                    したがって、人間工学の標準化は強力な 保護する、予防的ではありますが、健康保護のさまざまなレベルで労働者を悪影響から保護することを目的として人間工学基準が開発されています。 したがって、人間工学規格は、次の意図を考慮して作成されました。

                                                    • 割り当てられたタスクがワーカーのパフォーマンス能力の限界を超えないようにするため
                                                    • 短期的または長期的に、永続的または一時的であるかにかかわらず、労働者の怪我または健康への悪影響を防ぐため、問題のタスクがたとえ短時間であっても、悪影響なしに実行できる場合でも
                                                    • 時間の経過とともに回復が可能であっても、タスクと労働条件が機能障害につながらないようにすること。

                                                     

                                                    一方、法律とそれほど密接に結びついていない国際標準化は、悪影響の防止と保護を超えた標準を作成する方向に常に展望を開こうとしました(たとえば、最小/最大を指定することによって)値) の代わりに 積極的に 労働者の幸福と個人の成長、および労働システムの有効性、効率性、信頼性、生産性を促進するための最適な労働条件を提供します。

                                                    これは、人間工学、特に人間工学の標準化が非常に明確な社会的および政治的側面を持っていることが明らかになるポイントです。 安全と健康に関する保護的アプローチは、すべてのレベルの標準化について関係者 (雇用主、組合、管理者、および人間工学の専門家) の間で一般に受け入れられ、合意されていますが、積極的なアプローチは、すべての関係者によって同じように等しく受け入れられているわけではありません。 . これは、特に立法が人間工学原則の適用を要求する場合 (したがって、明示的または暗示的に人間工学基準の適用を要求する場合)、一部の関係者は、そのような基準が行動または交渉の自由を制限する可能性があると感じているという事実による可能性があります。 国際規格はそれほど魅力的ではないため (それらを国内規格本体に移すかどうかは、国内標準化委員会の裁量に任されています)、人間工学標準化の国際レベルで積極的なアプローチが最も進んでいます。

                                                    特定の規制が適用対象者の裁量を実際に制限するという事実は、特定の分野での標準化を思いとどまらせるのに役立ちました。職場での機械の操作、および作業システムの設計と職場の設計。 一方、第 118a 条に基づいて発行された、欧州連合 (EU) 内でのこの機械の自由貿易に関する機械の設計における安全と健康に関する指令の下では、欧州のエルゴノミクス標準化が欧州委員会によって義務付けられています。

                                                    しかし、人間工学の観点からは、機械の設計における人間工学が、作業システム内での機械の使用および操作における人間工学と異なる理由を理解するのは困難です。 したがって、この区別は、一貫した人間工学標準の開発にとって有益というよりも有害であると思われるため、将来的には放棄されることが望まれます。

                                                    人間工学規格の種類

                                                    (ドイツの DIN 国家規格に基づいて) 開発された最初の国際人間工学規格は、6385 年に発行された ISO 1981「作業システムの設計における人間工学原則」です。これは、人間工学規格シリーズの基本規格であり、タスク、ツール、機械、ワークステーション、作業スペース、作業環境、および作業組織を含む作業システムの人間工学的設計の基本概念を定義し、一般原則を述べる標準の段階。 現在改訂中のこの国際規格は、 ガイドライン基準、従って従うべきガイドラインを提供します。 ただし、満たさなければならない技術的または物理的仕様は提供しません。 これらは、異なるタイプの標準で見つけることができます。つまり、 仕様基準、たとえば、人体測定または熱条件に関するもの。 どちらのタイプの標準も、異なる機能を果たします。 ガイドライン基準ながら ユーザーに「何をどのように行うか」を示し、遵守しなければならない、または遵守すべき原則を示すことを目的としています。たとえば、満たす必要があり、指定された手順によってこれらの処方箋への準拠をテストできる場合。 これは、ガイドライン標準では常に可能というわけではありませんが、具体性が相対的に欠如しているにもかかわらず、通常、いつ、どこでガイドラインに違反したかを示すことができます。 仕様規格のサブセットは「データベース」規格であり、ユーザーに関連するエルゴノミクス データ (ボディ寸法など) を提供します。

                                                    CEN 規格は、適用範囲と適用分野に応じて、A、B、および C タイプの規格に分類されます。 A タイプの標準は、あらゆる種類のアプリケーションに適用される一般的な基本的な標準であり、B タイプの標準は、アプリケーションの領域に固有のものです (つまり、CEN 内のほとんどの人間工学標準はこのタイプになります)。型式規格は、手持ち式ボール盤など、特定の種類の機械に固有のものです。

                                                    標準化委員会

                                                    人間工学規格は、他の規格と同様に、適切な技術委員会 (TC)、その小委員会 (SC)、またはワーキング グループ (WG) で作成されます。 ISO の場合は TC 159、CEN の場合は TC 122 であり、国レベルではそれぞれの国内委員会です。 人間工学委員会に加えて、人間工学は機械の安全性に取り組む TC (CEN TC 114 や ISO TC 199 など) でも取り扱われ、連絡と緊密な協力が維持されています。 人間工学が関連する可能性のある他の委員会との連絡も確立されています。 ただし、エルゴノミクス基準に対する責任は、エルゴノミクス委員会自身に留保されています。

                                                    IEC(国際電気標準会議)など、他の多くの組織が人間工学規格の作成に携わっています。 CENELEC、または電気技術分野のそれぞれの国内委員会; CCITT (Comité Consultative International des organization téléphoniques et télégraphiques) または電気通信分野の ETSI (European Telecommunication Standards Institute); コンピュータシステムの分野における ECMA (European Computer Manufacturers Association)。 ほんの数例を挙げると、製造業の新技術の分野では CAMAC (Computer Assisted Measurement and Control Association) があります。 これらのいくつかについては、作業の重複や仕様の矛盾を避けるために、人間工学委員会が連絡係を持っています。 一部の組織(IEC など)では、相互に関心のある分野で協力するための合同技術委員会さえ設立されています。 しかし、他の委員会との調整や協力はまったくありません。 これらの委員会の主な目的は、その活動分野に固有の (人間工学) 規格を作成することです。 さまざまなレベルのそのような組織の数はかなり多いため、人間工学の標準化の完全な概要を実行することは (不可能ではないにしても) 非常に複雑になります。 したがって、現在のレビューは、国際およびヨーロッパの人間工学委員会における人間工学の標準化に限定されます。

                                                    標準化委員会の構成

                                                    人間工学標準化委員会は、構造が互いに非常に似ています。 通常、標準化組織内の 159 人の TC がエルゴノミクスを担当します。 この委員会 (ISO TC 1 など) は主に、何を標準化する必要があるか (作業項目など) と、委員会内で標準化をどのように編成および調整するかについての決定に関係していますが、通常、このレベルでは標準は作成されません。 TC レベルの下には、他の委員会があります。 たとえば、ISO には、標準化の定義された分野を担当する小委員会 (SC) があります。SC 3 は一般的な人間工学の指針原則、SC 4 は人体計測とバイオメカニクス、SC 5 は人間とシステムの相互作用、SC 122 は物理的な作業です。環境。 CEN TC 159 には、TC レベル以下のワーキング グループ (WG) があり、人間工学標準化の特定分野を扱うように構成されています。 ISO TC XNUMX 内の SC は、担当分野の運営委員会として機能し、最初の投票を行いますが、通常、SC は規格の作成も行いません。 これは、各国の委員会によって指名された専門家で構成される WG で行われますが、SC および TC の会議には、各国の視点を代表する各国の代表者が出席します。 CEN 内では、職務は WG レベルで明確に区別されていません。 WG は、運営委員会と製作委員会の両方として機能しますが、多くの作業は、WG のメンバー (国内委員会によって指名された) で構成され、標準の草案を準備するために設立されたアドホック グループで行われます。 ISO SC 内の WG は、実際の標準化作業を行うために設立されます。つまり、草案を作成し、コメントに取り組み、標準化の必要性を特定し、SC および TC への提案を準備します。SC および TC はその後、適切な決定または行動を行います。

                                                    人間工学基準の作成

                                                    人間工学規格の作成は、ヨーロッパやその他の国際的な開発に重点が置かれていることを考慮して、ここ数年でかなり著しく変化しました。 当初、ある国の専門家が国内委員会で準備し、特定の投票手順でその国の一般大衆の利害関係者によって合意された国家規格は、責任ある SC および WG へのインプットとして転送されました。 ISO TC 159 は、そのような国際規格を作成する必要があるという正式な投票が TC レベルで行われた後に行われました。 この作業プロジェクトに協力する意思のある TC 159 のすべての参加メンバー団体 (つまり、国内標準化組織) の人間工学の専門家 (および政治的に関心のある団体の専門家) で構成されるワーキング グループは、あらゆるインプットに取り組み、準備を整えることになります。作業草案 (WD)。 このドラフト案が WG で合意されると、それは委員会ドラフト (CD) になり、承認とコメントのために SC のメンバー組織に配布されます。 ドラフトが SC メンバー団体から実質的な支持を得た場合 (つまり、少なくとも 159 分の 122 が賛成票を投じた場合)、および国内委員会によるコメントが WG によって改良版に組み込まれた後、ドラフト国際規格 (DIS) が作成されます。 TC XNUMX のすべてのメンバーに投票するために提出されます。この段階で TC のメンバー団体から実質的な支持が得られた場合 (そしておそらく編集上の変更を組み込んだ後)、このバージョンは国際標準 (IS) として発行されます。 ISO。 TC および SC レベルでのメンバー機関の投票は、国レベルでの投票に基づいており、各国の専門家または利害関係者がメンバー機関を通じてコメントを提供できます。 この手順は CEN TC XNUMX とほぼ同じですが、TC レベルより下に SC がなく、投票が (国の規模に応じて) 重み付けされた投票で行われるのに対し、ISO 内ではルールが XNUMX つの国、XNUMX つの国である点が異なります。投票。 ドラフトがいずれかの段階で失敗した場合、WG が合意に基づく改訂が達成できないと判断しない限り、ドラフトは改訂され、再度投票手続きを経なければなりません。

                                                    国内委員会がそれに応じて投票した場合、国際規格は国内規格に移されます。 対照的に、欧州規格 (EN) は、CEN メンバーによって国内規格に移行されなければならず、矛盾する国内規格は撤回されなければなりません。 これは、統一された EN がすべての CEN 加盟国で有効になることを意味します (そして、貿易への影響により、CEN 加盟国の顧客に商品を販売しようとする他のすべての国の製造業者に関連するものになります)。

                                                    ISO-CEN協力

                                                    規格の競合や作業の重複を回避し、非 CEN メンバーが CEN の開発に参加できるようにするために、ISO と CEN の間で協力協定が締結されました (いわゆる ウィーン協定)は、手続きを規制し、いわゆる並行投票手順を提供します。これにより、責任ある委員会がそうすることに同意した場合、CEN と ISO で同じ草案を並行して投票することができます。 エルゴノミクス委員会の間では、その傾向は非常に明確です: 作業の重複を避け (マンパワーと財源があまりにも限られているため)、仕様の矛盾を避け、分業に基づいて一貫したエルゴノミクス標準を達成しようとします。 CEN TC 122 は EU 行政の決定に拘束され、欧州指令の仕様を規定する作業項目を義務付けられていますが、ISO TC 159 は人間工学の分野で必要または適切と思われるものを自由に標準化できます。 これにより、両方の委員会の重点が変化し、CEN は機械と安全関連のトピックに集中し、ISO はヨーロッパよりも幅広い市場の関心が関係する分野に集中しています (たとえば、VDU との連携やプロセスの制御室設計)。および関連産業); 作業システムの設計など、機械の操作に関する領域。 また、職場環境や職場組織などについても同様です。 しかし、その意図は、CEN から ISO に、またその逆に作業結果を転送して、実際に世界中で有効な一連の一貫した人間工学基準を構築することです。

                                                    標準を作成する正式な手順は、今日でも同じです。 しかし、その重点がますます国際的またはヨーロッパのレベルに移行したため、ますます多くの活動がこれらの委員会に移されています。 現在、ドラフトは通常、これらの委員会で直接作成されており、既存の国家基準に基づいていません。 標準を策定すべきであるという決定が下された後、利用可能な情報に基づいて、これらの超国家レベルのいずれかから作業が直接開始され、時にはゼロから開始されます。 これにより、国の人間工学委員会の役割が劇的に変わります。 これまで彼らは、自国の規則に従って独自の国家標準を正式に策定していましたが、現在では、標準を作成する専門家や投票のさまざまな段階で行われたコメントを通じて、超国家レベルでの標準化を観察し、影響を与える任務を負っています。同等のプロジェクトが CEN レベルで同時に取り組んでいる場合、国家標準化プロジェクトは中止されます)。 この影響力は間接的にしか作用せず、人間工学基準の作成は単なる純粋な科学の問題ではなく、交渉、コンセンサス、合意の問題であるため、これは作業をさらに複雑にします (特に、標準はあるかもしれません)。 もちろん、これが、国際的またはヨーロッパの人間工学標準を作成するプロセスが通常数年かかる理由の XNUMX つであり、人間工学標準が人間工学の最新技術を反映できない理由の XNUMX つです。 したがって、人間工学の国際規格は XNUMX 年ごとに審査され、必要に応じて改訂されなければなりません。

                                                    人間工学標準化の分野

                                                    人間工学の国際標準化は、作業システムの設計における人間工学の一般原則に関するガイドラインから始まりました。 それらは ISO 6385 に規定されており、新しい開発を組み込むために現在改訂中です。 CEN は同様の基本規格 (EN 614、第 1 部、1994 年) を作成しました。これは機械と安全性に重点を置いています。この基本規格の第 XNUMX 部として、タスク設計に関するガイドラインを含む規格を準備しています。 したがって、CEN は、適切なツールまたは機械を設計する必要がある機械または作業システムの設計におけるオペレータ タスクの重要性を強調しています。

                                                    概念とガイドラインが標準に定められているもう 10075 つの領域は、精神的負荷の分野です。 ISO 1 のパート 2 は、用語と概念 (例: 疲労、単調、警戒の低下) を定義し、パート 1990 (XNUMX 年代後半の DIS の段階) は、以下に関する作業システムの設計のガイドラインを提供します。障害を回避するための精神的負荷。

                                                    ISO TC 3 の SC 159 および CEN TC 1 の WG 122 は、人体計測および生体力学に関する規格を作成します。これには、人体測定法、身体寸法、安全距離およびアクセス寸法、作業姿勢の評価、作業場の設計などのトピックが含まれます。機械に関連して、推奨される体力の限界と手作業の問題。

                                                    ISO 4 の SC 159 は、技術的および社会的変化が人間工学の標準化およびそのような小委員会のプログラムにどのように影響するかを示しています。 SC 4 は、情報を表示するための原則を標準化し、制御アクチュエータを設計することによって「信号と制御」として開始されました。その作業項目の XNUMX つは、オフィス タスクに使用される視覚表示装置 (VDU) です。 しかし、VDU の人間工学を標準化するだけでは不十分であることがすぐに明らかになりました。 作業システム— ハードウェア (ディスプレイ、キーボード、非キーボード入力デバイス、ワークステーションを含む VDU 自体など)、作業環境 (照明など)、作業組織 (作業要件など)、およびソフトウェア (例: ダイアログの原則、メニュー、直接操作ダイアログ)。 これにより、「VDU を使用した事務作業の人間工学的要件」をカバーするマルチパート規格 (ISO 9241) が作成され、現時点で 17 のパートがあり、そのうち 3 つはすでに IS のステータスに達しています。 この規格は、EU の VDU 指令 (29241/90 EEC) の要件を指定する CEN (EN 270 として) に移行されますが、これは単一欧州法の第 118a 条に基づく指令です。 この一連の規格は、規格の特定の部分の主題に応じてガイドラインと仕様を提供し、標準化の新しい概念であるユーザー パフォーマンス アプローチを導入します。これは、人間工学の標準化におけるいくつかの問題の解決に役立つ可能性があります。 の章で詳しく説明します。 ビジュアルディスプレイユニット .

                                                    ユーザー パフォーマンス アプローチは、標準化の目的は機能障害を防止し、オペレーターに最適な作業条件を提供することであり、技術仕様自体を確立することではないという考えに基づいています。 したがって、仕様は、障害のない最適なユーザー パフォーマンスを実現するための手段としてのみ見なされます。 重要なことは、特定の物理的仕様が満たされているかどうかに関係なく、オペレーターのこの障害のないパフォーマンスを達成することです。 これには、たとえば VDU での読み取り性能など、達成しなければならない障害のないオペレーターの性能を最初に指定する必要があり、次に、必要な性能を達成できるようにする技術仕様を開発する必要があります。利用可能な証拠。 製造業者は、製品が人間工学的要件に準拠していることを保証するこれらの技術仕様に従うことができます。 または、要件を満たすことが知られている製品と比較して (規格の技術仕様への準拠または実証済みの性能のいずれかによって)、新製品の性能要件が既存の製品と同等またはそれ以上に満たされていることを証明する場合があります。標準の技術仕様への準拠の有無にかかわらず、参照製品。 規格のユーザー性能要件への適合を実証するために従わなければならないテスト手順は、規格で指定されています。

                                                    このアプローチは、XNUMX つの問題を解決するのに役立ちます。 標準は、その仕様のおかげで、標準作成時の最新技術 (および技術) に基づいているため、新しい開発が制限される可能性があります。 特定の技術 (ブラウン管など) に基づく仕様は、他の技術には不適切な場合があります。 ただし、技術とは無関係に、表示デバイスのユーザーは (たとえば) 表示された情報を効果的かつ効率的に読んで理解できる必要があります。 ただし、この場合のパフォーマンスは、純粋な出力 (速度または精度で測定) に限定されず、快適さと労力も考慮に入れる必要があります。

                                                    このアプローチで対処できる XNUMX つ目の問題は、条件間の相互作用の問題です。 通常、物理仕様は一次元であり、他の条件は考慮されません。 ただし、インタラクティブな効果の場合、これは誤解を招く可能性があり、間違っている可能性さえあります。 一方、性能要件を特定し、それを達成するための手段を製造業者に任せることで、これらの性能要件を満たすソリューションはすべて許容されます。 したがって、仕様を目的を達成するための手段として扱うことは、真の人間工学的視点を表しています。

                                                    SC 4 では、プロセス産業や発電所などの制御室の設計に関連する作業システム アプローチの別の規格が準備中です。 その結果として、マルチパート規格 (ISO 11064) が作成される予定であり、レイアウト、オペレータ ワークステーションの設計、プロセス制御用のディスプレイと入力デバイスの設計など、制御室の設計の側面を扱うさまざまなパートがあります。 これらの作業項目と採用されたアプローチは、「表示と制御」の設計の問題を明らかに超えているため、SC 4 は「Human-System Interaction」と改名されました。

                                                    環境問題、特にノイズの多い環境での熱条件と通信に関連する問題は、SC 5 で扱われます。SC XNUMX では、測定方法、熱ストレスの推定方法、熱的快適性の条件、代謝熱産生に関する標準が作成されているか、準備されています。 、および聴覚的および視覚的な危険信号、音声干渉レベル、および音声コミュニケーションの評価について。

                                                    CEN TC 122 は、作業グループの重点と構造が異なりますが、人間工学標準化のほぼ同じ分野をカバーしています。 しかし、人間工学委員会間の分業と作業結果の相互承認により、一般的で使用可能な一連の人間工学標準が開発されることが意図されています。

                                                     

                                                    戻る

                                                    月曜日、12月20 2010 19:21

                                                    標的臓器と重大な影響

                                                    職業および環境毒物学の優先目標は、一般環境および職業環境における有害物質への暴露による健康への影響の防止または実質的な制限を改善することです。 この目的のために、特定の暴露に関連する定量的リスク評価のためのシステムが開発されました (「規制毒物学」のセクションを参照)。

                                                    特定のシステムや器官に対する化学物質の影響は、暴露の大きさと、暴露が急性か慢性かに関連しています。 XNUMX つのシステムまたは臓器内でも毒性効果の多様性を考慮して、さまざまな環境媒体における毒性物質のリスク評価および健康に基づく推奨濃度限界の開発を目的として、重要な臓器および重要な効果に関する統一された哲学が提案されています。 .

                                                    予防医学の観点からは、早期の影響を防止または制限することで、より深刻な健康への影響が発生するのを防ぐことができるという一般的な仮定に基づいて、早期の悪影響を特定することが特に重要です。

                                                    このようなアプローチは、重金属に適用されています。 鉛、カドミウム、水銀などの重金属は、活動の慢性的な影響が臓器への蓄積に依存する特定の毒性物質グループに属していますが、以下に示す定義は、金属毒性に関するタスク グループ (Nordberg 1976)。

                                                    金属毒性に関するタスク グループによって提案された重要臓器の定義は、わずかな修正を加えて採用されました。 金属 という表現に置き換えられました。 潜在的に有毒な物質 (ダフス 1993)。

                                                    特定の臓器またはシステムが重要であると見なされるかどうかは、有害物質の毒物力学だけでなく、吸収経路と曝露された集団にも依存します。

                                                    • セルの臨界濃度: 細胞内で可逆的または不可逆的な有害な機能変化が起こる濃度。
                                                    • 重要臓器濃度: 臓器内で最も感受性の高いタイプの細胞が臨界濃度に達する時点での臓器内の平均濃度。
                                                    • 重要臓器: 特定の暴露環境下で、特定の人口に対して、金属の臨界濃度に最初に到達する特定の臓器。
                                                    • クリティカル効果: 個体における用量と影響との関係における定義されたポイント、すなわち、重要臓器の細胞機能に悪影響が生じるポイント。 重要な臓器に金属の臨界濃度を与えるよりも低い曝露レベルでは、細胞機能自体を損なうことはないが、生化学的およびその他の試験によって検出可能な影響が発生する可能性があります。 そのような効果は次のように定義されます。 亜臨界効果.

                                                     

                                                    亜臨界効果の生物学的意味は不明な場合があります。 それは、曝露バイオマーカー、適応指数、または重大な影響の前駆体を表す場合があります (「毒性試験方法: バイオマーカー」を参照)。 後者の可能性は、予防活動の観点から特に重要である可能性があります。

                                                    表 1 は、さまざまな化学物質の重要な臓器と影響の例を示しています。 カドミウムへの慢性的な環境曝露では、吸収経路はさほど重要ではありません (カドミウムの空気中濃度は 10 ~ 20μg/mXNUMX の範囲です)。3 都市部で 1 ~ 2 μg/m3 農村地域では)、重要な臓器は腎臓です。 TLVが50μg/mに達する職業環境では3 吸入が主な暴露経路であるため、肺と腎臓の XNUMX つの臓器が重要と見なされます。

                                                    表 1. 重要な臓器と重要な影響の例

                                                    物質 慢性暴露における重要臓器 クリティカル効果
                                                    カドミウム 肺臓 非閾値:
                                                    肺がん (単位リスク 4.6 x 10-3)
                                                      腎臓 しきい値:
                                                    低分子タンパク質(β2 –M、RBP) 尿中
                                                      肺臓 肺気腫 わずかな機能変化
                                                    Lead 大人
                                                    造血系
                                                    尿中のデルタ-アミノレブリン酸排泄の増加 (ALA-U); 赤血球中の遊離赤血球プロトポルフィリン(FEP)濃度の増加
                                                      末梢神経系 より遅い神経線維の伝導速度の低下
                                                    水銀(エレメンタル) 幼児
                                                    中枢神経系
                                                    IQの低下およびその他の微妙な影響; 水銀性振戦(指、唇、まぶた)
                                                    水銀(水銀) 腎臓 タンパク尿
                                                    マンガン 大人
                                                    中枢神経系
                                                    精神運動機能の障害
                                                      子供達
                                                    肺臓
                                                    呼吸器症状
                                                      中枢神経系 精神運動機能の障害
                                                    トルエン 粘膜 刺激
                                                    塩化ビニル 肝臓
                                                    (血管肉腫単位リスク 1 x 10-6 )
                                                    酢酸エチル 粘膜 刺激

                                                     

                                                    鉛の場合、成人の重要な臓器は造血系と末梢神経系であり、重要な影響 (例、遊離赤血球プロトポルフィリン濃度 (FEP) の上昇、尿中のδ-アミノレブリン酸の排泄の増加、または末梢神経伝導障害) が現れるのは次の場合です。血中鉛濃度(システム内の鉛吸収の指標)は 200 ~ 300μg/l に近づきます。 小さな子供の場合、重要な臓器は中枢神経系 (CNS) であり、心理検査バッテリーを使用して検出される機能障害の症状は、約 100μg/l Pb の範囲の濃度でさえ、検査された集団に現れることがわかっています。血で。

                                                    概念の意味をよりよく反映する他の多くの定義が定式化されています。 WHO (1989) によると、臨界効果は、「臨界臓器で閾値 (臨界) 濃度または用量に達したときに現れる最初の悪影響」と定義されています。 濃度の閾値が定義されていない癌などの有害作用は、しばしば重大なものと見なされます。 影響が重大であるかどうかの決定は、専門家の判断の問題です。」 化学物質安全性に関する国際プログラム (IPCS) のガイドラインでは、 環境衛生基準文書、重要な影響は、「耐容摂取量を決定するために最も適切であると判断される悪影響」として説明されています。 後者の定義は、一般環境における健康に基づく暴露限界を評価する目的で直接策定されました。 この文脈において、最も重要なことは、どの効果が悪影響と見なされるかを決定することであると思われる. 現在の用語に従うと、悪影響は「生物の形態、生理学、成長、発達、または寿命の変化であり、その結果、追加のストレスを補う能力が損なわれるか、他の環境影響の有害な影響に対する感受性が高まります。 何らかの影響が有害であるかどうかの決定には、専門家の判断が必要です。」

                                                    図 1 は、さまざまな効果に対する仮想的な用量反応曲線を示しています。 鉛への曝露の場合、 A 亜臨界効果(赤血球ALA-デヒドラターゼの阻害)を表すことができます。 B 重要な効果(赤血球亜鉛プロトポルフィリンの増加またはδ-アミノレブリン酸の排泄の増加、 C 臨床効果(貧血)および D 致命的な効果(死)。 鉛暴露については、暴露の特定の影響が血中の鉛濃度 (用量の実際の対応物) にどのように依存しているかを、用量反応関係の形で、またはさまざまな変数 (性別、年齢など) との関係で示す豊富な証拠があります。 .)。 ヒトにおける重要な影響とそのような影響の用量反応関係を決定することにより、特定の集団における特定の用量またはその対応物(生体物質の濃度)に対する特定の影響の頻度を予測することが可能になります。

                                                    図 1. さまざまな影響に対する仮説上の用量反応曲線

                                                    TOX080F1

                                                    重大な影響には、閾値があると考えられるものと、どのような曝露レベルでも何らかのリスクがあると考えられるもの (非閾値、遺伝毒性発がん物質および生殖変異原物質) の 200 種類があります。 可能な限り、適切な人間のデータをリスク評価の基礎として使用する必要があります。 一般集団の閾値効果を決定するために、暴露レベル (耐容摂取量、暴露のバイオマーカー) に関する仮定は、特定の有害物質に暴露された集団における重大な影響の頻度が頻度に対応するように行われなければなりません。一般集団におけるその効果の。 鉛暴露では、一般集団の最大推奨血中鉛濃度 (100μg/l、中央値は 1987μg/l 未満) (WHO 10) は、想定される重大な影響の閾値 (遊離赤血球プロトポルフィリン濃度の上昇) を実質的に下回っています。小児の中枢神経系への影響または成人の血圧への影響に関連するレベルを下回っていません。 一般に、観察された悪影響レベルを定義する適切に実施されたヒト集団研究からのデータが安全性評価の基礎である場合、400 の不確実係数が適切であると考えられています。 職業被ばくの場合、重大な影響は人口の特定の部分 (例えば 10%) に関係している可能性があります。 したがって、職業上の鉛曝露では、血中鉛の推奨される健康ベースの濃度は男性では 5mg/l であると採用されており、約 300 ~ 400mg/l の PbB 濃度で 200mg/l の ALA-U に対する 10% の応答レベルが発生しました。 . カドミウムへの職業的暴露 (低重量タンパク質の尿中排泄の増加が重大な影響であると仮定) については、腎皮質における 1996ppm のカドミウムのレベルが許容値と見なされてきました。暴露人口。 これらの値は両方とも、現在 (つまり XNUMX 年) 多くの国で引き下げが検討されています。

                                                    遺伝毒性発がん物質など、重大な影響が閾値を持たない可能性がある化学物質のリスク評価のための適切な方法論について、明確なコンセンサスはありません。 このような影響の評価には、主に用量反応関係の特徴付けに基づく多くのアプローチが採用されています。 発がん性物質による健康リスクが社会政治的に受け入れられていないため、 ヨーロッパの大気質ガイドライン (WHO 1987)、単位生涯リスクなどの値のみ (つまり、1 μg/m への生涯曝露に関連するリスク)3 有害物質の影響)は、非閾値効果について提示されています(「規制毒物学」を参照)。

                                                    現在、リスク評価のための活動を行う基本的なステップは、重要な臓器と重要な影響を決定することです。 重大な影響と有害な影響の両方の定義は、特定の臓器またはシステム内の影響のうちどれを重大と見なすべきかを決定する責任を反映しており、これは、一般環境における特定の化学物質の推奨値のその後の決定に直接関係しています。 -例えば、 ヨーロッパの大気質ガイドライン (WHO 1987) または職業被ばくの健康に基づく制限 (WHO 1980)。 亜臨界影響の範囲内から臨界影響を決定することは、一般環境または職業環境における有毒化学物質濃度の推奨限度を実際に維持することが不可能な状況につながる可能性があります。 初期の臨床効果と重複する可能性のある効果を重要なものと見なすと、母集団の一部で悪影響が発生する可能性のある値が採用される可能性があります。 特定の影響を重大と見なすべきかどうかの決定は、毒性とリスク評価を専門とする専門家グループの責任のままです。

                                                     

                                                    戻る

                                                    月曜日、2月28 2011 20:21

                                                    有機溶剤

                                                    概要

                                                    有機溶媒は揮発性で、一般に体脂肪に溶けます (親油性) が、メタノールやアセトンなどの一部は水溶性 (親水性) もあります。 それらは産業だけでなく、塗料、インク、シンナー、脱脂剤、ドライクリーニング剤、しみ除去剤、忌避剤などの消費者向け製品にも広く使用されています。 肝臓や腎臓への影響などの健康への影響を検出するために生物学的モニタリングを適用することは可能ですが、有機溶剤に職業的にさらされる労働者の健康監視を目的として、代わりに生物学的モニタリングを使用するのが最善です。これらの溶剤の毒性から労働者の健康を保護するために、「ばく露」の監視を行う必要があります。これは、健康への影響が発生する前に警告を発するのに十分な感度の高いアプローチだからです。 溶剤毒性に対する感受性の高い労働者をスクリーニングすることも、労働者の健康保護に貢献する可能性があります。

                                                    トキシコキネティクスのまとめ

                                                    揮発性は溶媒によって異なりますが、有機溶媒は一般に標準条件下で揮発性です。 したがって、産業環境における主な曝露経路は吸入によるものです。 肺の肺胞壁からの吸収率は、消化管壁からの吸収率よりもはるかに高く、トルエンなどの多くの一般的な溶媒の肺吸収率は約 50% であると考えられています。 液体状態の二硫化炭素や N,N-ジメチルホルムアミドなどの一部の溶媒は、無傷の人間の皮膚に毒性を示すほど大量に浸透する可能性があります。

                                                    これらの溶媒が吸収されると、一部は生体内変化なしに呼気で吐き出されますが、大部分は親油性の結果として脂質が豊富な器官や組織に分布します。 生体内変化は主に肝臓で (そして他の臓器でもわずかに) 起こり、溶媒分子は、典型的には酸化とそれに続く抱合のプロセスによって、より親水性になり、腎臓を介して代謝物として尿中に排泄されます。 )。 ごく一部がそのまま尿中に排泄されることがあります。

                                                    このように、実用的な観点から、尿、血液、呼気の 50 つの生体物質が溶媒の暴露モニタリングに使用できます。 曝露モニタリング用の生体材料を選択する際のもう XNUMX つの重要な要素は、吸収された物質の消失速度です。生物学的半減期、つまり物質が元の濃度の半分に減少するのに必要な時間は定量的なパラメーターです。 たとえば、溶媒は、対応する尿中の代謝物よりもはるかに速く呼気から消失します。つまり、溶媒の半減期ははるかに短くなります。 尿中代謝物内では、生物学的半減期は親化合物が代謝される速度に応じて変化するため、曝露に関連するサンプリング時間がしばしば非常に重要になります (以下を参照)。 生物材料を選択する際の XNUMX 番目の考慮事項は、暴露に関連して分析される標的化学物質の特異性です。 たとえば、馬尿酸はトルエンへの暴露の長い間使用されてきたマーカーですが、体によって自然に形成されるだけでなく、一部の食品添加物などの非職業的供給源からも派生する可能性があり、もはや信頼できるとは見なされていませんトルエンへの曝露が少ない場合のマーカー(XNUMXcm未満)3/m3)。 一般的に言えば、尿中代謝物は、さまざまな有機溶媒への曝露の指標として最も広く使用されてきました。 血液中の溶媒は、通常は血液中に留まる時間が短く、急性暴露をより反映するため、暴露の定性的尺度として分析されますが、呼気中の溶媒は、呼気中の濃度が低下するため、平均暴露の推定に使用するのが困難です。暴露停止後速やかに。 尿中の溶媒は曝露の指標として有力な候補ですが、さらなる検証が必要です。

                                                    有機溶剤の生物学的暴露試験

                                                    上記のように、溶媒曝露の生物学的モニタリングを適用する際には、サンプリング時間が重要です。 表 1 は、日常の職業暴露のモニタリングにおける一般的な溶媒の推奨サンプリング時間を示しています。 溶媒自体を分析する場合は、サンプルの取り扱い過程での損失 (室内空気への蒸発など) や汚染 (室内空気からサンプルへの溶解など) を防ぐように注意する必要があります。 サンプルを遠く離れた実験室に輸送する必要がある場合、または分析前に保管する必要がある場合は、紛失を防ぐために注意を払う必要があります。 代謝物には凍結が推奨されますが、溶媒自体の分析には空気層のない気密容器 (またはより好ましくはヘッドスペースバイアル) での冷蔵 (ただし凍結はしない) が推奨されます。 化学分析では、信頼できる結果を得るために品質管理が不可欠です (詳細については、この章の記事「品質保証」を参照してください)。 結果を報告する際には、倫理を尊重する必要があります (次の章を参照)。 倫理問題 他の場所で 百科事典).

                                                    表 1. 生物学的モニタリングとサンプリング時間の対象化学物質の例

                                                    対象化学物質

                                                    尿/血液

                                                    サンプリング時間1

                                                    二硫化炭素

                                                    2-チオチアゾリジン-4-カルボン酸

                                                    尿

                                                    TH F

                                                    N,N-ジメチルホルムアミド

                                                    N-メチルホルムアミド

                                                    尿

                                                    M 火 W 木 F

                                                    2-エトキシエタノール及びその酢酸塩

                                                    エトキシ酢酸

                                                    尿

                                                    Th F (最後の勤務シフトの終わり)

                                                    ヘキサン

                                                    2,4-ヘキサンジオン

                                                    ヘキサン

                                                    尿

                                                    M 火 W 木 F

                                                    露出の確認

                                                    メタノール

                                                    メタノール

                                                    尿

                                                    M 火 W 木 F

                                                    スチレン

                                                    マンデル酸

                                                    フェニルグリオキシル酸

                                                    スチレン

                                                    尿

                                                    尿

                                                    TH F

                                                    TH F

                                                    露出の確認

                                                    トルエン

                                                    馬尿酸

                                                    o-クレゾール

                                                    トルエン

                                                    トルエン

                                                    尿

                                                    尿

                                                    尿

                                                    火 W 木 F

                                                    火 W 木 F

                                                    露出の確認

                                                    火 W 木 F

                                                    トリクロロエチレン

                                                    トリクロロ酢酸

                                                    (TCA)

                                                    総トリクロロ化合物 (TCA と遊離および共役トリクロロエタノールの合計)

                                                    トリクロロエチレン

                                                    尿

                                                    尿

                                                    TH F

                                                    TH F

                                                    露出の確認

                                                    キシレン2

                                                    馬尿酸メチル

                                                    キシレン

                                                    尿

                                                    火 W 木 F

                                                    火 W 木 F

                                                    1 特に明記しない限り、勤務シフトの終わり: 曜日は好ましいサンプリング日を示します。
                                                    2 XNUMX つの異性体、個別または任意の組み合わせ。

                                                    出典: WHO 1996 から要約。

                                                     

                                                    多くの溶媒に対して多数の分析手順が確立されています。 目的の化学物質によって方法は異なりますが、最近開発された方法のほとんどは、分離にガスクロマトグラフィー (GC) または高速液体クロマトグラフィー (HPLC) を使用します。 オートサンプラーとデータ プロセッサの使用は、化学分析における良好な品質管理のために推奨されます。 血液や尿中の溶媒自体を分析する場合、特に溶媒が十分に揮発性である場合、GC でのヘッドスペース法 (ヘッドスペース GC) の適用は非常に便利です。 表 2 に、一般的な溶媒で確立された方法の例をいくつか示します。

                                                    表 2. 有機溶媒暴露の生物学的モニタリングのための分析方法の例

                                                    対象化学物質

                                                    血液・尿

                                                    分析方法

                                                    二硫化炭素

                                                    2-チオチアゾリジン-4-
                                                    カルボン酸

                                                    尿

                                                    紫外検出付き高速液体クロマトグラフ

                                                    (UV-HPLC)

                                                    N,N-ジメチルホルムアミド

                                                    N-メチルホルムアミド

                                                    尿

                                                    フレーム熱イオン検出ガスクロマトグラフ (FTD-GC)

                                                    2-エトキシエタノール及びその酢酸塩

                                                    エトキシ酢酸

                                                    尿

                                                    水素炎イオン化検出による抽出、誘導体化およびガスクロマトグラフ (FID-GC)

                                                    ヘキサン

                                                    2,4-ヘキサンジオン

                                                    ヘキサン

                                                    尿

                                                    抽出、(加水分解)および FID-GC

                                                    ヘッドスペースFID-GC

                                                    メタノール

                                                    メタノール

                                                    尿

                                                    ヘッドスペースFID-GC

                                                    スチレン

                                                    マンデル酸

                                                    フェニルグリオキシル酸

                                                    スチレン

                                                    尿

                                                    尿

                                                    脱塩と UV-HPLC

                                                    脱塩と UV-HPLC

                                                    ヘッドスペース FID-GC

                                                    トルエン

                                                    馬尿酸

                                                    o-クレゾール

                                                    トルエン

                                                    トルエン

                                                    尿

                                                    尿

                                                    尿

                                                    脱塩と UV-HPLC

                                                    加水分解、抽出および FID-GC

                                                    ヘッドスペース FID-GC

                                                    ヘッドスペース FID-GC

                                                    トリクロロエチレン

                                                    トリクロロ酢酸
                                                    (TCA)

                                                    総トリクロロ化合物 (TCA と遊離および共役トリクロロエタノールの合計)

                                                    トリクロロエチレン

                                                    尿

                                                    尿

                                                    比色分析またはエステル化および電子捕獲検出を備えたガスクロマトグラフ (ECD-GC)

                                                    酸化および比色分析、または加水分解、酸化、エステル化およびECD-GC

                                                    ヘッドスペース ECD-GC

                                                    キシレン

                                                    メチル馬尿酸(XNUMXつの異性体、別々にまたは組み合わせて)

                                                    尿

                                                    ヘッドスペース FID-GC

                                                    出典: WHO 1996 から要約。

                                                    評価

                                                    曝露指標 (表 2 に記載) と対応する溶媒への曝露強度との線形関係は、職業的に溶媒に曝露している労働者の調査、または人間のボランティアの実験的曝露によって確立される可能性があります。 このため、例えば ACGIH (1994) や DFG (1994) では、職業上の曝露に相当する生体試料中の値として、それぞれ生物学的暴露指数 (BEI) と生物学的許容値 (BAT) が設定されています。空気中の化学物質の曝露限界、つまり、それぞれ限界値 (TLV) と最大作業場濃度 (MAK) です。 しかし、被ばくしていない人々から得られたサンプル中の標的化学物質の濃度は、地域の慣習 (食べ物など) を反映して異なる可能性があり、溶媒代謝には民族差が存在する可能性があることが知られています。 したがって、関係する地域住民の研究を通じて限界値を設定することが望ましい。

                                                    結果を評価する際には、溶媒への非職業的暴露 (例えば、溶媒を含む消費者製品の使用または意図的な吸入による) および同じ代謝産物を生じさせる化学物質への暴露 (例えば、いくつかの食品添加物) を慎重に除外する必要があります。 蒸気曝露の強度と生物学的モニタリング結果との間に大きなギャップがある場合、その違いは皮膚吸収の可能性を示している可能性があります。 たばこを吸うと、一部の溶媒 (トルエンなど) の代謝が抑制されますが、エタノールの急激な摂取は、メタノールの代謝を競合的に抑制する可能性があります。

                                                     

                                                    戻る

                                                    1のページ7

                                                    免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

                                                    内容