7. 神経系
チャプターエディター: ドナ・マーグラー
神経系: 概要
Donna Mergler と José A. Valciukas
解剖学と生理学
ホセ・A・ヴァルシカス
化学神経毒剤
ピーター・アーリエン・ソボルグとレイフ・シモンセン
急性および初期の慢性中毒の症状
ドナ・マーグラー
職場での神経毒性の防止
バリー・ジョンソン
神経毒性に関連する臨床症状
ロバート・G・フェルドマン
神経毒性欠損症の測定
ドナ・マーグラー
診断
アンナ・マリア・セッパライネン
職業神経疫学
オラフ・アクセルソン
以下のリンクをクリックして、記事のコンテキストで表を表示します。
サムネイルをポイントすると、図のキャプションが表示されます。クリックすると、記事のコンテキストで図が表示されます。
一般的な神経系、特に脳と人間の行動に関する知識は、安全で健康的な環境に専念している人々にとって最も重要です. 脳の働きに直接影響する労働条件や曝露は、心と行動に影響を与えます。 情報を評価し、意思決定を行い、一貫した合理的な方法で世界の認識に反応するには、神経系が適切に機能し、事故などの危険な状況によって行動が損なわれないことが必要です (例: 設計が不十分な場所からの落下)。はしご)または危険なレベルの神経毒化学物質への暴露。
神経系の損傷は、感覚入力の変化 (視覚、聴覚、嗅覚の喪失など) を引き起こしたり、運動や身体機能を制御する能力を妨げたり、情報を処理または保存する脳の能力に影響を与えたりする可能性があります。 さらに、神経系の機能が変化すると、行動障害または心理障害を引き起こす可能性があります。 気分や性格の変化は、脳への物理的または有機的な損傷に続く一般的な出来事です. 私たちの知識が発展するにつれて、神経系のプロセスが変更される方法についてより多くのことを学んでいます. 神経毒物質は、脳の自然な障壁を通過し、その複雑な働きを直接妨害する可能性があります. 一部の物質は神経系の特定の領域に特定の親和性を持っていますが、ほとんどの神経毒は、膜輸送、内部細胞化学反応、分泌物質の放出などに関与する細胞プロセスを標的として、広範囲に作用します.
神経系のさまざまなコンポーネントへの損傷は、さまざまな方法で発生する可能性があります。
多くの神経系障害の潜行性および多面的な発展は、労働衛生の分野で働く人々に、問題の研究、理解、予防および治療に対して異なるが補完的なアプローチを採用することを要求する. 初期の変化は、障害の感度の高い測定を使用して、活動的で暴露された労働者のグループで検出できます。 初期の機能不全の特定は、予防措置につながる可能性があります。 後期段階では、十分な臨床知識が必要であり、障害のある労働者の適切な治療とケアには鑑別診断が不可欠です。
ほとんどの場合、化学物質は XNUMX つずつ検査されますが、多くの職場では潜在的に神経毒性のある化学物質の混合物が使用されており、労働者がいわゆる「カクテル」にさらされていることを覚えておく必要があります。 印刷、塗装、清掃などのプロセス、換気の悪いオフィス、実験室、殺虫剤散布、マイクロエレクトロニクス、その他多くの分野で、労働者は化学物質の混合物にさらされています。 物質のそれぞれについて個別に情報があるかもしれませんが、複合的な侵害性と、神経系に対する相加効果または相乗効果さえも考慮する必要があります. 多重暴露のいくつかのケースでは、それぞれの特定の化学物質が非常に少量しか存在せず、暴露評価技術の検出レベルを下回ることさえあります。 ただし、すべてを合計すると、総濃度が非常に高くなる可能性があります。
読者は、本書の範囲内で神経系に関する事実を検討する際の XNUMX つの主要な困難に注意する必要があります。 百科事典.
第一に、脳と行動の関係を観察する新しいアプローチが開発されるにつれて、神経系と行動に影響を与える職業病の理解が大幅に変化しました。 神経系への機械的外傷により発生する全体的な形態学的変化の特徴付けの主な関心は、神経系による神経毒性物質の吸収への関心に続きました。 神経系病理の細胞メカニズムの研究への関心; そして最後に、これらの病理学的プロセスの分子基盤の探索が始まりました。 これらのアプローチは今日共存しており、すべてが脳、心、および行動に影響を与える作業条件を評価するための情報に貢献しています。
第二に、神経科学者によって生成された情報は驚くべきものです。 本の第 XNUMX 版 神経科学の原理 カンデル、シュワルツ、ケッセルによって編集され、1991 年に登場したこの分野の最も貴重なレビューの 3.5 つは、重さ 1,000 kg、長さ XNUMX ページ以上です。
第三に、神経系の機能組織に関する知識を再確認することは、労働安全衛生のすべてのニッチに適用されるため、非常に困難です。 約 25 年前まで、神経毒性物質を吸収した労働者の検出、監視、予防、および臨床治療を専門とする健康専門家を支持する理論的見解は、労働者の健康に関する理論的見解と重複しない場合がありました。脳外傷および最小限の脳損傷の行動症状。 脳内の特定の化学経路の混乱の結果であると言われている行動症状は、神経毒物学者の独占的な領域でした。 脳の特定の領域の構造的組織損傷と、病変が発生した領域に関連する遠隔の神経構造の両方が、神経学者によって引き合いに出された説明でした。 収束する意見が出てきたのはここ数年のことです。
このことを念頭に置いて、この章では、神経系を理解する上で重要な問題と、その機能に対する職場環境の影響について説明します。 解剖学と生理学の説明から始まり、暴露、結果、予防を検討する神経毒性のセクションが続きます。
神経系は体の健康の中心であるため、多くの非化学的危険が同様に正常な機能に影響を与える可能性があります. これらの多くは、これらの危険を扱うさまざまな章で検討されています。 外傷性頭部外傷は、 応急処置、記事「熱ストレスと暑さの中での仕事の影響」で熱ストレスが考慮され、記事「重力ストレス」で減圧症がレビューされます。 章の手腕の振動(「手から伝わる振動」)と反復運動(「慢性転帰、筋骨格」) 筋骨格系、末梢神経障害の危険因子である、これらのセクションで同様に考慮されます 百科事典.
この章は、特別な問題のレビューと将来の研究手段の見通しで終わります。
神経細胞は、神経系の機能単位です。 神経系には、このような細胞が XNUMX 億個あると考えられています。 ニューロン • グリア、グリアはニューロンよりも多く存在します。
ニューロン
図 1 は、細胞体、樹状突起、軸索終末という XNUMX つの最も重要な構造的特徴を持つニューロンの理想化された図です。
図 1. ニューロンの構造
樹状突起は、ニューロンの細胞体の近くで発生する細かく分岐したプロセスです。 樹状突起は、神経伝達物質と呼ばれる化学伝達物質を介して興奮または抑制効果を受け取ります。 細胞質は、細胞核を含むオルガネラやその他の封入体が見られる細胞体の材料です 図 2. 核には、細胞のクロマチンまたは遺伝物質が含まれています。
図 2. オルガネラ
神経細胞の核は、遺伝物質であるデオキシリボ核酸 (DNA) を含んでいるにもかかわらず、その DNA が細胞分裂のプロセスに関与していないという点で、他の生きている細胞の核とは異なります。 つまり、成熟に達した後、神経細胞は分裂しません。 (この規則の例外は、鼻の内層 (嗅上皮) のニューロンです。) 核は、タンパク質の合成に必要なリボ核酸 (RNA) が豊富です。 XNUMX 種類のタンパク質が特定されています。 細胞活動のためのエネルギーを生成するコンドリア内タンパク質。 膜と分泌物を形成するタンパク質。 ニューロンは現在、改変された分泌細胞と考えられています。 分泌顆粒が形成され、シナプス小胞に保存され、後に神経細胞間の化学伝達物質である神経伝達物質として放出されます。
ニューロンの骨格を形成する線維要素は、ニューロンの栄養機能に関与し、伝達の媒体として機能します。 軸索輸送は、順行性(細胞体から軸索終末へ)および逆行性(軸索終末から細胞体へ)であり得る。 最も太いものから最も細いものまで、微小管、ニューロフィラメント、マイクロフィラメントの XNUMX 種類の繊維要素が認識されます。
グリア細胞
ニューロンとは対照的に、グリア細胞はそれ自体では電気メッセージを伝えません。 グリア細胞には次の XNUMX 種類があります。 マクログリア と ミクログリア. マクログリアは、星状細胞、オリゴデンドロ サイト、上衣細胞の少なくとも XNUMX 種類の細胞に付けられた名前です。 ミクログリア細胞は、主に、神経損傷や感染が発生した後に破片を除去するためのスカベンジャー細胞です。
グリア細胞はまた、独特の微視的および超微視的特徴を持っています。 グリア細胞はニューロンを物理的にサポートしていますが、多くの生理学的特性も現在理解され始めています。 最も重要な神経細胞とグリア細胞の相互作用の中には、神経細胞に栄養素を提供し、死後に神経細胞の断片を除去し、最も重要なこととして、化学的コミュニケーションのプロセスに寄与するグリア細胞の役割があります。 ニューロンとは対照的に、グリア細胞は分裂することができるため、自己複製することができます。 例えば、神経系の腫瘍は、グリア細胞の異常な再生に起因します。
ミエリン
神経組織の肉眼観察で「灰白質」と「白質」として現れるものは、微視的・生化学的根拠があります。 微視的には、灰白質には神経細胞体が含まれていますが、白質は神経線維または軸索が見られる場所です。 「白い」外観は、ミエリンと呼ばれる脂肪物質で構成された鞘がこれらの繊維を覆っているためです。 末梢神経のミエリンは、軸索を包むシュワン細胞の膜に由来します。 中枢神経系の繊維のミエリンは、オリゴデンドロ サイト (さまざまなグリア細胞) の膜によって提供されます。 オリゴデンドロサイトは通常、いくつかの軸索を有髄化しますが、シュワン細胞は 2,000 つの軸索のみに関連付けられます。 ランビエの結節と呼ばれるミエリン鞘の不連続は、連続するシュワン細胞またはオリゴデンドロサイトの間に存在します。 最長の中枢運動経路では、最大 XNUMX 個のシュワン細胞が髄鞘を形成していると推定されています。 活動電位の伝播を促進する役割を持つミエリンは、神経毒性物質の特定の標的である可能性があります。 神経毒性物質の形態学的分類は、ミエリンの特徴的な神経病理学的変化をミエリン障害として説明しています。
ニューロンの栄養機能
ニューロンの正常な機能には、タンパク質合成、軸索輸送、活動電位の生成と伝導、シナプス伝達、およびミエリンの形成と維持が含まれます。 ニューロンの基本的な栄養機能のいくつかは、軸索の切断 (軸索切断) によって 19 世紀という早い時期に説明されました。 発見されたプロセスの中で、最も重要なものの XNUMX つは、ウォラー変性でした。これは、それを記述した英国の生理学者であるウォーラーにちなんでいます。
ウォーラー変性は、外傷性または毒性による損傷の結果としてのオルガネラのよく知られた変化を説明する良い機会を提供します。 括弧書きとして、外傷性軸索切断術によって生じるウォーラー変性を説明するために使用される用語は、神経毒性物質による変化を説明するために使用される用語と同じです。 細胞レベルでは、神経組織への毒性損傷に起因する神経病理学的変化は、外傷性損傷の結果として生じるものよりもはるかに複雑です。 神経毒性物質の影響を受けたニューロンの変化が観察されたのはごく最近のことです。
軸索切断から 1 時間後の最も特徴的な特徴は、機械的外傷の両側の腫れです。 腫れは、損傷部位の両側に体液と膜状要素が蓄積することによって生じます。 これらの変化は、浸水した地域の両側で車両が停止している雨水浸水した双方向道路で観察されたものと同じです。 この類推では、失速した車両は腫れです。 数日後、シースされた軸索、つまりミエリンで覆われた軸索の再生が起こります。 芽は近位の切り株から成長し、3 日あたり XNUMX ~ XNUMX mm の速度で移動します。 良好な条件下では、芽は遠位 (細胞体から離れた) 切り株に到達します。 神経再生(切り株の結合)が完了すると、通常の感染の基本的な特徴が再確立されます。 損傷を受けたニューロンの細胞体は、タンパク質合成と軸索輸送において深刻な構造変化を起こします。
分子神経生物学が若い分野であると言われれば、神経毒性プロセスの神経生物学はさらに若く、まだ初期段階にあります. 確かに、多くの神経毒や薬剤の作用の分子基盤は現在よく理解されています。 しかし、いくつかの注目すべき例外 (例えば、鉛、メチル水銀、アクリルアミド) を除いて、環境および神経毒性物質の大多数の毒性の分子基盤は不明です。 そのため、職業上および環境上の神経毒性物質の選択されたグループの分子神経生物学を説明する代わりに、古典的な神経薬理学または現代の医薬品製造の仕事からの比較的豊富な戦略と例を参照することを余儀なくされています.
神経伝達物質
神経伝達物質は、活動電位によって軸索終末から放出されると、別の神経線維が刺激されたときに電位の瞬間的な変化を引き起こす化学物質です。 神経伝達物質は、隣接するニューロンまたは筋肉や腺などのエフェクター器官を刺激または抑制します。 既知の神経伝達物質とその神経経路は現在集中的に研究されており、新しいものは常に発見されています. 現在、一部の神経障害および精神障害は、神経伝達における化学的変化によって引き起こされると理解されています。たとえば、重症筋無力症、パーキンソン病、うつ病などの特定の形態の情動障害、統合失調症などの重度の思考プロセスの歪み、およびアルツハイマー病などです。 神経伝達に対するいくつかの環境的および職業的神経毒性物質の影響に関する優れた個別の報告が公開されていますが、知識体系は神経精神疾患の既存のものと比較して貧弱です。 製造された医薬品の薬理学的研究では、医薬品が神経伝達にどのように影響するかを理解する必要があります。 このように、医薬品の製造と神経伝達の研究は密接に関連しています。 Feldman と Quenzer (1984) は、変化する薬物作用の見解を要約しています。
神経伝達に対する神経毒性物質の効果は、神経系のどこで作用するか、それらの化学受容体、それらの効果の時間経過、神経毒性物質が神経伝達を促進、遮断、または阻害するかどうか、または神経毒性物質が神経伝達の終結または除去を変更するかどうかによって特徴付けられます。神経伝達物質の薬理作用。
神経科学者が経験する困難の 1986 つは、ニューロンの分子レベルで発生する既知のプロセスを細胞レベルでのイベントと関連付ける必要があることです。これにより、正常および病的な神経心理学的変化がどのように発生するかを説明できる可能性があります。 「(A)分子レベルでは、薬物の作用の説明が可能な場合が多い。 細胞レベルでは、説明が可能な場合もありますが、行動レベルでは、私たちの無知はひどいものです」(Cooper, Bloom and Roth XNUMX).
神経系の主要構成要素
神経系の主要な構成要素に関する知識は、神経毒性疾患の全体的な神経心理学的症状の理解、神経系機能の評価のための特定の技術の使用の理論的根拠、および神経毒性作用の薬理学的メカニズムの理解に不可欠です。 機能的な観点から、神経系は XNUMX つの主要なコンパートメントに分けることができます。 体性神経系 体節からの感覚情報 (触覚、温度、痛み、四肢の位置 - 目を閉じている場合でも) を伝達し、腕、指、脚などの骨格筋の動きを刺激して制御する神経経路を運びます。つま先。 の 内臓神経系 通常は血管の影響を受けない内臓や、瞳孔の散大・収縮などをコントロールしています。
解剖学的観点から、XNUMX つの主要な構成要素を特定する必要があります。 中枢神経系 末梢神経系 脳神経をはじめ、 自律神経系 と 神経内分泌系.
中枢神経系
中枢神経系には脳と脊髄が含まれています 図 3. 脳は頭蓋腔にあり、髄膜によって保護されています。 それは XNUMX つの主要なコンポーネントに分かれています。 つまり、神経系の尾部 (尾) から頸部 (頭) の部分まで、昇順で後脳 (菱脳とも呼ばれます)、中脳 (中脳)、前脳 (前脳) です。
図 3. 神経系の中枢部と末梢部
後脳
後脳の 4 つの主要な構成要素は、延髄、橋、および小脳です (図 XNUMX)。
図 4.側面から見た脳。
延髄には、心拍数と呼吸を制御する神経構造が含まれており、神経毒性物質や死に至る薬物の標的になることもあります。 延髄と中脳の間に位置する橋 (ブリッジ) は、小脳半球に向かう途中で前部を横断する多数の繊維にちなんで名付けられました。 小脳 (ラテン語で小さな脳) は特徴的に波状の外観をしています。 小脳は感覚情報を受け取り、運動協調に不可欠な運動メッセージを送ります。 それは(他の機能の中で)細かい動きの実行を担当します。 このスケジューリング (またはプログラミング) には、感覚入力と運動反応の適切なタイミングが必要です。 小脳は、多くの場合、運動反応に影響を与える多数の神経毒性物質 (アルコール飲料、多くの工業用溶剤、鉛など) の標的となります。
中脳
中脳は、後脳と前脳をつなぐ脳の狭い部分です。 中脳の構造は、大脳水道、蓋、大脳脚、黒質、および赤核です。 脳水道は、第 XNUMX 脳室と第 XNUMX 脳室 (脳の液体で満たされた空洞) を接続するチャネルです。 脳脊髄液 (CSF) はこの開口部を通って流れます。
前脳
脳のこの部分は、間脳(「脳の間」)と大脳に細分されます。 間脳の主要な領域は、視床と視床下部です。 「視床」は「奥の部屋」を意味します。 視床は、核と呼ばれるニューロンのグループで構成されており、次の XNUMX つの主な機能があります。
視床下部という名前は、「視床の下」を意味します。 これは、脳のイメージングの重要な基準点である第三脳室の基部を形成します。 視床下部は、基本的な生物学的衝動、動機、感情など、行動の多くの側面を担う複雑で微細な神経構造です。 これは、神経系と神経内分泌系の間のリンクであり、以下で確認します. 下垂体(下垂体とも呼ばれる)は、ニューロンによって視床下部核に連結されています。 視床下部神経細胞が多くの神経分泌機能を果たすことは十分に確立されています。 視床下部は、もともと嗅覚に関連していた原始皮質である鼻脳や、海馬を含む大脳辺縁系を含む、脳の他の多くの主要な領域と関連しています。
大脳皮質は脳の最大の構成要素であり、脳梁と呼ばれる白質の塊によって接続された 4 つの大脳半球で構成されています。 大脳皮質は、各大脳半球の表層です。 大脳皮質の深い溝 (図 XNUMX の中央溝と外側溝) は、脳の解剖学的領域を分離するための基準点として使用されます。 前頭葉は中央溝の前にあります。 頭頂葉は中央溝の後ろから始まり、脳の後部を占める後頭葉の隣にあります。 側頭葉は外側溝の折り畳みの内側から始まり、脳半球の腹側に伸びます。 大脳の XNUMX つの重要な構成要素は、大脳基底核と大脳辺縁系です。
大脳基底核は、脳の中心に向かって位置する核、つまり神経細胞の塊です。 大脳基底核は、錐体外路運動系の主要な中心を構成します。 (この用語が対比される錐体系は、運動の随意制御に関与しています。) 錐体外路系は、多くの神経毒性物質 (マンガンなど) によって選択的に影響を受けます。 過去 XNUMX 年間で、これらの核がいくつかの神経変性疾患 (パーキンソン病、ハンチントン舞踏病など) で果たす役割に関する重要な発見がなされました。
大脳辺縁系は、多くの方向に分岐し、脳の多くの「古い」領域、特に視床下部との接続を確立する複雑な神経構造で構成されています。 感情表現の制御に関与しています。 海馬は、多くの記憶プロセスが行われる構造であると考えられています。
脊髄
脊髄は、脊柱管内に位置する白っぽい構造です。 それは、頸部、胸部、腰部、仙骨 - 尾骨のXNUMXつの領域に分かれています。 脊髄の XNUMX つの最も簡単に認識できる特徴は、ニューロンの細胞体を含む灰白質と、ニューロンの有髄軸索を含む白質です。 脊髄の灰白質の腹側領域には、運動機能を調節する神経細胞が含まれています。 胸部脊髄の中央領域は、自律神経機能に関連しています。 背部は脊髄神経から感覚情報を受け取ります。
末梢神経系
末梢神経系には、中枢神経系の外側にあるニューロンが含まれます。 用語 周辺 このシステムの解剖学的分布を説明していますが、機能的には人工的です。 例えば、末梢運動線維の細胞体は、中枢神経系内に位置しています。 実験的、臨床的および疫学的な神経毒物学では、用語 末梢神経系 (PNS)は、毒性物質の影響に対して選択的に脆弱であり、再生できるシステムを表しています。
脊髄神経
前根と後根は、末梢神経が脊髄の長さに沿って出入りする場所です。 隣接する椎骨には開口部があり、脊髄神経を形成する根の繊維が脊柱管から出ることができます。 31 対の脊髄神経があり、それらが関連付けられている脊柱の領域に従って名前が付けられています: 8 頸部、12 胸部、5 腰部、5 仙骨および 1 尾骨。 メタメラは、脊髄神経によって支配される体の領域です 図5.
図 5. 脊髄神経 (メタメラ) の分節分布。
メタメラの運動機能と感覚機能を注意深く調べることで、神経科医は損傷が発生した病変の位置を推測できます。
表 1. 脳神経の各ペアの名前と主な機能
神経1 | インパルスを伝導する | 機能 |
I. 嗅覚 | 鼻から脳へ | 匂いの感覚 |
Ⅱ. 光学 | 目から脳へ | ビジョン |
III. 眼球運動 | 脳から目の筋肉まで | 目の動き |
IV. 滑車 | 脳から外眼筋まで | 目の動き |
V. 三叉神経 (またはトライフェイシャル) |
頭の皮膚や粘膜から、歯から脳まで。 脳から咀嚼筋まで | 顔、頭皮、歯の感覚; 咀嚼運動 |
Ⅵ. 誘拐犯 | 脳から外眼筋まで | 目を外側に向ける |
VII. フェイシャル | 舌の味蕾から脳まで。 脳から顔の筋肉まで | 味覚; 表情筋の収縮 |
VIII. 音響 | 耳から脳まで | 聴覚; バランス感覚 |
IX. 舌咽 | 喉と舌の味蕾から脳へ。 脳から喉の筋肉や唾液腺まで | 喉の感覚、味覚、嚥下運動、唾液の分泌 |
X. 迷走神経 | 喉、喉頭、胸部および腹腔内の臓器から脳まで。 また、脳から喉の筋肉、胸腔や腹腔の臓器まで | のど、喉頭、胸部と腹部の器官の感覚; 嚥下、発声、心拍の減速、蠕動の加速 |
XI. 脊椎付属品 | 脳から特定の肩や首の筋肉まで | 肩の動き; 頭の回転運動 |
ⅩⅡ. 舌下 | 脳から舌の筋肉まで | 舌の動き |
1 次の文の単語の最初の文字は、脳神経の名前の最初の文字です。「古いオリンパスの小さなトップスで、フィンランド人とドイツ人がいくつかのホップを見ました」。 多くの世代の学生が、脳神経の名前を覚えるのを助けるために、この文または類似の文を使用してきました。
脳神経
脳幹 髄質、橋、中脳を含む神経系の領域を指す包括的な用語です。 脳幹は、上向きおよび前向き (腹側) の脊髄の延長です。 脳神経の大部分が出口と入口を作るのはこの領域です。 脳神経は 12 対あります。 表 1 は各ペアの名前と主な機能を示し、図 6 は脳内のいくつかの脳神経の出入り口を示しています。
図 6.多くの脳神経の出入り口を下から見た脳。
自律神経系
自律神経系は、人体の内臓成分の活動を制御する神経系の一部です。 機能を自動的に実行するため、「自律型」と呼ばれます。つまり、その機能を自由に制御することは容易ではありません。 解剖学的観点から見ると、自律神経系には交感神経系と副交感神経系の XNUMX つの主要な構成要素があります。 内臓活動を制御する交感神経は、脊髄の胸部と腰部から発生します。 副交感神経は、脳幹と脊髄の仙骨部分から発生します。
生理学的な観点から、交感神経系と副交感神経系が異なる身体器官を制御する方法に適用される単一の一般化を行うことはできません. ほとんどの場合、内臓は両方のシステムによって神経支配されており、チェックとバランスのシステムでそれぞれのタイプが反対の効果を持っています。 例えば、心臓は、交感神経の興奮によって心拍が加速され、副交感神経の興奮によって心拍が遅くなります。 いずれのシステムも、それが神経支配する器官を刺激または阻害できます。 他の場合では、器官はいずれかのシステムによって支配的または独占的に制御されています。 自律神経系の重要な機能は、恒常性 (安定した平衡状態) の維持と、動物の体の外部環境への適応です。 ホメオスタシスは、アクティブなプロセスによって達成される身体機能の平衡状態です。 体温、水分、電解質の制御はすべて恒常性プロセスの例です。
薬理学的観点からは、かつて信じられていたように、交感神経または副交感神経の機能に関連する単一の神経伝達物質はありません。 アセチルコリンが自律神経系の主要な伝達物質であるという古い見方は、新しいクラスの神経伝達物質および神経調節物質 (例えば、ドーパミン、セロトニン、プリン、およびさまざまな神経ペプチド) が発見されたときに放棄されなければなりませんでした。
神経科学者は最近、自律神経系の行動学的観点を復活させました。 自律神経系は、ストレスによって引き起こされる生理学的反応の大部分において、人間に依然として存在する闘争または逃走の本能的反応に関与しています。 神経系と免疫機能との相互作用は、自律神経系を通じて可能です。 自律神経系に由来する感情は、骨格筋を介して表現することができます。
平滑筋の自律制御
心臓を除く内臓の筋肉は平滑筋です。 心筋には、骨格筋と平滑筋の両方の特徴があります。 骨格筋と同様に、平滑筋にも XNUMX つのタンパク質アクチンが含まれており、ミオシンの割合はわずかです。 骨格筋とは異なり、筋肉繊維の収縮単位である筋節の規則的な組織はありません。 心臓は、筋原性活動を生成できるという点で独特です。神経支配が切断された後でも、数時間、それ自体で収縮および弛緩することができます。
平滑筋における神経筋結合は、骨格筋のものとは異なります。 骨格筋では、神経筋接合部は神経と筋繊維の間のリンクです。 平滑筋には、神経筋接合部はありません。 神経終末は筋肉に入り、あらゆる方向に広がります。 したがって、平滑筋内の電気的イベントは、骨格筋内のイベントよりもはるかに遅くなります。 最後に、平滑筋は、腸によって示されるような自発的な収縮を示すという独特の特徴を持っています. 自律神経系は、平滑筋の自発活動を大部分調節しています。
自律神経系の中心的構成要素
自律神経系の主な役割は、平滑筋、心臓、消化管の腺、汗腺、副腎およびその他の内分泌腺の活動を調節することです。 自律神経系には、多くの自律神経機能が統合されている脳の基部にある視床下部という中心的な構成要素があります。 最も重要なことは、自律神経系の中心的な構成要素が、生物学的衝動(体温調節、空腹、喉の渇き、性別、排尿、排便など)、動機付け、感情の調節、そして「心理的」機能に大きく関与しているということです。気分、影響、感情など。
神経内分泌系
腺は内分泌系の器官です。 内分泌腺と呼ばれるのは、その化学的メッセージが体内で血流に直接伝達されるためです (汗腺などの外分泌腺とは対照的に、その分泌物は体の外表面に現れます)。 内分泌系は、ホルモンと呼ばれる化学伝達物質を介して、臓器や組織をゆっくりと、しかし長期にわたって制御しています。 ホルモンは体の代謝の主な調節因子です。 しかし、中枢神経系、末梢神経系、自律神経系の間の密接なつながりのために、 神経内分泌系—このような複雑なつながりを捉えた用語—は、現在、人体の構造と機能、および行動の強力な修飾子として考えられています.
ホルモンは、細胞から血流に放出されて、ある程度離れた標的細胞に作用する化学伝達物質と定義されています。 最近まで、ホルモンは上記の神経伝達物質と区別されていました。 後者は、神経終末と別のニューロンまたはエフェクター (すなわち、筋肉または腺) との間のシナプス上にニューロンから放出される化学伝達物質です。 しかし、ドーパミンなどの古典的な神経伝達物質がホルモンとしても機能することが発見されたため、神経伝達物質とホルモンの区別はますます明確ではなくなりました. したがって、純粋に解剖学的な考察に基づいて、神経細胞に由来するホルモンは神経ホルモンと呼ばれることがあります。 機能的な観点から、神経系は真の神経分泌系と考えることができます。
視床下部は、脳下垂体(下垂体とも呼ばれ、脳の基部にある小さな腺)とのリンクを介して内分泌機能を制御します。 1950 年代半ばまで、内分泌腺は、しばしば「マスター腺」と呼ばれる下垂体によって支配される別個のシステムと見なされていました。 当時、内分泌機能の制御における視床下部/下垂体因子の機能的役割を確立する神経血管仮説が進められていました。 この見解では、視床下部内分泌は、内分泌系の制御における最終的な共通の神経内分泌経路を提供します。 現在、内分泌系自体が中枢神経系と内分泌入力によって調節されていることがしっかりと確立されています。 したがって、 神経内分泌学 生理学的プロセスの制御における神経系と内分泌系の相互統合的役割を研究する分野を説明する適切な用語です。
神経内分泌学の理解が深まるにつれて、本来の区分は崩壊しつつあります。 下垂体の上に位置し、下垂体に接続されている視床下部は、神経系と内分泌系との間のリンクであり、その神経細胞の多くは分泌機能を果たします。 また、嗅覚や嗅覚に関連する原始皮質である鼻脳や、感情に関連する大脳辺縁系など、脳の他の主要な領域とも関連しています。 脳下垂体後葉から分泌されるホルモンは視床下部で作られます。 視床下部は、ホルモンの放出および抑制と呼ばれる物質も生成します。 これらは下垂体腺下垂体に作用し、脳下垂体前葉ホルモンの産生を促進または阻害します。このホルモンは、他の場所にある腺 (甲状腺、副腎皮質、卵巣、精巣など) に作用します。
神経毒性の定義
神経毒性 中枢神経系、末梢神経または感覚器官に悪影響を誘発する能力を指す。 化学物質は、神経機能障害の一貫したパターン、または神経系の化学的性質または構造の変化を誘発できる場合、神経毒性があると見なされます。
神経毒性は一般に、化学物質の性質、用量、曝露期間、および曝露した個人の特性に応じて、一連の症状と影響として現れます。 表 1 に示すように、観察された影響の重症度、および神経毒性の証拠は、レベル 6 から 1 まで増加します。しかし、その効果は通常可逆的です。 用量の増加に伴い、神経学的変化が現れることがあり、最終的には不可逆的な形態学的変化が生じます。 化学物質の神経毒性を示唆するために必要な異常の程度は、物議を醸す問題です。 定義によれば、表 3 のレベル 4、5、6、または 1 に対する持続的な影響について十分に文書化された証拠がある場合、神経機能障害または神経系の化学的性質または構造の変化の一貫したパターンが考慮されます。これらのレベルは以下を反映しています。神経毒性のさまざまな兆候によって提供される証拠の重み。 神経毒性物質には、鉛、水銀、マンガンなどの天然元素が含まれます。 テトロドトキシン(日本の珍味であるフグ由来)やドウモイ酸(汚染されたムール貝由来)などの生物学的化合物。 多くの農薬、工業用溶剤、モノマーを含む合成化合物。
表 1. 神経毒性を確立するための相対的な強さを反映するための神経毒性効果のグループ化
レベル |
グループ化 |
解説・例 |
6 |
形態学的変化 |
形態学的変化には、細胞死および軸索障害、ならびに細胞内の形態学的変化が含まれます。 |
5 |
神経学的変化 |
神経学的変化は、単一の個人の神経学的検査における異常所見を包含する。 |
4 |
生理的/行動的変化 |
生理的/行動的変化は、誘発電位および脳波の変化、または心理的および行動的テストの変化など、動物またはヒトのグループでの実験結果を含みます。 |
3 |
生化学的変化 |
生化学的変化は、関連する生化学的パラメーター (例えば、伝達物質レベル、GFA タンパク質含有量 (グリア線維性酸性タンパク質) または酵素活性) の変化をカバーします。 |
21 |
不可逆的な自覚症状 |
自覚症状。 神経学的、心理的、またはその他の医学的検査で異常の証拠がない。 |
11 |
可逆的な自覚症状 |
自覚症状。 神経学的、心理的、またはその他の医学的検査で異常の証拠がない。 |
1 人間のみ
出典:シモンセンらから改変。 1994年。
米国では、50,000 から 100,000 の化学物質が取引されており、毎年 1,000 から 1,600 の新しい化学物質が評価のために提出されています。 750 を超える化学物質と、いくつかのクラスまたはグループの化合物が神経毒性があると疑われていますが (O'Donoghue 1985)、化学物質の大部分は、神経毒性についてテストされていません。 今日入手可能な既知の神経毒性化学物質のほとんどは、症例報告または事故によって特定されています.
神経毒化学物質は特定の用途を満たすために製造されることが多いが、個人の家庭での使用、農業や工業での使用、または汚染された飲料水など、いくつかの発生源から暴露が生じる可能性がある. どの神経毒性化合物がどの職業で見つかると予想されるかについてのアプリオリな先入観を修正したため、注意して検討する必要があり、最も一般的な神経毒性化学物質のいくつかを含む次の引用を可能な例として検討する必要があります (Arlien-Søborg 1992; O Donoghue 1985; Spencer and Schaumburg 1980; WHO 1978)。
神経毒性の症状
神経系は、一般的に、神経毒性物質への曝露に対してかなりステレオタイプに反応します。 図 1. いくつかの典型的な症候群を以下に示します。
図 1. 神経毒化学物質への暴露による神経学的および行動への影響。
多発ニューロパチー
これは、筋肉の衰弱につながる運動および感覚神経機能の障害によって引き起こされ、麻痺は通常、上肢および下肢(手および足)の末梢で最も顕著です。 感覚異常(手足の指のうずきやしびれ)が事前または同時に起こることがあります。 これにより、歩行や手と指の細かい調整が困難になることがあります。 重金属、溶剤、殺虫剤などの化学物質は、これらの化合物の毒性メカニズムがまったく異なる場合でも、そのような障害を引き起こす可能性があります.
脳症
これは、脳のびまん性障害によって引き起こされ、疲労を引き起こす可能性があります。 学習、記憶、集中力の障害; 不安、うつ病、過敏性の増加、情緒不安定。 このような症状は、初期のびまん性変性脳障害および職業性慢性中毒性脳症を示している可能性があります。 多くの場合、頭痛、めまい、睡眠パターンの変化、性行為の減少の頻度の増加も、病気の初期段階から現れることがあります。 このような症状は、溶剤、重金属、硫化水素などのいくつかの異なる化学物質に長期間、低レベルでさらされた後に発生する可能性があり、仕事に関係のないいくつかの認知障害でも見られます. 場合によっては、より具体的な神経学的症状が見られることがあります(例、振戦を伴うパーキンソニズム、筋肉の硬直および動きの鈍化、または振戦および手の動きと歩行の協調の低下などの小脳症状)。 このような臨床像は、前者の状態ではマンガンまたは MPTP (1-メチル-4-フェニル-1,2,3,6-テトラヒドロピリジン)、後者の状態ではトルエンまたは水銀などの特定の化学物質にさらされた後に見ることができます。
ガス
化学構造がまったく異なる多種多様な化学物質は、常温では気体であり、神経毒性があることが証明されています。 他のものは、症状を与えるために長期間にわたって高用量を必要とします (例、二酸化炭素)。 一部は全身麻酔(亜酸化窒素など)に使用されます。 他のものは、産業や消毒に使用される薬剤 (ホルムアルデヒドなど) で広く使用されています。 前者は低レベルの暴露を繰り返した後、神経系に不可逆的な変化を誘発する可能性があり、後者は明らかに急性症状のみを引き起こします。 換気の悪い小さな部屋での曝露は特に危険です。 一部のガスは無臭で、特に危険です (一酸化炭素など)。 表 3 に示すように、一部のガスは工業生産において重要な構成要素ですが、他のガスは不完全または完全燃焼の結果です (例: CO および CO2 それぞれ)。 これは、鉱山、製鉄所、発電所などで見られますが、換気が不十分な個人宅でも見られることがあります。 治療に不可欠なのは、それ以上の曝露を止め、新鮮な空気または酸素を供給し、重症の場合は人工換気を行うことです。
表 2. 神経毒性に関連するガス
化学 |
ばく露源の例 |
危険にさらされている特定の業界 |
エフェクト1 |
二酸化炭素(CO2 ) |
溶接; 発酵; ドライアイスの製造、保管、使用 |
金属産業; 採掘; 醸造所 |
M: 血管を拡張する A: 頭痛; 呼吸困難; 身震い; 意識の喪失 C: ほとんどありません |
一酸化炭素(CO) |
自動車修理; 溶接; 金属溶融; 運転手; 消防士 |
金属産業; 採掘; 交通手段; 発電所 |
M: 酸素欠乏 A: 頭痛; 眠気; 意識の喪失 |
硫化水素 (H2S) |
温室の燻蒸; 肥料; 漁師; 魚の荷降ろし; 下水道処理 |
農業; 釣り; 下水道工事 |
M: 酸化代謝の遮断 A: 意識消失 C: 脳症 |
シアン化物 (HCN) |
電気溶接; ニッケルによるガルバニック表面処理; 銅と銀; 船舶、住宅の食品および温室内の土壌の燻蒸 |
金属産業; 化学工業; 保育園; 採掘; ガス工場 |
M: 呼吸酵素の遮断 A: 呼吸困難; 血圧の低下; 痙攣; 意識の喪失; 死 C: 脳症; 運動失調; 神経障害(例,カバサバを食べた後) 職業障害の不確実性 |
亜酸化窒素(N2O) |
手術中の全身麻酔; デンタルケアと分娩時の軽度の麻酔 |
病院(麻酔); 歯科医; 助産師 |
M: 神経細胞膜の急性変化; 長期暴露後の神経細胞の変性 A: ふらつき; 眠気; 意識の喪失 C: 指とつま先のしびれ; 調整の減少; 脳症 |
1 M: 機構; A: 急性効果; C: 慢性的な影響。
神経障害:運動および感覚の末梢神経線維の機能障害。
脳症:脳の全般的な障害による脳機能障害。
運動失調:運動協調障害。
金属
原則として、金属の毒性は原子量の増加とともに増加し、鉛と水銀は特に毒性が強い. 金属は通常、自然界では低濃度で検出されますが、特定の産業では大量に使用され (表 3 を参照)、労働者に職業上のリスクを引き起こす可能性があります。 さらに、かなりの量の金属が廃水に含まれており、プラントに近いだけでなく、より遠くにいる住民にも環境リスクを引き起こす可能性があります。 多くの場合、金属(または、有機水銀化合物など)は食物連鎖に取り込まれ、魚、鳥、動物に蓄積され、消費者にリスクをもたらします. 有機体による金属の毒性と処理方法は、化学構造に依存する可能性があります。 純金属は、蒸気 (水銀) および/または小さな粒子 (鉛) の吸入または皮膚接触、または経口 (鉛) によって摂取される可能性があります。 無機水銀化合物(例:HgCl2)は主に口から、有機金属化合物(四エチル鉛など)は主に吸入または皮膚接触から摂取されます。 身体への負担は、血液や尿中の金属濃度にある程度反映される場合があります。 これが生物学的モニタリングの基本です。 治療では、特に鉛は体内の沈着物から非常にゆっくりと放出されることを思い出してください. 骨に含まれる鉛の量は、通常、50 年間で 10% しか減少しません。 この放出は、キレート剤の使用によってスピードアップされる場合があります: BAL (ジメルカプト-1-プロパノール)、Ca-EDTA またはペニシラミン。
表 3. 神経毒性に関連する金属とその無機化合物
化学 |
ばく露源の例 |
危険にさらされている特定の業界 |
エフェクト1 |
Lead |
溶融; はんだ付け; 研削; 修理; グレージング; 可塑剤 |
金属加工; 採掘; アキュムレータプラント; 自動車修理; 造船所; ガラス職人; セラミック; 陶器; プラスチック |
M: 神経細胞およびグリア細胞の酸化的代謝の障害 A: 腹痛; 頭痛; 脳症; 発作 C: 脳症; ドロップハンドを含む多発神経障害 |
マーキュリーエレメンタル |
電解; 電気機器(ジャイロスコープ、圧力計、温度計、バッテリー、電球、チューブなど); アマルガム充填 |
クロルアルカリ植物; 採掘; エレクトロニクス; 歯科; ポリマー生産; 紙パルプ産業 |
M: 神経細胞の複数部位の障害 A: 肺の炎症; 頭痛; 発話障害 C: 歯茎の炎症; 食欲不振; 脳症; 振戦を含む; 過敏性 |
カロメルHg2Cl2 |
研究所 |
A: 低い急性毒性 慢性毒性効果、上記参照 |
|
HgClを昇華させる2 |
消毒 |
病院; 診療所; 研究所 |
M: 尿細管および糸球体腎の急性変性。 少量の経口投与でも非常に毒性が高く、30 mg/kg 体重まで致死 C: 上記を参照。 |
マンガン |
溶解(鋼合金); 切断; 鋼の溶接; 乾電池 |
マンガン採掘; 鉄鋼およびアルミニウムの生産; 金属産業; バッテリー生産; 化学工業; ブリックヤード |
M: 知られていないが、脳の中心にある大脳基底核のドーパミンとカテコールアミンの変化の可能性 A: 不快感 C: パーキンソニズムを含む脳症; 精神病; 食欲不振; 過敏性; 頭痛; 弱点 |
アルミ |
冶金; 研削; 研磨 |
金属産業 |
M: 未知の C: おそらく脳症 |
1 M: 機構; A: 急性効果; C: 慢性的な影響。
神経障害:運動および感覚の末梢神経線維の機能障害。
脳症:脳の全般的な障害による脳機能障害。
モノマー
モノマーは、化学合成およびポリマー、樹脂、プラスチックの製造に使用される反応性化学物質の大規模で不均一なグループを構成します。 モノマーは、次のようなポリハロゲン化芳香族化合物を含みます p-クロロベンゼンおよび1,2,4-トリクロロベンゼン; スチレンおよびビニルトルエン、アクリルアミドおよび関連化合物、フェノール、ε-カプロラクタムおよびζ-アミノブチロラクタムなどの不飽和有機溶媒。 広く使用されている神経毒性モノマーとその神経系への影響の一部を表 3 に示します。 残りのモノマーを含むポリマーの取り扱い中、および造船所や歯科医院での成形中に、神経毒性モノマーへの相当な曝露が発生します。 これらのモノマーへの暴露により、吸入中 (例えば、二硫化炭素およびスチレン) または皮膚接触 (例えば、アクリルアミド) によって取り込みが起こる可能性があります。 モノマーは化学物質の異種グループであるため、いくつかの異なる毒性メカニズムが考えられます。 これは、症状の違いに反映されています (表 4)。
表 4. 神経毒モノマー
|
ばく露源の例 |
危険にさらされている特定の業界 |
エフェクト1 |
アクリルアミド |
モノマーにさらされた従業員 |
ポリマー製造; トンネル掘削作業 |
M: 軸索輸送障害 C: 多発神経障害; めまい; 振戦と運動失調 |
アクリロニトリル |
実験室や産業での事故; 家の燻蒸 |
ポリマーおよびゴムの生産; 化学合成 |
A: 過興奮性; 唾液分泌; 嘔吐; チアノーゼ; 運動失調; 呼吸困難 |
二硫化炭素 |
ゴム・ビスコースレーヨンの製造 |
ゴムおよびレーヨン産業 |
M: 軸索輸送および酵素活性の障害の可能性が高い C: 末梢神経障害; 脳症; 頭痛; めまい; 胃腸障害 |
スチレン |
ガラス強化プラスチックの製造; モノマーの製造と輸送; スチレン含有樹脂とコーティングの使用 |
化学工業; ガラス繊維の生産; ポリマー産業 |
M: 未知の A: 中枢神経系のうつ病; 頭痛 C: 多発神経障害; 脳症; 難聴 |
ビニルトルエン |
樹脂製造; 殺虫剤化合物 |
化学およびポリマー産業 |
C: 多発神経障害; 運動神経伝導速度の低下 |
1 M: メカニズム; A: 急性効果; C: 慢性的な影響。
神経障害:運動および感覚末梢神経線維の機能障害。
脳症:脳の全般的な障害による脳機能障害。
運動失調:運動協調障害。
有機溶剤
有機溶剤 は、脂肪、油、ワックス、樹脂、ゴム、アスファルト、セルロース フィラメント、およびプラスチック材料を溶解できる 200 を超える親油性化合物の大きなグループの一般的な名称です。 それらは通常、沸点が 200 ~ 250°C 未満の室温で液体であり、容易に蒸発します。 主に肺から取り込まれますが、皮膚に浸透するものもあります。 親油性のため、脂肪が豊富な臓器に分布します。 したがって、高濃度は体脂肪、骨髄、肝臓、および脳に見られ、溶媒の貯蔵庫としても機能する可能性があります. オクタノール/水の分配係数は、高い脳内濃度が予想されるかどうかを示すことができます。 毒性のメカニズムはまだわかっていませんが、いくつかの可能性が想定されています。 ミトコンドリアでのエネルギー形成の減少; 神経細胞膜を変化させ、イオンチャネル機能の障害を引き起こします。 軸索の流れの遅延。 塩化メチレンは代謝されて CO になり、血液中の酸素の輸送が妨げられます。 多種多様な職業の労働者の大規模なグループが、毎日または少なくとも頻繁に暴露されています (表 5 を参照)。 一部の国では、衛生上の改善と代替により一部の職業で有機溶剤の消費量が減少している(例えば、塗装工、グラフィック産業労働者、金属労働者)が、他の職業では曝露パターンが変化したが、有機溶剤の総量は減少している.変更されていません。 たとえば、トリクロロエチレンは 1,1,1-トリクロロエタンとフロンに置き換えられました。 そのため、溶剤は依然として多くの職場で大きな衛生上の問題となっています。 換気が不十分で高温の小さな部屋にさらされると、人々は特に危険にさらされ、蒸発が増加します。 肉体労働は、溶媒の肺への取り込みを増加させます。 いくつかの国 (特に北欧諸国) では、低レベルの溶剤に長期間さらされた後に慢性中毒性脳症を発症した労働者に補償が与えられています。
表 5. 神経毒性に関連する有機溶媒
化学 |
ばく露源の例 |
危険にさらされている特定の業界 |
エフェクト1 |
塩素化炭化水素: トリクロロエチレン; 1,1,1-トリクロロエタン; テトラクロロエチレン |
脱脂; 電気めっき; ペインティング; 印刷; クリーニング; 全身麻酔と軽い麻酔 |
金属産業; グラフィック業界; 電子産業; ドライクリーナー; 麻酔科医 |
M: 未知の A: 麻薬前症状 C: 脳症; 多発神経障害; 三叉神経の愛情 (TRI); 難聴 |
塩化メチレン |
カフェインの抽出を含む抽出; ペイントリムーバー |
食品業界; 画家; グラフィック業界 |
M: 代謝 ® CO A: 麻薬前症状; 昏睡 C: 脳症 |
塩化メチル |
冷蔵庫の製造・修理 |
冷蔵庫の生産; ゴム産業; プラスチック産業 |
M: 未知の A: 麻薬前症状; 意識の喪失; 死 C: 脳症 |
トルエン |
印刷; クリーニング; 脱脂; 電気めっき; ペインティング; スプレーペインティング |
グラフィック業界; 電子産業 |
M: 未知の A: 麻薬前症状 C: 脳症; 小脳機能障害; 多発神経障害; 難聴; 視覚障害 |
キシレン |
印刷; 無水フタル酸の合成; ペインティング; 組織学検査手順 |
グラフィック業界; プラスチック産業; 組織学研究所 |
M: 未知の A: 麻薬前症状 C: 脳症; 視覚障害; 難聴 |
スチレン |
重合; 成形 |
プラスチック産業; グラスファイバー生産 |
M: 未知の A: 麻薬前症状 C: 脳症; 多発神経障害; 難聴 |
ヘキサカーボン: n-ヘキサン; メチルブチルケトン(MBK); メチルエチルケトン(MEK) |
接着; 印刷; プラスチックコーティング; ペインティング; 抽出 |
皮革および靴産業; グラフィック業界; 画家; 研究所 |
M: 軸索輸送の障害 A: 前麻薬 C: 多発神経障害; 脳症 |
各種溶剤:フロン113 |
冷蔵庫の製造と修理; ドライクリーニング; 脱脂 |
冷蔵庫の生産; 金属産業; 電子産業; ドライクリーニング |
M: 未知の A: 軽度の麻薬前症状 C: 脳症 |
ジエチルエーテル; ハロセン |
全身麻酔科(看護師・医師) |
病院; 診療所 |
M: 未知の A: 麻薬前症状 C: 脳症 |
二硫化炭素 |
モノマーを見る |
モノマーを見る |
モノマーを見る |
混合物: ホワイトスピリットとシンナー |
ペインティング; 脱脂; クリーニング; 印刷; 含浸; 表面処理 |
金属産業; グラフィック業界; 木材産業; 画家 |
M: 未知の A: 麻薬前症状 C: 脳症 |
1 M: メカニズム; A: 急性効果; C: 慢性的な影響。
神経障害:運動および感覚の末梢神経線維の機能障害。
脳症:脳の全般的な障害による脳機能障害
農薬
農薬 人間の健康を害する、または経済的損失を引き起こす可能性のある植物または動物のグループを殺すように設計された化学物質の総称として使用されます。 これには、殺虫剤、殺菌剤、殺鼠剤、燻蒸剤、除草剤が含まれます。 5 種類以上の有効な殺虫剤成分で構成される約 600 億ポンドの殺虫剤製品が、世界中の農業で毎年使用されています。 殺菌剤として使用されるピレスロイド、クロロフェノキシ除草剤および有機金属化合物と一緒の有機リン、カルバメートおよび有機塩素系殺虫剤は、神経毒性を有する(表6)。 殺鼠剤として使用されるさまざまな化学物質の中には、神経毒性のあるものもあります (ストリキニーネ、リン化亜鉛、タリウムなど)。 神経毒性農薬への職業的暴露は、主に農薬の取り扱いや処理された作物の取り扱いなどの農業作業に関連していますが、害虫駆除業者、農薬の製造および調剤の従業員、高速道路および鉄道の労働者、ならびに温室、林業および苗床の労働者は、神経毒性のある農薬にもさらされています。 農業労働力の大部分を占める子供たちは、神経系が完全に発達していないため、特に脆弱です。 殺虫剤の急性影響は一般的によく説明されており、反復暴露または単回の高用量暴露による長期にわたる影響がしばしば見られますが (表 6)、反復無症状暴露の影響は不明です。
表 6. 一般的な神経毒性農薬のクラス、曝露、影響、および関連する症状
|
ばく露源の例 |
危険にさらされている特定の業界 |
エフェクト1 |
有機リン化合物:ベオミル; デメトン; ジクロルボス; エチルパラチオン; メビンホス; フォスフォラン; テルブフォス; マラチオン |
取り扱い; 作物の処理; 処理された作物での作業; 港湾労働者 |
農業; 林業; 化学; 園芸 |
M: アセチルコリンエステラーゼ阻害 A: 多動性; 神経筋麻痺; 視力障害; 呼吸困難; 落ち着きのなさ; 弱点; 嘔吐; 痙攣 |
カーバメート:アルディカーブ。 カーバリル; カルボフラン; プロポクスル |
M: 遅発性神経毒性軸索障害2 C: 多発神経障害。 足のしびれとうずき; 筋力低下; 感覚障害; 麻痺 |
||
有機塩素系: アルドリン; ディルドリン; DDT; エンドリン; ヘプタクロル; リンデン; メトキシクロル; ミレックス; トキサフェン |
上記を参照 |
上記を参照 |
A: 興奮性; 不安; めまい; 頭痛; 錯乱; バランスの喪失; 弱点; 運動失調; 振戦; 痙攣; 昏睡 C: 脳症 |
ピレスロイド |
上記を参照 |
上記を参照 |
M: 神経細胞膜を通るナトリウムイオンの流れを変える A: 神経細胞の発火が繰り返されます。 身震い; けいれん |
2,4-D |
除草剤 |
農業 |
C: 多発ニューロパチー |
水酸化トリエチルスズ |
表面処理; 処理された木材の取り扱い |
木材および木材製品 |
A: 頭痛; 弱点; 麻痺; 視覚障害 C: 多発神経障害; 中枢神経系への影響 |
臭化メチル |
燻蒸 |
温室; 殺虫剤; 冷蔵庫の製造 |
M: 未知の A: 視覚障害および言語障害; せん妄; けいれん C: 脳症 |
1 M: 機構; A: 急性効果; C: 慢性的な影響。
神経障害:運動および感覚末梢神経線維の機能障害。
脳症:脳の全般的な障害による脳機能障害。
運動失調:運動協調障害。
2 主にリン酸塩またはホスホン酸塩。
その他の化学薬品
上記のグループに当てはまらないいくつかの異なる化学物質も神経毒性を持っています。 これらの一部は殺虫剤として使用されますが、さまざまな工業プロセスでも使用されます。 一部には、十分に文書化された急性および慢性の神経毒性作用があります。 他のものには明らかな急性効果がありますが、慢性効果は十分に調査されていません。 これらの化学物質の例、その用途および影響を表 7 に示します。
表 7. 神経毒性に関連するその他の化学物質
化学 |
ばく露源の例 |
危険にさらされている特定の業界 |
エフェクト1 |
ホウ酸 |
溶接; フラックス; 保存 |
金属; ガラス |
A: せん妄; けいれん C: 中枢神経系のうつ病。 |
ジスルフィラム |
薬剤 |
ラバー |
C: 倦怠感; 末梢神経障害; 眠気 |
ヘキサクロロフェン |
抗菌石鹸 |
化学 |
C: 中枢神経系浮腫; 末梢神経損傷 |
ヒドラジン |
還元剤 |
化学; 軍 |
A: 興奮; 食欲不振; 身震い; けいれん |
フェノール/クレゾール |
防腐剤 |
プラスチック; 樹脂; 化学; 病院; 研究所 |
M: タンパク質と酵素を変性させる A: 反射喪失; 弱点; 身震い; 発汗; 昏睡 C: 食欲不振; 精神障害; 耳鳴り |
ピリジン |
エタノール変性 |
化学; 繊維 |
A: 中枢神経系のうつ病; 精神的うつ病; 倦怠感; 食欲不振 C: 過敏性; 睡眠障害; 多発神経障害; 複視 |
テトラエチル鉛 |
ガソリン添加剤 |
化学; 輸送 |
C: 過敏性; 弱点; 身震い; 視覚障害 |
アルシン |
バッテリー; 殺虫剤; 溶融 |
製錬; ガラス細工; セラミック; 紙の製造 |
M: 酵素機能の障害 A: 感覚の低下; 麻痺; けいれん; 昏睡 C: 運動障害; 運動失調; 振動感知喪失; 多発神経障害 |
リチウム |
オイル添加剤; 製薬 |
石油化学製品 |
交流: 食欲不振; 耳鳴り; 視界のぼやけ; 身震い; 運動失調 |
Selenium |
溶融; 整流器の製造; 加硫; 切削油; 酸化防止剤 |
電子; ガラス細工; 金属産業; ゴム産業 |
A: せん妄; 嗅覚障害 C: にんにくのにおい; 多発神経障害; 緊張感 |
タリウム |
殺鼠剤 |
ガラス; ガラス製品 |
A: 食欲不振; 疲れ; 眠気; 金属味; しびれ; 運動失調 |
テルル |
溶融; ゴム生産; 触媒 |
金属; 化学; ゴム; 電子 |
A: 頭痛; 眠気; 神経障害 C: にんにくのにおい; 金属味; パーキンソニズム; うつ |
バナジウム |
融解 |
鉱業; 鉄鋼生産; 化学工業 |
A: 食欲不振; 耳鳴り; 傾眠、振戦 C: うつ; 身震い; 失明 |
1 M: メカニズム; A: 急性効果; C: 慢性的な影響。
神経障害:運動および感覚末梢神経線維の機能障害。
脳症:脳の全般的な障害による脳機能障害。
運動失調:運動協調障害
神経毒性物質への暴露の短期的および長期的な徴候に関する現在の知識は、実験動物研究およびヒトチャンバー研究、現役および退職者および/または病気の労働者の疫学研究、臨床研究および報告、ならびに大規模災害から得られています。ボパールで発生したイソシアン酸メチルの漏出や、水俣で発生したメチル水銀中毒などです。
神経毒性物質への暴露は、即時の影響 (急性) および/または長期の影響 (慢性) を引き起こす可能性があります。 どちらの場合も、影響は可逆的であり、曝露の減少または停止に続いて時間の経過とともに消失するか、永久的で不可逆的な損傷をもたらす可能性があります. 急性および慢性の神経系障害の重症度は、曝露量と曝露期間の両方を含む曝露量に依存します。 アルコールやレクリエーショナル ドラッグと同様に、多くの神経毒性物質は最初は興奮性であり、幸福感や多幸感を生み出したり、運動機能を加速させたりします。 量や時間の経過とともに用量が増加すると、これらの同じ神経毒が神経系を抑制します。 実際、ナルコーシス(昏迷または無感覚の状態)は、精神を変化させ、中枢神経系を抑制する多数の神経毒性物質によって引き起こされます.
急性中毒
急性影響は、化学物質に対する即時の反応を反映しています。 症状の重症度と結果として生じる障害は、神経系に到達する量によって異なります。 軽度の曝露では、急性影響は軽度で一過性であり、曝露が止まると消失します。 頭痛、疲労感、ふらつき、集中力の低下、酩酊感、多幸感、過敏症、めまい、反射の鈍化などは、神経毒化学物質にさらされたときに経験する症状の種類です。 これらの症状は可逆的ですが、暴露が毎日繰り返されると、症状も再発します。 さらに、神経毒性物質はすぐに体外に排出されないため、作業後も症状が続くことがあります。 特定のワークステーションで報告された症状は、神経系への化学的干渉をよく反映しており、過剰暴露の可能性に対する警告信号と見なす必要があります。 ばく露レベルを下げるための予防措置を開始する必要があります。
こぼれ、漏れ、爆発、その他の事故で発生する可能性があるように、曝露が非常に高い場合、中毒の症状と兆候が衰弱します(重度の頭痛、精神錯乱、吐き気、めまい、協調運動障害、かすみ目、意識喪失)。 曝露が十分に高い場合、影響は長期にわたって持続し、昏睡や死に至る可能性があります。
殺虫剤、殺菌剤、殺線虫剤、除草剤として大量の有毒物質が使用されている食料生産国の農業従事者の間では、急性殺虫剤関連障害がよく見られます。 有機リン酸塩、カルバメート、有機塩素、除虫菊、ピレトリン、パラコート、およびジクワットは、農薬の主要なカテゴリーの XNUMX つです。 ただし、何百もの異なる有効成分を含む何千もの農薬製剤があります。 マネブなどの農薬にはマンガンが含まれているものもあれば、有機溶剤に溶解しているものもあります。 上記の症状に加えて、急性の有機リン酸およびカーバメート中毒は、唾液分泌、失禁、痙攣、筋肉のけいれん、下痢、視覚障害、呼吸困難および心拍数の増加を伴うことがあります。 これらは、神経伝達物質アセチルコリンの過剰が原因であり、これらの物質がコリンエステラーゼと呼ばれる化学物質を攻撃するときに発生します。 血中コリンエステラーゼは、急性有機リン酸またはカルバメート中毒の程度に比例して減少します。
有機リン系殺虫剤や一酸化炭素などの一部の物質では、高レベルの急性暴露により、神経系の特定の部分が遅延して劣化する可能性があります。 前者の場合は、しびれやうずき、脱力感や不均衡が曝露後数週間で発生する可能性があり、後者の場合は、精神錯乱、運動失調、運動失調、麻痺の症状を伴う遅発性神経学的悪化が起こる可能性があります. 高レベルの一酸化炭素の急性エピソードが繰り返されると、晩年のパーキンソニズムと関連付けられています。 特定の神経毒化学物質への高い暴露は、後の人生で神経変性疾患のリスクの増加と関連している可能性があります.
慢性中毒
神経毒性化学物質の危険性が認識されたことで、多くの国が許容暴露レベルを引き下げました。 しかし、ほとんどの化学物質について、長期間暴露しても悪影響が発生しないレベルはまだ不明です。 低レベルから中レベルの神経毒性物質に数か月または数年にわたって繰り返しさらされると、神経系の機能が潜行的かつ進行的に変化する可能性があります。 分子および細胞プロセスへの干渉が続くと、神経生理学的および心理的機能がゆっくりと変化しますが、神経系回路には大きな予備があり、損傷は最初の段階では新しい学習によって補償されるため、初期段階では見られない可能性があります。
したがって、最初の神経系損傷は必ずしも機能障害を伴うわけではなく、可逆的である可能性があります。 しかし、損傷が進行するにつれて、多くの場合本質的に非特異的な症状や徴候が明らかになり、個人は医師の診察を受けることがあります. 最後に、障害が非常に深刻になり、通常は不可逆的な明らかな臨床症状が現れることがあります。
図 1 は、神経毒性物質への暴露に関連する健康悪化の連続体を図式化したものです。 神経毒性機能障害の進行は、曝露の期間と濃度(用量)の両方に依存し、その他の職場要因、個人の健康状態と感受性、ライフスタイル、特に飲酒や趣味で使用される神経毒性物質への曝露などの影響を受ける可能性があります。家具の組み立てやプラモデルの組み立てに使用される接着剤、塗料、塗料剥離剤。
図 1. 投与量の増加に伴う連続体の健康悪化
個々の労働者の神経毒関連疾患の特定と、現役労働者の神経系の早期悪化の監視には、さまざまな戦略が採用されています。 臨床診断は、個人の病歴および曝露歴と結び付けられた一連の徴候および症状に依存します。 曝露以外の病因は、体系的に除外する必要があります。 現役労働者の早期機能障害の監視には、機能障害の集団像が重要です。 ほとんどの場合、グループで観察される機能障害のパターンは、その疾患で臨床的に観察される機能障害のパターンと類似しています。 これは、神経系に何が起こっているかを把握するために、初期の軽度の変化を合計するようなものです. 全体的な早期反応のパターンまたはプロファイルは、特定の神経毒性物質または混合物の特異性および作用のタイプの指標を提供します。 神経毒性物質にさらされる可能性のある職場では、労働者グループの健康監視は、より深刻な病気の発症を回避するための予防と職場での行動に特に役立つ可能性があります (図 2 を参照)。 特定の神経毒性物質またはさまざまな化学物質の混合物にさらされたアクティブな労働者を対象に世界中で実施された職場研究は、暴露された労働者のグループにおける神経系機能障害の初期症状に関する貴重な情報を提供しています。
図 2. 職場での神経毒性の防止。
慢性中毒の初期症状
気分の変化は、ほとんどの場合、神経系機能の初期変化の最初の症状です。 神経過敏、多幸感、突然の気分の変化、過度の疲労、敵意の感情、不安、抑うつ、および緊張は、神経毒への曝露に最もよく関連する気分状態の XNUMX つです。 その他の症状としては、記憶障害、集中困難、頭痛、かすみ目、酩酊感、めまい、鈍感、手足のチクチク感、性欲減退などがあります。 初期段階では、これらの症状は通常、仕事に支障をきたすほど深刻ではありませんが、健康状態の低下を反映しており、家族や社会的関係を十分に楽しむ能力に影響を与えます。 多くの場合、これらの症状は非特異的な性質を持っているため、労働者、雇用者、および産業保健専門家はそれらを無視し、職場での暴露以外の原因を探す傾向があります. 実際、そのような症状は、すでに困難な個人的状況の一因となったり、悪化させたりする可能性があります。
神経毒性物質が使用される職場では、労働者、雇用者、および労働安全衛生担当者は、暴露に対する神経系の脆弱性を示す早期中毒の症状に特に注意する必要があります。 神経毒性物質が使用されている作業現場の研究および作業場の監視のために、症状アンケートが開発されました。 表 1 に、このようなアンケートの例を示します。
表 1. 慢性症状のチェックリスト
ここXNUMXヶ月で感じた症状
1. 行っている活動の種類に対して、予想よりも疲れやすくなりましたか?
2. ふらつきやめまいを感じたことはありますか?
3. 集中できませんでしたか?
4. 混乱したり、混乱したりしましたか?
5. 物事を思い出すのに苦労したことがありますか?
6. あなたの親戚は、あなたが物を覚えるのに苦労していることに気付きましたか?
7. 物事を覚えるためにメモを取らなければならなかったことがありますか?
8. 新聞の意味がわかりにくかったことはありますか?
9.イライラしたことはありますか?
10. 気分が落ち込んだことがありますか?
11. 運動していなくても動悸がしたことがありますか?
12. 発作を起こしましたか?
13. いつもより多く寝ていましたか?
14. なかなか眠れませんでしたか?
15. 協調運動障害や平衡感覚の喪失に悩まされたことはありますか?
16. 脚または足の筋力の低下はありましたか?
17. 腕や手の筋力の低下はありましたか?
18. 指を動かしたり、物をつかむのが困難でしたか?
19. 手のしびれや指のうずきが XNUMX 日以上続いていますか?
20. 手のしびれやつま先の痛みが XNUMX 日以上続きましたか?
21. 週に XNUMX 回以上頭痛がありましたか?
22. めまいや疲れのために、仕事から家に帰るのが困難になったことはありますか?
23. 職場で使用される化学物質で「ハイ」になったことがありますか?
24. アルコールに対する耐性が低かったですか (酔うのに時間がかかりません)?
出典: Johnson 1987 より引用。
慢性中毒における初期の運動、感覚、認知の変化
暴露の増加に伴い、異常の臨床的証拠を示さない神経毒性物質に暴露された労働者の運動、感覚、および認知機能に変化が観察されます。 神経系は複雑で、特定の化学物質に対して脆弱な領域もあれば、多数の毒性物質の作用に敏感な領域もあるため、広範囲の神経系機能が単一の毒性物質または複数の毒性物質の混合物によって影響を受ける可能性があります。神経毒。 反応時間、手と目の協調、短期記憶、視覚と聴覚の記憶、注意と警戒、手先の器用さ、語彙、注意の切り替え、握力、運動速度、手の安定性、気分、色覚、振動触覚、聴覚と嗅覚さまざまな神経毒性物質によって変化することが示されている多くの機能の XNUMX つです。
ばく露に起因する初期障害のタイプに関する重要な情報は、ばく露の程度に関して、ばく露労働者と非ばく露労働者のパフォーマンスを比較することによって提供されています。 Anger (1990) は、1989 年までの職場での神経行動研究の優れたレビューを提供しています。一般的な神経毒性物質。
表 2. いくつかの主要な神経毒性物質への作業現場曝露の一貫した神経機能への影響
混合有機溶剤 |
二硫化炭素 |
スチレン |
オルガノホス- |
Lead |
マーキュリー |
|
買収 |
+ |
|
|
|
+ |
|
影響を及ぼす |
+ |
|
+ |
|
+ |
|
カテゴリ |
+ |
|
|
|
|
|
コーディング |
+ |
+ |
|
|
+ |
+ |
色覚 |
+ |
|
+ |
|
|
|
コンセプトシフト |
+ |
|
|
|
|
|
気を散らす |
|
|
|
|
+ |
|
インテリジェンス |
+ |
+ |
|
+ |
+ |
+ |
メモリ |
+ |
+ |
+ |
+ |
+ |
+ |
運動協調性 |
+ |
+ |
+ |
|
+ |
+ |
モーター速度 |
+ |
+ |
+ |
|
+ |
+ |
近視コントラスト感度 |
+ |
|
|
|
|
|
臭気知覚閾値 |
+ |
|
|
|
|
|
においの識別 |
+ |
|
|
|
+ |
|
人格 |
+ |
+ |
|
|
|
+ |
空間関係 |
+ |
+ |
|
|
+ |
|
振動触覚閾値 |
+ |
|
|
+ |
|
+ |
警戒 |
+ |
+ |
|
|
+ |
|
視野 |
|
|
|
|
+ |
+ |
語彙 |
|
|
|
|
+ |
|
出典: Anger 1990 から改作。
幸福から病気への連続体のこの段階では、損失は臨床的に異常な範囲ではありませんが、そのような変化に関連する健康関連の結果が生じる可能性があります. たとえば、警戒心の低下や反射神経の低下は、労働者を事故の危険にさらす可能性があります。 においは、漏れやマスクの飽和 (カートリッジのブレークスルー) を特定するために使用され、急性または慢性のにおいの喪失は、潜在的に危険な状況を特定する可能性を低くします。 気分の変化は、職場、社会、および家庭での対人関係を妨げる可能性があります。 これらの神経系の劣化の初期段階は、暴露された労働者のグループを調査し、それらを暴露されていない労働者と比較するか、暴露の程度に関して観察することで観察でき、健康状態の低下を反映しており、より深刻な神経学的障害のリスクを予測している可能性があります。今後の問題。
慢性中毒におけるメンタルヘルス
神経精神障害は、神経毒性物質への曝露が原因であると長い間考えられてきました。 臨床症状は、不安や抑うつなどの情動障害から、精神病的行動や幻覚の症状にまで及びます。 多くの重金属、有機溶剤、殺虫剤への急性高レベル曝露は、せん妄を引き起こす可能性があります。 「マンガン狂気」は、マンガンに長期間さらされた人に見られ、よく知られている「マッドハッター」症候群は、水銀中毒が原因です。 2a 型中毒性脳症は、疲労、情緒不安定、衝動制御、一般的な気分や動機などの人格の持続的な変化を特徴とし、有機溶剤への曝露と関連しています。 他のタイプの障害は改善するかもしれないが、パーソナリティ障害は曝露をやめた後も長期にわたって持続するという臨床研究および集団研究からの証拠が増えている.
健康状態から病気に至るまでの一連の過程において、気分の変化、過敏性、過度の疲労は、神経毒性物質への過剰暴露の最初の兆候であることがよくあります. 精神神経症状は現場での研究で日常的に調査されていますが、これらが精神的および社会的幸福に潜在的な影響を与える精神的健康問題として提示されることはめったにありません。 たとえば、精神的健康状態の変化は、個人の行動に影響を与え、家庭内での人間関係の困難や意見の相違につながります。 これらは、精神状態を悪化させる可能性があります。 個人的な問題を抱えた従業員を支援するために設計された従業員支援プログラムを備えた職場では、神経毒物質への暴露による潜在的なメンタルヘルスへの影響を知らないと、原因ではなく影響に対処する治療につながる可能性があります。 興味深いことに、「集団ヒステリー」または心因性疾患の発生が多数報告されている中で、神経毒性物質にさらされている産業が過大に報告されています。 大部分が測定されなかったこれらの物質が、報告された症状に寄与した可能性があります。
神経毒曝露の精神的健康症状は、心的外傷後ストレス障害と呼ばれる、事故、非常にストレスの多い出来事、重度の中毒に対する心理的反応と同様に、仕事の組織化の欠如に関連する心理社会的ストレッサーによって引き起こされる症状に似ている可能性があります(この記事の他の場所で説明されているように) 百科事典)。 メンタルヘルスの問題と労働条件との関係をよく理解することは、適切な予防および治療措置を開始するために重要です。
初期の神経毒性機能障害の評価における一般的な考慮事項
アクティブな労働者の初期の神経系機能障害を評価する場合、多くの要因を考慮に入れる必要があります。 第一に、検査される神経心理学的および神経生理学的機能の多くは年齢とともに減少します。 文化や教育レベルの影響を受けるものもあります。 曝露と神経系の変化との関係を考える際には、これらの要因を考慮に入れる必要があります。 これは、同様の社会人口学的地位を持つグループを比較するか、統計的な調整方法を使用して行うことができます。 ただし、避けるべき特定の落とし穴があります。 たとえば、年配の労働者は勤続年数が長い可能性があり、一部の神経毒性物質が老化を加速する可能性があることが示唆されています. 職業分離は、教育水準の低い労働者、女性、およびマイノリティを、曝露の高い仕事に閉じ込める可能性があります。 第二に、神経毒性物質を含むアルコール消費、喫煙、薬物も症状やパフォーマンスに影響を与える可能性があります. 職場をよく理解することは、神経系の機能不全に寄与するさまざまな要因を解明し、予防措置を講じる上で重要です。
神経毒性物質にさらされていない労働者は、その物質による神経毒性の健康への悪影響を発症することは決してありません. ゼロ暴露は、神経毒性の健康への影響に対する完全な保護につながります。 これがすべての一次予防策の本質です。
毒性試験
職場や職業環境に導入された新しい化合物は、神経毒性についてすでにテストされている必要があります。 市販前の毒性試験を怠ると、労働者との接触や深刻な健康被害につながる可能性があります。 米国の作業場へのメチル n-ブチル ケトンの導入は、試験されていない神経毒性物質が作業場に導入される可能性がある危険性の典型的な例です (Spencer and Schaumburg 1980)。
エンジニアリングコントロール
工学的管理 (例: 換気システム、閉鎖された生産施設) は、労働者の曝露を許容曝露限界未満に保つための最良の手段です。 すべての有毒物質が職場環境に放出されないようにする閉鎖化学プロセスが理想的です。 これが不可能な場合は、周囲の空気の蒸気を排出し、汚染された空気を労働者から遠ざけるように設計された閉鎖型換気システムが、適切に設計され、適切に維持され、適切に運用されている場合に役立ちます。
個人用保護装置
労働者の神経毒性物質との接触を減らすための工学的管理が利用できない状況では、個人用保護具を提供する必要があります。 職場の神経毒性物質は多く、曝露の経路は職場や作業条件によって異なるため、個人用保護具の種類は目前の状況に合わせて慎重に選択する必要があります。 たとえば、神経毒の鉛は、鉛を含んだ粉塵を吸い込んだり、食物や水に含まれる鉛の粒子を摂取したりすると、毒性を発揮する可能性があります。 したがって、個人用保護具は、両方の暴露経路から保護する必要があります。 これは、呼吸保護具と、鉛で汚染された食品や飲料の消費を防ぐための個人衛生対策の採用を意味します。 多くの神経毒性物質 (工業用溶剤など) では、無傷の皮膚からの物質の吸収が主な暴露経路です。 したがって、不浸透性の手袋、エプロン、およびその他の適切な装備を用意して、皮膚からの吸収を防ぐ必要があります。 これは、工学的制御または個人用呼吸保護具に追加されます。 個人用保護具を実行中の特定の作業に適合させるために、十分な計画を立てる必要があります。
管理制御
管理上の管理は、計画、トレーニング、職場での従業員のローテーション、生産プロセスの変更、および製品の代替 (Urie 1992)、および既存のすべての規制の厳格な遵守を通じて、職場の危険を減らすための管理上の取り組みで構成されます。
労働者の知る権利
雇用主は、労働者の健康に害を及ぼさない職場または職場体験を提供する責任を負いますが、労働者は、労働者を保護することを目的とした職場規則に従う責任があります。 労働者は、自分自身を守るために取るべき行動を知る立場になければなりません。 これは、労働者が接触する物質の神経毒性と、どのような保護手段を講じることができるかについて知る権利があることを意味します。
労働者の健康監視
状況が許せば、労働者は定期的に健康診断を受ける必要があります。 産業医またはその他の医療専門家による定期的な評価は、労働者の健康監視を構成します。 神経毒物を扱う、またはその周辺で働くことが知られている労働者については、医師は暴露の影響について熟知している必要があります。 たとえば、多くの有機溶剤に低レベルでさらされると、疲労、睡眠障害、頭痛、記憶障害などの症状が現れます。 大量の鉛の場合、手首からの落下および末梢神経障害は、鉛中毒の兆候となります。 神経毒中毒の徴候や症状がある場合は、労働者を神経毒のない場所に再配置し、神経毒の職場レベルを下げる努力をする必要があります。
神経組織に悪影響を与える物質によって引き起こされる神経毒物症候群は、米国における 40 の主要な職業障害の XNUMX つです。 神経毒の影響は、米国国立労働安全衛生研究所 (NIOSH) によって危険と見なされている薬剤の約 XNUMX% に対する暴露限界基準を確立するための基礎となっています。
神経毒は、神経組織の正常な機能を妨害し、不可逆的な細胞損傷を引き起こし、および/または細胞死を引き起こす可能性のある物質です。 特定の神経毒は、その特定の特性に応じて、神経系の選択された部位または特定の細胞要素を攻撃します。 非極性であるこれらの化合物は、脂溶性が高く、極性が高く脂溶性の低い化学物質よりも神経組織へのアクセスが容易です。 細胞の種類とサイズ、および脳のさまざまな領域で影響を受けるさまざまな神経伝達物質システム、先天的な保護的解毒メカニズム、細胞膜と細胞内小器官の完全性はすべて、神経毒反応に影響を与えます。
ニューロン (神経系の機能細胞単位) は代謝率が高く、神経毒による損傷のリスクが最も高く、オリゴデンドロサイト、星状細胞、ミクログリア、毛細血管内皮細胞がそれに続きます。 細胞膜構造の変化は、興奮性を損ない、インパルス伝達を妨げます。 毒性作用は、膜のタンパク質形態、液体含有量、およびイオン交換能力を変化させ、ニューロン、星状細胞の膨張、および毛細血管の内側を覆うデリケートな細胞への損傷を引き起こします。 神経伝達物質メカニズムの破壊は、シナプス後受容体へのアクセスをブロックし、誤った神経伝達物質効果を生み出し、天然の神経伝達物質の合成、貯蔵、放出、再取り込み、または酵素的不活性化を変化させます。 したがって、神経毒性の臨床症状は、多くの異なる要因によって決定されます: 神経毒性物質の物理的特性、それへの暴露量、細胞標的の脆弱性、毒素を代謝および排泄する生物の能力、および影響を受けた構造とメカニズムの修復能力。 表 1 に、さまざまな化学物質への曝露とその神経毒性症候群を示します。
表 1. 化学物質への曝露と関連する神経毒性症候群
神経毒 |
暴露源 |
臨床診断 |
病理の場所1 |
金属 |
|||
砒素 |
農薬; 顔料; 防汚塗料; 電気めっき産業; シーフード; 製錬所; 半導体 |
急性:脳症 慢性:末梢神経障害 |
不明 (a) 軸索 (c) |
Lead |
半田; リードショット; 違法ウイスキー; 殺虫剤; 車体ショップ; 蓄電池の製造; 鋳造所、製錬所; 鉛ベースの塗料; 鉛管 |
急性:脳症 慢性:脳症および末梢神経障害 |
血管 (a) 軸索 (c) |
マンガン |
鉄鋼業; 溶接作業; 金属仕上げ作業; 肥料; 花火、マッチのメーカー。 乾電池メーカー |
急性:脳症 慢性:パーキンソニズム |
不明 (a) 大脳基底核ニューロン (c) |
マーキュリー |
科学機器; 電気設備; アマルガム; 電気めっき産業; 写真; フェルト作り |
急性:頭痛、吐き気、振戦の開始 慢性:運動失調、末梢神経障害、脳症 |
不明 (a) 軸索 (c) 不明 (c) |
錫 |
缶詰産業; 半田; 電子部品; ポリビニルプラスチック; 殺菌剤 |
急性:記憶障害、発作、見当識障害 慢性:脳脊髄症 |
辺縁系のニューロン (a & c) ミエリン (c) |
溶剤 |
|||
二硫化炭素 |
ビスコースレーヨンの製造業者; 防腐剤; テキスタイル; ラバーセメント; ワニス; 電気めっき産業 |
急性:脳症 慢性:末梢神経障害、パーキンソニズム |
不明 (a) 軸索 (c) 未知の |
n-ヘキサン、 メチルブチルケトン |
塗料; ラッカー; ワニス; 金属洗浄化合物; 速乾性インク; ペイントリムーバー; 接着剤、接着剤 |
急性:昏睡 慢性: 末梢神経障害、不明 (a) 軸索 (c)、 |
|
ペルクロロエチレン |
ペイントリムーバー; 脱脂剤; 抽出剤; ドライクリーニング業界; 織物産業 |
急性:昏睡 慢性:末梢神経障害、脳症 |
不明 (a) 軸索 (c) 未知の |
トルエン |
ゴム溶剤; 洗浄剤; 接着剤; ベンゼンの製造業者; ガソリン、航空燃料; 塗料、シンナー; ラッカー |
急性:昏睡 慢性:運動失調、脳症 |
不明 (a) 小脳 (c) 未知の |
トリクロロエチレン |
脱脂剤; 塗装業; ワニス; スポットリムーバー; カフェイン除去のプロセス; ドライクリーニング業界; ゴム溶剤 |
急性:昏睡 慢性:脳症、頭蓋神経障害 |
不明 (a) 不明 (c) 軸索 (c) |
殺虫剤 |
|||
有機リン |
農産業の製造と応用 |
急性:コリン作動性中毒 慢性:運動失調、麻痺、末梢神経障害 |
アセチルコリンエステラーゼ (a) 脊髄の長い道 (c) 軸索 (c) |
カルバメート |
ノミの粉の農産業の製造と応用 |
急性:コリン作動性中毒 慢性:振戦、末梢神経障害 |
アセチルコリンエステラーゼ (a) ドーパミン作動系 (c) |
1 (a)、急性; (c)、慢性。
出典: 出版社の許可を得て Feldman 1990 を改変。
神経毒症候群の診断を確立し、それを神経毒以外の病因の神経疾患と区別するには、神経症状の病因と観察された徴候と症状を理解する必要があります。 特定の物質が神経組織に影響を与える可能性があるという認識; 曝露の記録; 影響を受けた個人の組織における神経毒および/または代謝産物の存在の証拠; 曝露と症状の出現との時間的関係の注意深い描写と、曝露が終了した後の症状の減少。
特定の物質が有毒な用量レベルに達したという証拠は、通常、症状が現れた後に欠けています. 環境モニタリングが継続されていない限り、神経毒物学的損傷の症例を認識するためには、高い指数の疑いが必要です。 中枢神経系および/または末梢神経系に関連する症状を特定することは、臨床医が特定の物質に焦点を当てるのに役立ちます. 痙攣、衰弱、震え/けいれん、食欲不振(体重減少)、平衡障害、中枢神経系の抑制、ナルコーシス(昏迷または無意識の状態)、視覚障害、睡眠障害、運動失調(随意筋の動きを調整できない)、疲労および触覚障害は、特定の化学物質にさらされた後によく報告される症状です。 一連の症状は、神経毒性物質への暴露に関連する症候群を形成します。
行動症候群
一部の労働者では、急性精神病、うつ病、慢性無関心に至るまで、主に行動的特徴を伴う障害が報告されています。 アルツハイマー病、動脈硬化、脳腫瘍の存在などの他の神経疾患に関連する記憶障害と、有機溶剤、金属、殺虫剤への毒物暴露に関連する認知障害を区別することが不可欠です。 一過性の意識障害または関連する運動障害を伴うまたは伴わないてんかん発作は、神経毒作用に関連して同様に現れる意識障害とは別に、一次診断として特定する必要があります。 頭痛、めまい、疲労、人格変化などの主観的および行動中毒症候群は、酩酊を伴う軽度の脳症として現れ、一酸化炭素、二酸化炭素、鉛、亜鉛、硝酸塩、または混合有機溶媒への暴露の存在を示している可能性があります。 中毒性脳症が疑われる患者の認知障害の要素を文書化するには、標準化された神経心理学的検査が必要であり、これらは他の病状によって引き起こされる認知症症候群と区別する必要があります。 テストの診断バッテリーで使用される特定のテストには、既知の神経毒の影響に敏感であることが以前に実証されているテストだけでなく、患者の機能と日常生活に関する予測を生成する認知機能テストの幅広いサンプリングが含まれている必要があります。 これらの標準化されたバッテリーには、特定のタイプの脳損傷および構造的欠損を有する患者で検証されたテストを含めて、これらの状態を神経毒性効果から明確に分離する必要があります. さらに、テストには、動機、心気症、うつ病、学習障害の影響を検出するための内部統制手段が含まれている必要があり、文化的および教育的背景の影響を考慮した言語が含まれている必要があります。
有毒物質にさらされた患者が経験する軽度から重度の中枢神経系障害には、連続性があります。
長時間溶剤にさらされた労働者は、永続的な中枢神経系機能の障害を示す可能性があります。 頭痛、疲労、記憶障害、食欲不振、びまん性胸痛などの過剰な自覚症状が報告されているため、個々のケースでこの効果を確認することはしばしば困難です。 たとえば、溶剤にさらされた家の塗装工と、さらされていない産業労働者を比較した疫学研究では、塗装工は、参照対象よりも知的能力と精神運動協調を測定する心理テストの平均スコアが有意に低いことが示されました。 また、画家たちは、記憶力と反応時間のテストで予想よりも大幅に低いパフォーマンスを示しました。 細心の注意と高い感覚運動速度を必要とするテストでは、数年間ジェット燃料にさらされた労働者とさらされていない労働者との違いも明らかでした. 心理的能力の低下や性格の変化も、自動車塗装業者の間で報告されています。 これらには、視覚的および言語的記憶、感情的反応性の低下、および言語的知能テストの成績の低下が含まれていました。
ごく最近では、物議を醸している神経毒症候群、 化学物質過敏症、と記載されています。 このような患者は、職場や環境で見られる低レベルのさまざまな化学物質にさらされると、複数の臓器系に関与するさまざまな機能を発達させます. 気分障害は、抑うつ、疲労、過敏性、および集中力の低下によって特徴付けられます。 これらの症状は、予測可能な刺激への曝露、多様な構造的および毒物学的クラスの化学物質による誘発によって、一般集団で有害反応を引き起こすレベルよりもはるかに低いレベルで再発します。 複合化学物質過敏症の症状の多くは、換気が悪く、合成建築材料からの揮発性物質の放出がある建物にいるときに、軽度の気分障害、頭痛、疲労、過敏性、および物忘れのみを示す個人に共通しています。そしてカーペット。 これらの環境から離れると、症状は消えます。
意識障害、発作および昏睡
例えば、一酸化炭素、二酸化炭素、メタン、または青酸などの組織呼吸を遮断する物質、または特定の有機溶媒などの神経への大量の含浸を引き起こす物質の存在下で、脳が酸素を奪われると、意識が生じることがあります。 有機リン系殺虫剤などの抗コリンエステラーゼ物質に曝露した労働者では、意識喪失の前に発作が起こることがあります。 発作は、脳腫脹に関連する鉛性脳症でも発生する可能性があります。 有機リン中毒に続く急性毒性の発現には、めまい、頭痛、かすみ目、筋症、胸痛、気管支分泌の増加、および発作の発生に先行する自律神経系の症状があります。 これらの副交感神経効果は、コリンエステラーゼ活性に対するこれらの毒性物質の阻害作用によって説明されます。
運動障害
マンガン、一酸化炭素、二硫化炭素、およびメペリジンの副産物である 1-メチル-4-フェニル-1,2,3,6 の毒性にさらされた労働者では、動きの鈍化、筋緊張の増加、および姿勢の異常が観察されています。 -テトラヒドロピリジン (MPTP)。 パーキンソン病のように見えることもあります。 毒物曝露に続発するパーキンソニズム 舞踏病やアテトーシスなどの他の神経障害の特徴があります。 これらの例では、典型的な「丸薬を転がす」振戦は見られず、通常、レボドパという薬に反応しません。 ジスキネジア (随意運動力の障害) は、ブロモメタン中毒の一般的な症状である可能性があります。 四肢のけいれんと同様に、指、顔、頬周囲の筋肉、首のけいれん運動が見られることがあります。 水銀中毒に続いて振戦がよくみられる。 運動失調 (筋肉活動の調整の欠如) に関連するより明白な振戦は、トルエン吸入後の個人に見られます。
オプソクローヌス あらゆる方向にぎくしゃくする異常な眼球運動です。 これは脳幹脳炎でよく見られますが、クロルデコン曝露後の特徴である可能性もあります. 異常は、重度の影響を受けた個人ではおそらく多方向の共役様式での両眼の突然の、不随意の、急速な、同時のけいれんの不規則なバーストで構成されます。
頭痛
亜鉛やその他の溶媒蒸気などのさまざまな金属ガスにさらされた後の頭痛の一般的な症状は、血管拡張 (血管の拡張) や脳浮腫 (腫れ) が原因である可能性があります。 痛みの経験は、一酸化炭素、低酸素症 (低酸素)、または二酸化炭素の状態と同様に、これらの状態に共通しています。 「シックハウス症候群」は、換気の悪い場所に存在する過剰な二酸化炭素が原因で頭痛を引き起こすと考えられています。
末梢性ニューロパシー
運動機能を司る末梢神経線維は、脊髄前角の運動ニューロンから始まります。 運動軸索は、神経支配する筋肉まで末梢に伸びています。 感覚神経線維は、脊髄の後根神経節または背側灰白質に神経細胞体を持っています。 遠位受容体で検出された末梢からの情報を受信すると、神経インパルスは神経細胞体に集中的に伝導され、そこで脳幹と大脳半球に情報を伝達する脊髄経路に接続されます。 一部の感覚線維は、脊髄内の運動線維と直接接続しており、反射活動の基礎を提供し、有害な感覚に対する迅速な運動反応を提供します。 これらの感覚と運動の関係は、体のすべての部分に存在します。 脳神経は、脊髄ニューロンではなく脳幹で発生する末梢神経相当物です。 感覚神経線維と運動神経線維は束になって一緒に移動し、末梢神経と呼ばれます。
末梢神経線維の毒性効果は、主に軸索に影響を与えるもの (axonopathies)、遠位の感覚運動損失に関与するもの、および主にミエリン鞘とシュワン細胞に影響を与えるものに分けることができます。 軸索障害は、軸索が最も長く、神経細胞体から最も離れている下肢の初期段階で明らかです。 ランダムな脱髄は、Ranvier のノード間のセグメントで発生します。 十分な軸索損傷が発生した場合、二次脱髄が続きます。 軸索が保存されている限り、シュワン細胞の再生と再ミエリン化が起こります。 中毒性神経障害で一般的に見られるパターンは、二次分節脱髄を伴う遠位軸索障害です。 ミエリンが失われると、神経インパルスの伝達速度が低下します。 したがって、間欠的なうずきやしびれが徐々に始まり、感覚や不快な感覚の欠如、筋力低下、萎縮が進行するのは、運動線維と感覚線維の損傷が原因です。 腱反射の減少または欠如、および上肢よりも下肢を含む解剖学的に一貫した感覚喪失のパターンは、末梢神経障害の特徴です。
運動の衰弱は四肢の遠位部に見られ、歩行が不安定になり、物体をつかむことができなくなります。 四肢の遠位部分がより広範囲に関与しますが、重症例では、近位筋の衰弱または萎縮も生じる可能性があります。 伸筋群は、屈筋の前に関与しています。 露出から外した後でも、症状が数週間進行することがあります。 神経機能の低下は、曝露からの除去後数週間持続する可能性があります。
神経障害の種類と重症度に応じて、末梢神経の電気生理学的検査は機能障害を記録するのに役立ちます。 伝導速度の低下、感覚または運動活動電位の振幅の減少、または潜伏期間の延長が観察されます。 運動または感覚伝導速度の低下は、一般に神経線維の脱髄に関連しています。 筋萎縮の存在下で正常な伝導速度値が維持されている場合は、軸索神経障害が示唆されます。 例外は、軸索神経障害で運動神経線維と感覚神経線維が進行性に失われる場合に発生します。これは、より大きな直径のより速く伝導する神経線維の脱落の結果として、最大伝導速度に影響を与えます。 線維の再生は軸索障害の回復の初期段階で発生し、特に遠位セグメントで伝導が遅くなります。 中毒性神経障害患者の電気生理学的研究には、上肢および下肢の運動および感覚伝導速度の測定を含める必要があります。 脚の腓腹神経の主な感覚伝導特性に特別な注意を払う必要があります。 これは、腓腹神経を生検に使用する場合に非常に価値があり、からかわれた神経線維の組織学と伝導特性との間の解剖学的相関関係を提供します。 神経の近位セグメントと遠位セグメントの伝導能力の差動電気生理学的研究は、おそらく脱髄に起因する、遠位毒物軸索障害の特定、または伝導の神経障害ブロックの位置を特定するのに役立ちます。
疑われる神経毒多発神経障害の病態生理学を理解することは、大きな価値があります。 例えば、n-ヘキサンやメチルブチルケトンによる神経障害の患者では、運動神経伝導速度が低下しますが、最も速く発火する繊維のみを刺激して測定結果として使用すると、値が正常範囲内に収まる場合があります。 . 神経毒性のあるヘキサカーボン溶媒は軸索変性を引き起こすため、ミエリンに二次的な変化が生じ、保存された導電性繊維によって生成される正常範囲内の値にもかかわらず、伝導速度の全体的な低下が説明されます。
電気生理学的手法には、直接伝導速度、振幅、潜伏の研究以外の特別なテストが含まれます。 体性感覚誘発電位、聴覚誘発電位、および視覚誘発電位は、特定の脳神経と同様に感覚伝導系の特性を研究する方法です。 求心性 - 遠心性回路は、第5脳神経から第7脳神経支配筋の応答までを含む瞬き反射テストを使用してテストできます。 H 反射には分節運動反射経路が関与します。 振動刺激は、より小さな繊維の関与からより大きな繊維を選択します。 反応を誘発するために必要な閾値を測定し、その反応の移動速度、筋肉収縮の振幅、または誘発された感覚活動電位の振幅とパターンを決定するために、適切に制御された電子技術が利用可能です。 . すべての生理学的結果は、臨床像に照らし、根底にある病態生理学的プロセスを理解して評価する必要があります。
まとめ
神経毒物症候群と原発性神経疾患との鑑別は、職業上の医師にとって手ごわい課題です。 良好な履歴を取得し、高度な疑念を維持し、個人および個人のグループを適切にフォローアップすることは、必要であり、やりがいがあります. 適切な診断は、有毒物質への継続的な曝露の危険から個人を早期に取り除き、不可逆的な神経学的損傷の可能性を防ぐことができるため、環境内の毒物または特定の職業的曝露に関連する病気を早期に認識することが重要です。 さらに、特定の状況で最も初期に影響を受けた症例を認識することで、まだ影響を受けていない他の人を保護する変更がもたらされる可能性があります。
神経機能試験用電池
無症状の神経学的徴候と症状は、神経毒にさらされた活動的な労働者の間で長い間注目されてきました。 しかし、1960 年代半ば以降、中毒の初期段階、知覚、精神運動、認知、感覚、および運動機能に見られる微妙で軽度の変化を検出できる高感度のテスト電池の開発に研究努力が集中するようになったのは、XNUMX 年代半ば以降のことです。 、影響を与えます。
作業現場での研究に使用するための最初の神経行動学的テスト バッテリーは、ヘレナ ハンニネンによって開発されました。ヘレナ ハンニネンは、毒性暴露に関連する神経行動学的障害の分野のパイオニアです (ハンニネン テスト バッテリー) (Hänninen and Lindstrom 1979)。 それ以来、開発、改良、そして場合によっては神経行動試験用バッテリーのコンピューター化への世界的な取り組みが行われてきました。 Anger (1990) は、オーストラリア、スウェーデン、英国、フィンランド、および米国からの 1995 つの作業現場の神経行動テスト バッテリーと、米国からの XNUMX つの神経毒性スクリーニング バッテリーについて説明しています。 さらに、コンピューター化された神経行動評価システム (NES) とスウェーデンのパフォーマンス評価システム (SPES) は、世界中で広く使用されています。 視覚、振動触覚知覚閾値、嗅覚、聴覚、揺れなどの感覚機能を評価するように設計されたテストバッテリーもあります (Mergler XNUMX)。 これらのバッテリーのいずれかを使用したさまざまな神経毒性物質の研究は、初期の神経毒性障害に関する私たちの知識に大きく貢献しました。 ただし、異なるテストが使用され、類似した名前のテストが異なるプロトコルを使用して管理される可能性があるため、研究間の比較は困難でした。
神経毒性物質に関する研究からの情報を標準化する試みにおいて、「コア」バッテリーの概念が世界保健機関 (WHO) の作業委員会によって提唱されました (Johnson 1987)。 会議時 (1985 年) の知識に基づいて、神経行動コア テスト バッテリー (NCTB) を構成する一連のテストが選択されました。NCTB は比較的安価で、手で管理するバッテリーであり、多くの国で成功裏に使用されています (Angerら 1993)。 このバッテリーを構成するテストは、神経毒性損傷に敏感であることが以前に示されている特定の神経系ドメインをカバーするために選択されました. 手作業による試験とコンピュータによる試験の両方を含む、より最近のコア バッテリーが、米国有毒物質疾病登録局のワークグループによって提案されました (Hutchison et al. 1992)。 両方の電池を表 1 に示します。
表 1. 初期の神経毒性効果を評価するための「コア」バッテリーの例
神経行動コア テスト バッテリー (NCTB)+ |
テスト順序 |
有害物質疾病登録庁 成人環境神経行動試験バッテリー (AENTB)+ |
||
機能ドメイン |
ホイール試乗 |
機能ドメイン |
ホイール試乗 |
|
運動安定性 |
Aiming (追撃照準 II) |
1 |
ビジョン |
視力、近コントラスト感度 |
注意/応答速度 |
単純な反応時間 |
2 |
色覚 (Lanthony D-15 不飽和化テスト) |
|
知覚運動速度 |
数字記号(WAIS-R) |
3 |
体性感覚 |
振動触覚知覚閾値 |
手先の器用さ |
サンタ・アナ (ヘルシンキ・ヴァージョン) |
4 |
運動強度 |
動力計(疲労評価含む) |
視覚・記憶 |
ベントン視覚保持 |
5 |
運動協調性 |
サンタアナ |
聴覚記憶 |
桁スパン (WAIS-R、WMS) |
6 |
より高い知的機能 |
レイヴン プログレッシブ マトリックス (改訂版) |
影響を及ぼす |
POMS (気分状態のプロファイル) |
7 |
運動協調性 |
フィンガータッピングテスト(片手)1 |
8 |
持続的な注意(認知)、速度(運動) |
単純反応時間 (SRT) (拡張)1 |
||
9 |
認知コーディング |
遅延リコール付きの記号数字1 |
||
10 |
学習と記憶 |
シリアルディジット学習1 |
||
11 |
教育水準の指標 |
語彙1 |
||
12 |
ムード |
ムードスケール1 |
1 コンピュータ化されたバージョンで利用可能。 WAIS = ウェクスラー成人知能指数; WMS = ウェクスラー メモリ スケール。
両方のコアバッテリーの著者は、バッテリーは結果を標準化するのに役立ちますが、決して神経系機能の完全な評価を提供するものではないことを強調しています. 暴露の種類に応じて、追加のテストを使用する必要があります。 例えば、マンガン暴露労働者の神経系機能不全を評価するためのテストバッテリーには、運動機能、特に急速な交互運動を必要とするものに関するより多くのテストが含まれ、メチル水銀暴露労働者向けのものには視野検査が含まれる. 特定の職場での検査の選択は、人がさらされる特定の毒素の作用に関する最新の知識に基づいて行う必要があります。
訓練を受けた心理学者によって管理および解釈される、より洗練されたテスト バッテリーは、神経毒中毒の臨床評価の重要な部分です (Hart 1988)。 これには、知的能力、注意力、集中力と方向性、記憶力、視知覚力、建設力と運動能力、言語、概念と実行機能、心理的幸福のテスト、および悪意の可能性の評価が含まれます。 患者のパフォーマンスのプロファイルは、過去と現在の医学的および心理的履歴、および暴露歴に照らして調べられます。 最終的な診断は、暴露の種類に関連して解釈される一連の欠陥に基づいています。
感情状態と性格の測定
神経毒性物質の影響に関する研究には、通常、症状アンケート、気分尺度、または性格指数の形で、情緒障害または人格障害の測定が含まれます。 上記の NCTB には、気分の定量的尺度である気分状態のプロファイル (POMS) が含まれています。 過去 65 日間の気分状態を表す 8 の修飾形容詞を使用して、緊張、抑うつ、敵意、活力、疲労、混乱の程度を導き出します。 職場での神経毒性暴露の比較研究のほとんどは、暴露と非暴露の違いを示しています。 スチレンに暴露された労働者に関する最近の研究では、シフト後の尿中マンデル酸レベル (スチレンの生物学的指標) と、緊張、敵意、疲労、および混乱のスケール スコアとの間の用量反応関係が示されています (Sassine et al. 1996)。
情緒状態と性格特性の両方を反映するミネソタ多面性人格指数 (MMPI) など、情緒と性格のより長く洗練されたテストは、主に臨床評価に使用されてきましたが、職場研究にも使用されてきました。 同様に、MMPI は、症状の誇張と一貫性のない反応の評価を提供します。 神経毒性物質への暴露歴のあるマイクロエレクトロニクス労働者の研究では、MMPI の結果から、臨床的に有意なレベルのうつ病、不安、身体的懸念、および思考障害が示されました (Bowler et al. 1991)。
電気生理学的測定
神経線維に沿った、ある細胞から別の細胞への情報の伝達によって生成される電気的活動を記録し、有毒物質にさらされた人の神経系で何が起こっているかを判断するのに使用できます。 神経活動の干渉は、伝達を遅らせたり、電気的パターンを変更したりする可能性があります。 電気生理学的記録には正確な機器が必要であり、研究室や病院で最も頻繁に実施されます。 しかし、職場での研究に使用するためのよりポータブルな機器を開発する努力がなされてきました.
電気生理学的測定は、多数の神経線維および/または線維の全体的な反応を記録します。適切に記録するには、かなりの量の損傷が存在する必要があります。 したがって、ほとんどの神経毒性物質について、感覚、運動、および認知の変化と同様に、症状は通常、電気生理学的差異が観察される前に、暴露された労働者のグループで検出できます。 神経毒性障害が疑われる人の臨床検査では、電気生理学的方法により、神経系損傷のタイプと程度に関する情報が得られます。 ヒトの初期神経毒性の検出に使用される電気生理学的手法のレビューは、Seppalainen (1988) によって提供されています。
感覚神経(脳に向かう神経)と運動神経(脳から遠ざかる神経)の神経伝導速度を電気神経記録法(ENG)で測定します。 異なる解剖学的位置で刺激し、別の場所で記録することにより、伝導速度を計算できます。 この手法は、大きな有髄繊維に関する情報を提供できます。 脱髄が存在する場合、伝導速度の低下が発生します。 伝導速度の低下は、神経学的症状がなくても、鉛にさらされた労働者の間で頻繁に観察されています (Maizlish and Feo 1994)。 末梢神経の伝導速度の遅さは、水銀、ヘキサカーボン、二硫化炭素、スチレン、メチル-n-ブチル ケトン、メチル エチル ケトン、および特定の溶媒混合物などの他の神経毒にも関連しています。 三叉神経 (顔面神経) は、トリクロロエチレン暴露の影響を受けます。 しかし、有毒物質が主に有髄または無髄の繊維に作用する場合、伝導速度は通常正常なままです。
筋電図 (EMG) は、筋肉の電気的活動を測定するために使用されます。 n-ヘキサン、二硫化炭素、メチル-n-ブチルケトン、水銀、特定の殺虫剤などの物質にさらされた労働者の間で、筋電図の異常が観察されています。 これらの変化は、多くの場合、ENG の変化と末梢神経障害の症状を伴います。
脳波の変化は、脳波検査 (EEG) によって証明されます。 有機溶剤中毒の患者では、局所的およびびまん性の徐波異常が観察されています。 いくつかの研究では、有機溶剤混合物、スチレン、二硫化炭素への暴露により、活動的な労働者の間で用量に関連した EEG 変化の証拠が報告されています。 有機塩素系農薬は、脳波異常を伴うてんかん発作を引き起こす可能性があります。 有機リン系殺虫剤やリン化亜鉛系殺虫剤への長期曝露による脳波の変化が報告されています。
誘発電位 (EP) は、感覚刺激に反応して神経系の活動を調べる別の手段を提供します。 記録電極は、特定の刺激に反応する脳の特定の領域に配置され、事象に関連する遅電位の潜時と振幅が記録されます。 広範囲の神経毒性物質の視覚、聴覚、および体性感覚刺激に応答して、潜伏期の増加および/またはピーク振幅の減少が観察されています。
心電図 (ECG または EKG) は、心臓の電気伝導の変化を記録します。 神経毒性物質の研究ではあまり使用されませんが、トリクロロエチレンに暴露された人の間で心電図波の変化が観察されています. 眼球運動の眼電図 (EOG) 記録は、鉛に暴露された労働者の変化を示しています。
脳画像技術
近年、さまざまな脳イメージング技術が開発されています。 コンピュータ断層撮影 (CT) 画像は、脳と脊髄の解剖学的構造を明らかにします。 それらは、溶剤にさらされた労働者と患者の脳萎縮を研究するために使用されてきました。 ただし、結果は一貫していません。 磁気共鳴画像法 (MRI) は、強力な磁場を使用して神経系を調べます。 脳腫瘍などの別の診断を除外することは、臨床的に特に有用です。 生化学的プロセスの画像を生成する陽電子放出断層撮影法 (PET) は、マンガン中毒によって引き起こされる脳の変化を研究するために使用されてきました。 単一光子放出コンピューター断層撮影 (SPECT) は、脳の代謝に関する情報を提供し、神経毒が脳にどのように作用するかを理解する上で重要なツールであることが証明される可能性があります。 これらの技術はすべて非常に高価であり、世界中のほとんどの病院や研究所では容易に利用できません.
神経毒性疾患の診断は容易ではありません。 エラーには通常 1 つのタイプがあります。神経毒性物質が神経学的症状の原因であると認識されていないか、または神経学的 (特に神経行動学的) 症状が職業上の神経毒性暴露の結果として誤って診断されているかのいずれかです。 神経毒性疾患の場合、早期診断が重要であるため、これらのエラーは両方とも危険である可能性があり、最善の治療法は、個々の症例へのさらなる暴露を避け、他の労働者の状態を監視して、同じ暴露を防ぐことです。危険。 一方、労働者が深刻な症状があると主張し、化学物質への暴露が原因であると疑っているが、実際には労働者が間違っているか、危険が実際には他の人に存在しない場合、職場で過度の警報が発生することがあります. 多くの国では、職業病の診断と治療、および職業病による労働能力の喪失と障害が保険でカバーされているため、正しい診断手順には実際的な理由もあります。 したがって、診断基準がしっかりしていない場合、金銭的補償が争われる可能性があります。 神経学的評価の決定木の例を表 XNUMX に示します。
表 1. 神経毒性疾患のディシジョン ツリー
I. 関連する露出レベル、長さ、および種類
Ⅱ. 中枢(CNS)または末梢(PNS)神経系の症状を知らず知らずのうちに増加させる適切な症状
III. 徴候および追加検査 CNS 機能障害:神経学、心理検査 PNS 機能障害:定量的感覚検査、神経伝導検査
IV. 鑑別診断から除外されるその他の疾患
曝露と症状
急性神経毒性症候群は主に、労働者が非常に高レベルの化学物質または化学物質の混合物に一般的に吸入によって短期間暴露されるという偶発的な状況で発生します。 通常の症状は、中枢神経系の機能低下によるめまい、倦怠感、意識消失などです。 被験体が曝露から離れると、症状はかなり急速に消失しますが、曝露が生命を脅かすほど強烈である場合を除きます。 このような状況では、危険の認識 しなければなりません 職場で発生し、被害者はすぐに新鮮な空気の中に連れ出されるべきです。
一般に、神経毒性の症状は、短期または長期の暴露後に発生し、多くの場合、比較的低レベルの職業暴露レベルで発生します。 これらの場合、職場で急性症状が発生している可能性がありますが、慢性中毒性脳症または中毒性神経障害の診断に急性症状が存在する必要はありません。 しかし、患者はしばしば、勤務日の終わりに頭痛、ふらつき、または粘膜の炎症を報告しますが、これらの症状は、最初は夜間、週末、または休暇中に消えます。 便利なチェックリストを表 2 に示します。
表 2. いくつかの主要な神経毒性物質への作業現場曝露の一貫した神経機能への影響
混合有機溶剤 |
二硫化炭素 |
スチレン |
オルガノホス- |
Lead |
マーキュリー |
|
買収 |
+ |
|
|
|
+ |
|
影響を及ぼす |
+ |
|
+ |
|
+ |
|
カテゴリ |
+ |
|
|
|
|
|
コーディング |
+ |
+ |
|
|
+ |
+ |
色覚 |
+ |
|
+ |
|
|
|
コンセプトシフト |
+ |
|
|
|
|
|
気を散らす |
|
|
|
|
+ |
|
インテリジェンス |
+ |
+ |
|
+ |
+ |
+ |
メモリ |
+ |
+ |
+ |
+ |
+ |
+ |
運動協調性 |
+ |
+ |
+ |
|
+ |
+ |
モーター速度 |
+ |
+ |
+ |
|
+ |
+ |
近視コントラスト感度 |
+ |
|
|
|
|
|
臭気知覚閾値 |
+ |
|
|
|
|
|
においの識別 |
+ |
|
|
|
+ |
|
人格 |
+ |
+ |
|
|
|
+ |
空間関係 |
+ |
+ |
|
|
+ |
|
振動触覚閾値 |
+ |
|
|
+ |
|
+ |
警戒 |
+ |
+ |
|
|
+ |
|
視野 |
|
|
|
|
+ |
+ |
語彙 |
|
|
|
|
+ |
|
出典: Anger 1990 から改作。
患者が神経毒化学物質にさらされたと仮定すると、神経毒疾患の診断は症状から始まります。 1985年、世界保健機関と北欧閣僚評議会の合同作業部会は、慢性有機溶剤中毒の問題を議論し、ほとんどの場合に見られる一連の中核症状を発見した(WHO/Nordic Council 1985)。 主な症状は、疲労感、記憶喪失、集中力の低下、自発性の喪失です。 これらの症状は通常、性格の基本的な変化の後に始まります。この変化は徐々に進行し、エネルギー、知性、感情、モチベーションに影響を与えます。 慢性中毒性脳症のその他の症状には、抑うつ、不快感、情緒不安定、頭痛、易怒性、睡眠障害、めまい (めまい) などがあります。 末梢神経系の関与もある場合、しびれや筋力低下が発生する可能性があります。 このような慢性症状は、暴露自体が終了した後、少なくとも XNUMX 年間続きます。
臨床検査と検査
臨床検査には、記憶、認知、推論、感情などの高次神経機能の障害に注意を払う必要がある神経学的検査を含める必要があります。 振戦、歩行、静止、協調などの小脳機能の障害。 および末梢神経機能、特に振動感受性およびその他の感覚のテスト。 心理テストは、精神運動、短期記憶、言語的および非言語的推論、知覚機能などの高次神経系機能の客観的な尺度を提供できます。 個々の診断では、テストには、その人の病前の知的レベルに関する手がかりを与えるいくつかのテストが含まれている必要があります。 学業成績と以前の職務成績の履歴、およびたとえば兵役に関連して以前に実施された可能性のある心理テストは、その人の通常の成績レベルの評価に役立ちます。
末梢神経系は、感覚モダリティ、振動および熱感受性の定量的テストで調べることができます。 神経伝導速度の研究と筋電図検査により、初期段階で神経障害が明らかになることがよくあります。 これらのテストでは、感覚神経機能に特に重点を置く必要があります。 感覚活動電位 (SNAP) の振幅は、軸索ニューロパシーの感覚伝導速度よりも頻繁に減少し、ほとんどの中毒性ニューロパシーの特徴は軸索です。 コンピュータ断層撮影法 (CT) や磁気共鳴画像法 (MRI) などの神経放射線検査では、通常、慢性中毒性脳症に関連するものは何も明らかになりませんが、鑑別診断には役立つ可能性があります。
鑑別診断では、他の神経疾患および精神疾患を考慮する必要があります。 他の病因による認知症や、さまざまな原因によるうつ病やストレス症状を除外する必要があります。 精神科の相談が必要かもしれません。 アルコール乱用は関連する交絡因子です。 アルコールの過度の使用は、溶剤曝露と同様の症状を引き起こしますが、一方で、溶剤曝露はアルコール乱用を誘発する可能性があることを示す論文があります. 神経障害の他の原因、特に閉じ込められた神経障害、糖尿病、腎臓病も除外する必要があります。 また、アルコールは神経障害を引き起こします。 脳症と神経障害の組み合わせは、これらのいずれか単独よりも中毒性の起源である可能性が高くなります.
最終決定では、ばく露を再度評価する必要があります。 露出のレベル、長さ、質を考慮して、適切な露出はありましたか? 溶剤は、精神有機症候群または中毒性脳症を誘発する可能性が高くなります。 しかし、ヘキサカーボンは通常、最初に神経障害を引き起こします。 鉛やその他の金属は神経障害を引き起こしますが、中枢神経系の関与は後で検出できます。
オラフ・アクセルソン*
*Axelson 1996 から採用。
職業暴露の神経毒性影響に関する初期の知識は、臨床観察を通じて現れました。 観察された影響は多かれ少なかれ急性であり、鉛や水銀などの金属、または二硫化炭素やトリクロロエチレンなどの溶剤への暴露に関係していました。 しかし、時間が経つにつれて、神経毒性物質のより慢性的で臨床的にあまり明白でない影響が、最新の検査方法とより大きなグループの体系的な研究を通じて評価されてきました. それでも、調査結果の解釈は物議を醸しており、溶媒暴露の慢性的な影響などについて議論されています (Arlien-Søborg 1992)。
慢性的な神経毒性の影響を解釈する際に遭遇する困難は、症状と徴候の多様性と曖昧さの両方、および決定的な疫学研究のために適切な疾患実体を定義するという関連する問題に依存します. 例えば、溶剤への暴露では、慢性的な影響には、記憶力と集中力の問題、疲労感、自発性の欠如、情動障害、過敏症、時にはめまい、頭痛、アルコール不耐症、性欲減退などがあります. 神経生理学的方法は、さまざまな機能障害も明らかにしており、これも単一の疾患実体に凝縮することは困難です。
同様に、中等度の鉛への暴露や、アルミニウム、鉛、マンガンへの暴露、または殺虫剤への暴露を伴う溶接など、他の職業上の暴露によっても、さまざまな神経行動への影響が生じるようです。 ここでも、有機塩素、有機リン、その他の殺虫剤にさらされた個人には、神経生理学的または神経学的徴候、とりわけ多発神経障害、振戦、および平衡障害があります。
言及されている多くのタイプの神経行動学的影響から疾患の実体を定義することに関与する疫学的問題を考慮すると、職業被ばくに関連して、多かれ少なかれ臨床的に明確に定義された神経精神障害を考慮することも自然になっています。
1970 年代以降、いくつかの研究が特に溶剤への曝露と精神有機症候群に焦点を当ててきました。 最近では、アルツハイマー型認知症、多発性硬化症、パーキンソン病、筋萎縮性側索硬化症、および関連する症状も、職業疫学の関心を集めています。
溶剤への曝露と精神有機症候群(または曝露が診断上の考慮に入れられる場合、臨床職業医学における中毒性慢性脳症)に関して、適切な疾患実体を定義する問題は明らかであり、最初に考慮に入れられた. ブロックで 脳症、認知症、および脳萎縮の診断が含まれていましたが、神経症、神経衰弱、および神経症も、医療行為において必ずしも互いに区別されていないため含まれていました (Axelson、Hane、および Hogstedt 1976)。 最近では、器質性認知症や脳萎縮などのより具体的な疾患の実体も、溶媒への曝露に関連しています (Cherry、Labréche、および McDonald 1992)。 しかし、調査結果は完全に一貫しているわけではなく、さまざまな神経精神障害の 3,565 例と 83,245 の病院の参照先を対象とした米国の大規模なケース参照先研究では、過剰な「初老期認知症」は見られませんでした (Brackbill、Maizlishおよびフィッシュバッハ 1990)。 しかし、煉瓦工と比較すると、スプレー塗装を除く白人男性の画家では、約 45% の身体障害を引き起こす神経精神障害がありました。
職業上の暴露は、精神有機症候群よりも特異的な障害にも関与しているようです。 したがって、1982 年に、多発性硬化症と接着剤からの溶剤曝露との関連性が、イタリアの靴産業で初めて指摘されました (Amaducci et al. 1982)。 この関係は、スカンジナビア (Flodin et al. 1988; Landtblom et al. 1993; Grönning et al. 1993) および他の場所でのさらなる研究によってかなり強化されたため、溶媒曝露に関する情報を含む 13 の研究をレビューで考慮することができます ( Landtblom et al. 1996)。 これらの研究のうち 1988 件は、メタアナリシスに含めるのに十分なデータを提供し、溶媒曝露のある個人の多発性硬化症のリスクが約 1993 倍であることを示しています。 いくつかの研究では、多発性硬化症を放射線作業、溶接、およびフェノキシ除草剤の使用と関連付けています (Flodin et al. 1990; Landtblom et al. 1989)。 パーキンソン病は農村地域でより一般的であるように思われ (Goldsmith et al. 1992)、特に若い年齢で (Tanner XNUMX)。 さらに興味深いことに、カナダのカルガリーで行われた調査では、除草剤への曝露のリスクが XNUMX 倍になることが示されました (Semchuk、Love、および Lee XNUMX)。
特定の暴露を思い出したすべての症例者は、フェノキシ除草剤またはチオカルバメートへの暴露を報告しました。 そのうちの 4 人は、パーキンソン様症候群の誘発物質である MPTP (N-メチル-1,2,3,6-フェニル-1979-テトラヒドロピリジン) と化学的に類似しているパラコートへの暴露を思い出しました。 しかし、パラコート労働者がそのような症候群に苦しんでいることはまだわかっていません (Howard 1990)。 カナダ、中国、スペイン、スウェーデンの事例研究では、特定されていない工業用化学物質、殺虫剤、金属、特にマンガン、鉄、アルミニウムへの曝露との関係が示されています (Zayed et al. XNUMX)。
米国の研究では、運動ニューロン疾患 (筋萎縮性側索硬化症、進行性球麻痺、進行性筋萎縮症を含む) のリスクの増加が、溶接とはんだ付けに関連して現れました (Armon et al. 1991)。 溶接も、電気工事と同様に危険因子として現れ、スウェーデンの研究では含浸剤も使用していました (Gunnarsson et al. 1992)。 神経変性疾患および甲状腺疾患の遺伝率は、溶媒への曝露および男性の性別と組み合わせると、15.6 もの高いリスクを示しました。 他の研究でも、鉛と溶剤への曝露が重要である可能性があることが示されています (Campbell、Williams、および Barltrop 1970; Hawkes、Cavanagh、および Fox 1989; Chio、Tribolo、および Schiffer 1989; Sienko et al. 1990)。
アルツハイマー病については、1991 のケースリファレント研究のメタアナリシスに職業上のリスクの明確な兆候は見られませんでしたが (Graves et al. 1993)、最近ではリスクの増加がブルーカラーの仕事と関連していました (Fratiglioni et al. 1995)。 )。 最古の年齢も含めた別の新しい研究では、溶剤への曝露がかなり強い危険因子である可能性があることが示されました (Kukull et al. 1995)。 アルツハイマー病が電磁界への曝露に関連している可能性があるという最近の示唆は、おそらくさらに驚くべきものでした (Sobel et al. XNUMX)。 これらの研究は両方とも、示された線に沿ったいくつかの新しい調査への関心を刺激する可能性があります。
したがって、職業神経疫学における現在の展望を考慮すると、簡単に概説したように、これまで多かれ少なかれ無視されてきた、神経学的および神経精神障害のさまざまな仕事関連の研究を追加で実施する理由があるようです. 多くの種類の癌で見られたのと同じように、さまざまな職業被ばくから何らかの影響が生じる可能性は低くありません。 さらに、がんの病因研究と同様に、いくつかの深刻な神経障害の背後にある最終的な原因または誘発メカニズムを示唆する新しい手がかりが、職業疫学から得られる可能性があります。
免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。