1バナー

 

1.血液

チャプターエディター: バーナード・D・ゴールドスタイン


目次

 

テーブル類

 

造血およびリンパ系
バーナード・D・ゴールドスタイン

 

白血病、悪性リンパ腫、多発性骨髄腫
ティモ・パルタネン、パオロ・ボフェッタ、エリザベート・ヴァイダーパス

 

血液に影響を与える薬剤または労働条件
バーナード・D・ゴールドスタイン

 

テーブル類

 

以下のリンクをクリックして、記事のコンテキストで表を表示します。

 

  1. 環境および職業性メトヘモグロビン血症の薬剤

 

 

 

 

 

 

 

 

木曜日、2月10 2011 21:23

造血およびリンパ系

リンパ造血系は、血液、骨髄、脾臓、胸腺、リンパ管、リンパ節で構成されています。 血液と骨髄は合わせて造血系と呼ばれます。 骨髄は、血液の細胞要素 (赤血球、好中球、血小板) を継続的に置換する細胞産生の場所です。 生産は、一連の成長因子によって厳密に制御されています。 好中球と血小板は生理機能を果たすために使用され、赤血球は最終的に老化し、その有用性を失います。 正常に機能するには、血液の細胞要素が適切な数で循環し、構造的および生理学的な完全性を保持する必要があります。 赤血球にはヘモグロビンが含まれており、これにより組織への酸素の取り込みと送達が可能になり、細胞の代謝が維持されます。 赤血球は通常、この機能を維持しながら、循環内で 120 日間生存します。 好中球は、微生物や他の病原体に対する炎症反応に関与するために、組織に向かう途中の血液中に見られます。 循環血小板は、止血において重要な役割を果たします。

骨髄の生産要件は驚異的なものです。 毎日、骨髄は体重 3 キログラムあたり 6 億個の赤血球を交換します。 好中球の循環半減期はわずか 1.6 時間であり、毎日体重 9.9 キログラムあたり XNUMX 億個の好中球を生成する必要があります。 血小板集団全体を XNUMX 日ごとに交換する必要があります。 多数の機能細胞を生成する必要があるため、骨髄は、DNA 合成を損なうか、赤血球、白血球、または血小板。 さらに、血液細胞は骨髄の子孫であるため、末梢血は骨髄活動の高感度で正確な鏡として機能します。 血液は静脈穿刺による分析に容易に利用でき、血液の検査は環境に起因する病気の初期の手がかりを提供できます。

血液系は、身体に入る物質の導管として、また潜在的に有害な物質への職業的曝露によって悪影響を受ける可能性のある器官系としての両方の役割を果たすと見なすことができます。 血液サンプルは暴露の生物学的モニターとして機能し、職業暴露がリンパ造血系および他の身体器官に及ぼす影響を評価する方法を提供する可能性があります。

環境要因は、ヘモグロビン合成の阻害、細胞の産生または機能の阻害、白血病発生、赤血球破壊の増加など、いくつかの方法で造血系に干渉する可能性があります。

職業上の危険に直接起因する血球数または機能の異常は、ベンゼン誘発性再生不良性貧血などの血液学的問題が最も重要な健康影響である場合と、血液への影響が直接的であるが鉛誘発性貧血など、他の臓器系への影響ほど重要ではありません。 血液障害は、職場の危険の二次的影響である場合があります。 たとえば、二次性多血症は、職業性肺疾患の結果である可能性があります。 表 1 は、合理的に十分に受け入れられているハザードを示しています。 直接 血液系への影響。

 


表 1. 環境的および職業的に獲得されたメトヘモグロビン血症に関与する選択された病原体

 

    • 硝酸塩で汚染された井戸水
    • 亜硝酸ガス (溶接およびサイロ内)
    • アニリン染料
    • 硝酸塩または亜硝酸塩を多く含む食品
    • モスボール(ナフタリン含有)
    • 塩素酸カリウム
    • ニトロベンゼン
    • フェニレンジアミン
    • トルエンジアミン

                     


                     

                    主に血液系に影響を与える職場の危険の例

                    ベンゼン

                    ベンゼンは、19 世紀後半に再生不良性貧血を引き起こす職場毒物として特定されました (Goldstein 1988)。 ベンゼンそのものではなく、ベンゼンの 1993 つまたは複数の代謝物が血液学的毒性の原因であるという十分な証拠がありますが、正確な代謝物とそれらの細胞内標的はまだ明確に特定されていません (Snyder、Witz、および Goldstein XNUMX)。

                    ベンゼンの代謝がその毒性に関与しているという認識、およびベンゼンなどの化合物の代謝に関与する代謝プロセスに関する最近の研究では、違いに基づいて、ベンゼンに対する人間の感受性に違いがある可能性が暗示されています。環境または遺伝的要因によって条件付けられた代謝率。 ベンゼン誘発性再生不良性貧血への家族的傾向のいくつかの証拠がありますが、これは明確に実証されていません. シトクロム P-450(2E1) は、ベンゼンの血液毒性代謝物の形成に重要な役割を果たしているようであり、中国での最近の研究から、このシトクロムの活性が高い労働者はより危険にさらされていることが示唆されています。 同様に、マイナーサラセミア、およびおそらく骨髄代謝回転が増加するその他の疾患は、ベンゼン誘発性再生不良性貧血の素因となる可能性があることが示唆されています (Yin et al. 1996)。 ベンゼンへの感受性にはいくつかの違いが示されていますが、文献からの全体的な印象は、クロラムフェニコールなどのさまざまな他の薬剤とは対照的に、感受性に広い範囲があり、再生不良性貧血を引き起こす特異体質の反応さえも含むということです。比較的些細なレベルの暴露では、ベンゼンへの暴露に対して事実上普遍的な反応があり、骨髄毒性を引き起こし、最終的には用量依存的に再生不良性貧血を引き起こします。

                    したがって、骨髄に対するベンゼンの効果は、ホジキン病やその他の癌の治療に使用される化学療法のアルキル化剤によって生じる効果と類似しています (Tucker et al. 1988)。 投与量の増加に伴い、 貧血、白血球減少症、または血小板減少症として最初に現れることがあります。 他の形成された血液要素の正常レベルの低下を少なくとも伴わない血小板減少症の人を観察することは、最も予想外であることに注意する必要があります. さらに、そのような孤立した血球減少症は重篤であるとは予想されない。 言い換えれば、正常範囲が 2,000 から 5,000 である 10,000 ml あたり 1988 の分離された白血球数は、白血球減少症の原因がベンゼン以外にあることを強く示唆します (Goldstein XNUMX)。

                    骨髄にはかなりの予備能力があります。 化学療法レジメンの一部としての骨髄のかなりの程度の低形成の後でも、血球数は通常、最終的には正常に戻ります。 しかし、そのような治療を受けた個人は、エンドトキシンなどの骨髄への攻撃にさらされたときに、以前にそのような化学療法剤で治療されたことがない個人と同じように高い白血球数を生成することによって反応することはできません. 骨髄前駆細胞を破壊し、実験室の範囲よりも低い血球数につながる十分な損傷を被ることなく骨髄の予備能力に影響を与えることができるベンゼンなどの薬剤の用量レベルがあると推測することは合理的です通常の。 定期的な医学的監視では、実際に曝露に苦しんでいる可能性のある労働者の異常が明らかにならない可能性があるため、労働者保護の焦点は予防であり、労働衛生の基本原則を採用する必要があります。 職場でのベンゼン曝露に関連する骨髄毒性の発現の程度は不明のままですが、ベンゼンへの単一の急性曝露が再生不良性貧血を引き起こす可能性は低いと思われます. この観察結果は、骨髄前駆細胞が細胞周期の特定の段階、おそらく分裂しているときにのみ危険にさらされるという事実を反映している可能性があり、すべての細胞が120回の急性曝露中にその段階にあるわけではありません. 血球減少症が発症する速度は、細胞型の循環寿命に部分的に依存します。 骨髄産生の完全な停止は、白血球、特に顆粒球の血球が循環中に XNUMX 日未満持続するため、最初に白血球減少症につながります。 次に血小板が減少し、その生存期間は約 XNUMX 日です。 最後に、合計 XNUMX 日間生き残る赤血球が減少します。

                    ベンゼンは、赤血球、血小板、顆粒球白血球の産生に関与する多能性幹細胞を破壊するだけでなく、実験動物とヒトの両方で循環リンパ球の急速な損失を引き起こすことがわかっています. これは、ベンゼンが暴露された労働者の免疫系に悪影響を与える可能性を示唆していますが、その影響はまだ明確に証明されていません (Rothman et al. 1996)。

                    ベンゼン暴露は再生不良性貧血と関連しており、これはしばしば致命的な障害です。 死は通常、白血球の減少、白血球減少によって体の防御システムが損なわれるための感染、または正常な凝固に必要な血小板の減少による出血によって引き起こされます。 重度の再生不良性貧血を発症する職場でベンゼンにさらされた個人は、同僚における同様の影響のセンチネルであると見なされなければなりません. センチネル個体の発見に基づく研究では、ベンゼンの血液毒性の明らかな証拠を示す労働者のグループがしばしば明らかになりました。 ほとんどの場合、再生不良性貧血に比較的早く屈服しない個人は、通常、ベンゼンへの暴露からの除去後に回復します. 以前にベンゼン誘発性の汎血球減少症 (すべての血球タイプの減少) を持っていた労働者グループの 1966 つの追跡調査では、1977 年後にわずかな血液学的異常が残っているだけでした (Hernberg et al. 1988)。 しかし、これらのグループの一部の労働者は、最初は比較的重度の汎血球減少症でしたが、最初に再生不良性貧血を発症し、次に骨髄異形成前白血病期を発症し、最終的に急性骨髄性白血病を発症することで病気が進行しました (Laskin and Goldstein XNUMX)。 何らかの原因による再生不良性貧血の個人は、急性骨髄性白血病を発症する可能性が予想よりも高いように見えるため、このような疾患の進行は予想外ではありません (De Planque et al. XNUMX)。

                    再生不良性貧血のその他の原因

                    職場の他の要因は再生不良性貧血に関連しており、最も顕著なのは放射線です。 骨髄幹細胞に対する放射線の影響は、白血病の治療に利用されてきました。 同様に、さまざまな化学療法用アルキル化剤は形成不全を引き起こし、これらの化合物の製造または投与を担当する作業員にリスクをもたらします。 放射線、ベンゼン、およびアルキル化剤はすべて、再生不良性貧血が発生しない閾値レベルを持っているようです.

                    クロラムフェニコールのように、微量でも形成不全を引き起こす可能性のある特異な作用様式を薬剤が有する場合、生産労働者の保護はより問題となる。 皮膚から容易に吸収されるトリニトロトルエンは、軍需工場の再生不良性貧血と関連しています。 他にもさまざまな化学物質が再生不良性貧血に関連していることが報告されていますが、因果関係を特定することはしばしば困難です。 例としては、殺虫剤のリンダン (ガンマベンゼン六塩化物) があります。 リンデンが形成不全に関連する比較的高レベルの暴露に続いて、一般に症例報告が現れました。 この所見はヒトに普遍的なものではなく、リンデンを多量に投与した実験動物でリンデンが誘発する骨髄毒性の報告はありません。 骨髄形成不全は、エチレングリコール エーテル、さまざまな殺虫剤、およびヒ素への暴露にも関連しています (Flemming and Timmeny 1993)。

                     

                    戻る

                    白血病

                    白血病は、世界中のすべての癌の 3% を占めています (Linet 1985)。 それらは、血液前駆細胞の悪性腫瘍のグループであり、起源の細胞タイプ、細胞分化の程度、および臨床的および疫学的挙動に従って分類されます。 一般的な XNUMX つのタイプは、急性リンパ性白血病 (ALL)、慢性リンパ性白血病 (CLL)、急性骨髄性白血病 (AML)、および慢性骨髄性白血病 (CML) です。 ALLは急速に発症し、小児期の白血病の最も一般的な形態であり、リンパ節の白血球に由来します。 CLL は骨髄リンパ球で発生し、非常にゆっくりと進行し、高齢者に多く見られます。 AML は成人の急性白血病の一般的な形態です。 まれなタイプの急性白血病には、単球性、好塩基性、好酸球性、血漿、赤血球、および有毛細胞の白血病が含まれます。 これらのまれな形態の急性白血病は、見出しの下にひとまとめにされることがあります。 急性非リンパ性白血病 (ANLL)、一部にはそれらが共通の幹細胞から生じるという信念によるものです。 CML のほとんどの症例は、フィラデルフィア染色体という特定の染色体異常によって特徴付けられます。 CML の最終的な結果は、AML への白血病性転換であることがよくあります。 真性多血症および本態性血小板血症、赤血球または血小板レベルの上昇を伴う腫瘍性疾患、ならびに骨髄線維症および骨髄異形成においても、AMLへの転換が起こる可能性があります。 これは、これらの障害を関連する骨髄増殖性疾患として特徴付けることにつながりました。

                    臨床像は、白血病の種類によって異なります。 ほとんどの患者は、疲労と倦怠感に苦しんでいます。 血液学的数の異常および異型細胞は白血病を示唆しており、骨髄検査を示しています。 貧血、血小板減少症、好中球減少症、白血球数の増加、および芽球数の増加は、急性白血病の典型的な徴候です。

                    入射: 白血病の年間全体的な年齢調整発生率は、男性で 2 あたり 12 ~ 100,000、女性で 1 あたり 11 ~ 100,000 の間で、集団によって異なります。 北米、西ヨーロッパ、イスラエルの人口では高い数値が見られ、アジアとアフリカの人口では低い数値が報告されています。 発生率は、年齢や白血病の種類によって異なります。 白血病の発生率は年齢とともに著しく増加し、XNUMX 歳から XNUMX 歳頃に発生する小児期のピークもあります。 白血病サブグループが異なれば、年齢パターンも異なります。 CLL は、女性の約 XNUMX 倍の頻度で男性に発生します。 成人白血病の発生率と死亡率は、過去数十年にわたって比較的安定している傾向があります。

                    危険因子: 白血病の発症には家族性要因が示唆されていますが、これに関する証拠は決定的ではありません。 一部は遺伝性である特定の免疫学的状態は、白血病の素因となるようです。 ダウン症候群は、急性白血病の予測因子です。 1993 つの発癌性レトロ ウイルス (ヒト T 細胞白血病ウイルス I、ヒト T リンパ球向性ウイルス II) は、白血病の発症に関連していることが確認されています。 これらのウイルスは初期段階の発がん物質であると考えられており、白血病の原因としては十分ではありません (Keating, Estey and Kantarjian XNUMX)。

                    電離放射線とベンゼンへの曝露は、白血病の確立された環境的および職業的原因です。 しかし、CLL の発生率は、放射線被曝と関連していません。 放射線およびベンゼン誘発性白血病は、多くの国で職業病として認識されています。

                    一貫性ははるかに低いですが、次のグループの労働者で白血病の過剰が報告されています。 電気技師; 電話回線担当者および電子技術者。 農民; 製粉業者; 庭師; 機械工、溶接工、金属工。 繊維労働者; 製紙工場の労働者; 石油産業および石油製品の流通の労働者。 職業環境におけるいくつかの特定の病原体は、白血病のリスク増加と一貫して関連しています。 これらの物質には、ブタジエン、電磁界、エンジン排気ガス、エチレンオキシド、殺虫剤と除草剤、機械加工液、有機溶剤、石油製品 (ガソリンを含む)、スチレン、未確認のウイルスが含まれます。 受胎前のこれらの物質への父方および母方の暴露は、子孫の白血病リスクを高めることが示唆されているが、現時点でそのような暴露が原因であると立証するには証拠が不十分である.

                    治療と予防: 男性の白血病症例の最大 75% が予防可能である可能性があります (International Agency for Research on Cancer 1990)。 放射線やベンゼンへの被ばくを避けることで白血病のリスクは減少しますが、世界全体での潜在的な減少は推定されていません。 白血病の治療には、化学療法(単剤または併用)、骨髄移植、およびインターフェロンが含まれます。 ALL と AML の両方における骨髄移植は、25 ~ 60% の無病生存率と関連しています。 寛解に至らない患者や再発した患者の予後は不良です。 再発した患者のうち、約 30% が 10 回目の寛解を達成します。 寛解を達成できない主な原因は、感染症と出血による死亡です。 未治療の急性白血病の生存率は、診断から 1 年以内に 6% です。 治療開始前の CLL 患者の生存期間の中央値は XNUMX 年です。 生存期間は、最初に診断が下されたときの病期によって異なります。

                    白血病は、ホジキン病、リンパ腫、骨髄腫、卵巣癌、乳癌などの別の悪性腫瘍の放射線および特定の化学療法剤による治療後に発生する可能性があります。 白血病のこれらの二次症例のほとんどは、前白血病状態である急性非リンパ球​​性白血病または骨髄異形成症候群です。 染色体異常は、治療に関連する白血病と、放射線およびベンゼン曝露に関連する白血病の両方で、より容易に観察されるようです。 これらの急性白血病は、治療に抵抗する傾向も共有しています。 ras 癌遺伝子の活性化は、leukaemogens への曝露のリスクが高いと見なされる専門職で働いていた AML 患者でより頻繁に起こることが報告されています (Taylor et al. 1992)。

                    悪性リンパ腫および多発性骨髄腫

                    悪性リンパ腫は、主にリンパ系組織および器官に影響を与える新生物の異種グループを構成します。 悪性リンパ腫は、ホジキン病 (HD) (国際疾病分類、ICD-9 201) と非ホジキンリンパ腫 (NHL) (ICD-9 200、202) の 9 つの主要な細胞型に分けられます。 多発性骨髄腫 (MM) (ICD-203 1) は、骨髄内の形質細胞の悪性腫瘍であり、通常、すべての悪性腫瘍の 1993% 未満を占めます (国際がん研究機関 1985)。 4.2 年、悪性リンパ腫と多発性骨髄腫は、世界中のすべてのがんの中で 316,000 位にランクされました。 それらは、推定されるすべての新しい癌症例の 1993% を表し、XNUMX の新しい症例に達しました (Parkin、Pisani、および Ferlay XNUMX)。

                    悪性リンパ腫の死亡率と発生率は、世界中の社会経済的カテゴリー全体で一貫したパターンを明らかにしていません。 子供のHDは発展途上国でより一般的である傾向がありますが、より発展した地域の国の若年成人では比較的高い率が観察されています. 一部の国では、より高い社会経済的グループの人々の間でNHLが過剰であるように思われますが、他の国ではそのような明確な勾配は観察されていません.

                    職業上の曝露は悪性リンパ腫のリスクを高める可能性がありますが、疫学的証拠はまだ決定的ではありません. アスベスト、ベンゼン、電離放射線、塩素化炭化水素溶剤、木粉、皮革やゴムタイヤの製造における化学物質は、詳細不明の悪性リンパ腫のリスクと関連している因子の例です。 NHL は農家の間でより一般的です。 HD、NHL、および MM のさらに疑わしい職業病原体を以下に示します。

                    ホジキン病

                    ホジキン病は、多核巨細胞 (Reed-Sternberg) 細胞の存在を特徴とする悪性リンパ腫です。 縦隔と頸部のリンパ節が約 90% の症例に関与していますが、他の部位にも発生する可能性があります。 HD の組織学的サブタイプは、臨床的および疫学的挙動が異なります。 ライ分類システムには、HD の XNUMX つのサブタイプが含まれています。 HD の診断は生検によって行われ、治療は放射線療法単独または化学療法との併用です。

                    HD 患者の予後は、診断時の病期によって異なります。 縦隔に大きな病変がない患者の約 85 ~ 100% は、治療開始から約 8 年間再発することなく生存します。 大量の縦隔病変がある場合、約 50% の症例で再発します。 放射線療法と化学療法には、前述の続発性急性骨髄性白血病など、さまざまな副作用が伴う場合があります。

                    HD の発生率は、時間の経過とともに大きな変化を遂げていませんが、率が低下した北欧諸国の人口など、いくつかの例外があります (国際がん研究機関 1993)。

                    入手可能なデータによると、1980 年代のコスタリカ、デンマーク、フィンランドの人口における HD の年間発生率の中央値は、男性で 2.5 人あたり 100,000、女性で 1.5 人あたり 100,000 でした (世界人口に標準化)。 これらの数値は、1.7 の性比をもたらしました。 イタリア、米国、スイス、アイルランドでは男性の割合が最も高く、米国とキューバでは女性の割合が最も高かった。 日本と中国では発生率が低いことが報告されています (国際がん研究機関 1992)。

                    ウイルス感染は、HD の病因に関与していると疑われています。 ヘルペス ウイルスであるエプスタイン-バーウイルスによって誘発される伝染性単核球症は、HD のリスク増加と関連していることが示されています。 ホジキン病も家族内でクラスター化する可能性があり、他の時空間群の症例が観察されていますが、そのようなクラスターの背後に共通の病因学的要因があるという証拠は弱いです.

                    職業的要因が HD のリスク増加につながる程度は確立されていません。 有機溶剤、フェノキシ除草剤、木材粉塵の XNUMX 種類が主な疑わしい病原体ですが、疫学的証拠は限られており、議論の余地があります。

                    非ホジキンリンパ腫

                    NHL の約 98% はリンパ球性リンパ腫です。 リンパ球性リンパ腫の少なくとも 1993 つの異なる分類が一般的に使用されています (Longo et al. XNUMX)。 さらに、流行性の悪性腫瘍であるバーキットリンパ腫は、熱帯アフリカとニューギニアの特定の地域で流行しています。

                    NHL の XNUMX ~ XNUMX% は、化学療法および/または放射線療法で治癒可能です。 骨髄移植が必要になる場合があります。

                    入射: NHL の高い年間発生率 (12 人あたり 100,000 人以上、世界標準人口に標準化) は、1980 年代に、米国、特にサンフランシスコとニューヨーク市、およびいくつかのスイスのカントンの白人人口で報告されています。カナダ、トリエステ(イタリア)、ポルトアレグレ(ブラジル、男性)。 NHL の発生率は通常、女性よりも男性の方が高く、男性の典型的な過剰率は女性よりも 50 ~ 100% 高い。 しかし、キューバとバミューダの白人集団では、発生率は女性の方がわずかに高い (国際がん研究機関 1992)。

                    NHL の発生率と死亡率は、世界中の多くの国で上昇しています (国際がん研究機関 1993)。 1988 年までに、米国の白人男性の年間平均発生率は 152% 増加しました。 増加の一部は、医師の診断方法の変化によるものであり、一部は、ヒト免疫不全ウイルス (HIV、エイズに関連する)、その他のウイルス、および免疫抑制化学療法によって引き起こされる免疫抑制状態の増加によるものです。 これらの要因はすべての増加を説明するものではなく、残りの増加のかなりの部分は、いくつかのまれな要因と同様に、食習慣、染毛剤などの環境曝露、おそらく家族の傾向によって説明される可能性があります (Hartge and Devesa 1992)。

                    職業的決定要因は、NHL の発症に関与していると疑われています。 米国では NHL の 10% が職業被ばくに関連していると現在推定されているが (Hartge and Devesa 1992)、この割合は時期や場所によって異なる。 職業上の原因は十分に確立されていません。 NHL の過剰なリスクは、発電所の仕事、農業、穀物処理、金属加工、石油精製、木工に関連しており、化学者の間で発見されています。 NHL リスクの増加に関連する職業暴露には、エチレンオキシド、クロロフェノール、肥料、除草剤、殺虫剤、染毛剤、有機溶剤、および電離放射線が含まれます。 フェノキシ酢酸除草剤への曝露に関する多くの肯定的な結果が報告されています (Morrison et al. 1992)。 関連する除草剤の一部は、2,3,7,8-テトラクロロジベンゾ-パラ-ダイオキシン (TCDD)。 ただし、NHL の職業病因に関する疫学的証拠はまだ限られています。

                    多発性骨髄腫

                    多発性骨髄腫 (MM) は、主に骨 (特に頭蓋骨)、骨髄、および腎臓に関与します。 これは、免疫グロブリンを合成および分泌する B リンパ球由来細胞の悪性増殖を表しています。 診断は、放射線検査、MM 特異的なベンス-ジョーンズ タンパク尿の検査、骨髄中の異常な形質細胞の測定、および免疫電気泳動を使用して行われます。 MM は、骨髄移植、放射線療法、従来の化学療法または多剤化学療法、および免疫療法で治療されます。 治療を受けた MM 患者は、平均で 28 ~ 43 か月生存します (Ludwig and Kuhrer 1994)。

                    MM の発生率は、加齢とともに急激に増加します。 年齢で標準化された高い年間発生率 (男性で 5 万人あたり 10 ~ 100,000 人、女性で 4 万人あたり 6 ~ 100,000 人) は、米国の黒人集団、マルティニーク島、およびニュージーランドのマオリ族で見られます。 多くの中国人、インド人、日本人、およびフィリピン人の集団では、発生率が低い (男性で 10 人年当たり 100,000 未満、女性で 0.3 人年当たり 100,000 未満) (International Agency for Research on Cancer 1992)。 多発性骨髄腫の発生率は、1960 年代以降、ヨーロッパ、アジア、オセアニア、および黒人と白人の両方の米国の人口で増加していますが、多くのヨーロッパの人口では増加が横ばい傾向にあります (国際研究機関がん 1993)。

                    世界中で、ほぼ一貫して男性の MM 発生率が過剰になっています。 この超過分は通常、30 ~ 80% 程度です。

                    MM の家族性および他のケースのクラスター化が報告されていますが、そのようなクラスター化の原因に関する証拠は決定的ではありません。 白人集団とは対照的に、米国の黒人集団における過剰な発生率は、集団グループ間で異なる宿主感受性の可能性を示しており、これは遺伝的である可能性があります。 慢性免疫疾患は、MM のリスクと関連している場合があります。 MM の社会階級分布に関するデータは限られており、勾配に関する結論には信頼性がありません。

                    職業的要因: ガソリンにさらされた労働者と製油所労働者における MM のリスク上昇の疫学的証拠は、ベンゼンの病因を示唆している (Infante 1993)。 過剰な多発性骨髄腫が、農家や農場労働者に繰り返し観察されています。 農薬は、エージェントの疑わしいグループを表しています。 しかしながら、フェノキシ酢酸除草剤の発がん性の証拠は不十分である(Morrison et al. 1992)。 ダイオキシンは、一部のフェノキシ酢酸除草剤の不純物である場合があります。 2,3,7,8-テトラクロロジベンゾ-で汚染された地域に住んでいる女性では、MM の有意な過剰が報告されています。パラ- イタリア、セベソ近くのプラントでの事故後のダイオキシン (Bertazzi et al. 1993)。 Seveso の結果は、1974 年間の追跡調査中に発生した XNUMX つの症例に基づいており、関連性を確認するにはさらなる観察が必要です。 農家と農場労働者のリスク増加の別の考えられる説明は、いくつかのウイルスへの暴露です (Priester と Mason XNUMX)。

                    MM のリスク増加と関連付けられているその他の疑わしい職業および職業病原体には、画家、トラック運転手、アスベスト、エンジンの排気ガス、ヘアカラー製品、放射線、スチレン、塩化ビニル、および木粉が含まれます。 これらの職業とエージェントの証拠はまだ決定的ではありません。

                     

                    戻る

                    循環赤血球

                    ヘムの変化によるヘモグロビン酸素送達の干渉

                    赤血球の主な機能は、組織に酸素を供給し、二酸化炭素を除去することです。 肺での酸素の結合と、必要に応じた組織レベルでの酸素の放出は、慎重にバランスのとれた一連の物理化学反応に依存しています。 その結果、複雑な解離曲線が得られ、健康な個体では、標準的な大気条件下で赤血球が酸素で最大限に飽和し、酸素レベル、pH、および代謝活動の他の指標に基づいてこの酸素が組織に放出されます。 酸素の送達は、酸素化赤血球の流量、粘度および血管の完全性の関数にも依存します。 正常なヘマトクリット (赤血球の体積) の範囲内では、血球数の減少が粘度の減少によって相殺されるようにバランスが取られ、流れが改善されます。 ヘマトクリットが 30% 以下に下がるまでは、症状が出るほどの酸素供給の減少は通常観察されません。 逆に、赤血球増加症で見られるように、正常範囲を超えるヘマトクリットの増加は、血流に対する粘度の増加の影響により、酸素供給を減少させる可能性があります。 例外は鉄欠乏症で、弱さと倦怠感の症状が現れます。これは主に関連する貧血ではなく、鉄分不足が原因です (Beutler、Larsh、および Gurney 1960)。

                    一酸化炭素はどこにでもある気体で、ヘモグロビンの酸素輸送能力に深刻な、場合によっては致命的な影響を与える可能性があります。 一酸化炭素については、本書の化学セクションで詳しく説明しています。 百科事典.

                    メトヘモグロビン産生化合物。 メトヘモグロビンは、組織に酸素を届けることができないヘモグロビンの別の形態です。 ヘモグロビンでは、分子のヘム部分の中心にある鉄原子は、酸素の輸送に関与するために、化学的に還元された鉄の状態でなければなりません。 ヘモグロビン中の一定量の鉄は、継続的に酸化されて鉄の状態になります。 したがって、血液中の総ヘモグロビンの約 0.5% はメトヘモグロビンであり、これは酸素を輸送できないヘモグロビンの化学酸化型です。 NADH依存酵素であるメトヘモグロビンレダクターゼは、鉄を還元して鉄ヘモグロビンに戻します。

                    アニリン染料を使用する産業などでは、職場の多くの化学物質が臨床的に重要なレベルのメトヘモグロビンを誘発する可能性があります。 職場でメトヘモグロビン血症を引き起こすことが頻繁に発見されている他の化学物質は、ニトロベンゼン、その他の有機および無機の硝酸塩と亜硝酸塩、ヒドラジン、およびさまざまなキノンです (Kiese 1974)。 これらの化学物質の一部を表 1 に示し、本書の化学物質セクションで詳しく説明します。 百科事典. チアノーゼ、錯乱、その他の低酸素症の徴候は、メトヘモグロビン血症の通常の症状です。 このような化学物質に慢性的にさらされている人は、メトヘモグロビン レベルが約 10% 以上になると唇が青くなることがあります。 それらは他の明らかな効果を持たないかもしれません。 血液は、メトヘモグロビン血症に特徴的なチョコレートブラウン色をしています。 治療は、さらなる暴露を避けることからなる。 通常、メトヘモグロビン値が 40% を超えると、重大な症状が現れることがあります。 メチレン ブルーまたはアスコルビン酸による治療は、メトヘモグロビン レベルの低下を加速することができます。 グルコース-6-リン酸デヒドロゲナーゼ欠乏症の人は、メチレンブルーで治療すると溶血が加速する可能性があります(グルコース-6-リン酸デヒドロゲナーゼ欠乏症の議論については以下を参照).

                    異常なヘモグロビンのヘテロ接合性、または赤血球のNADH依存性メトヘモグロビンレダクターゼ欠損のホモ接合性により、持続性メトヘモグロビン血症を引き起こす遺伝性疾患があります。 この酵素欠乏症のヘテロ接合体である個人は、正常な酵素レベルを持つ個人のように、化学物質への暴露によって引き起こされる上昇したメトヘモグロビン レベルを迅速に低下させることができません。

                    ヘモグロビンの鉄成分を酸化することに加えて、メトヘモグロビン血症を引き起こす化学物質またはその代謝物の多くは、比較的非特異的な酸化剤でもあり、高レベルではハインツ体溶血性貧血を引き起こす可能性があります。 このプロセスは、ヘモグロビンの酸化変性を特徴とし、ハインツ小体として知られる点状の膜結合赤血球封入体の形成につながります。これは特別な染色で識別できます。 赤血球膜への酸化的損傷も発生します。 これは重大な溶血につながる可能性がありますが、表 1 に挙げた化合物は主に、通常は限定的なプロセスである溶血ではなく、生命を脅かす可能性があるメトヘモグロビンの形成を通じて悪影響を及ぼします。

                    本質的に、1 つの異なる赤血球防御経路が関与しています。 (2) ヘキソース一リン酸 (HMP) シャントを介した NADPH 依存プロセス。これにより、ハインツ小体溶血性貧血を引き起こす可能性のある酸化種から防御する手段として、還元型グルタチオンが維持されます (図 1)。 ハインツ小体溶血は、メトヘモグロビン減少効果のために NADPH を必要とするため、メトヘモグロビン血症患者をメチレン ブルーで治療すると悪化する可能性があります。 溶血はまた、(1)NADPH酸化防御経路の酵素の2つが欠損している、または(6)不安定なヘモグロビンが遺伝している個人の臨床像のより顕著な部分になります。 この章で後述するグルコース-6-リン酸デヒドロゲナーゼ (GXNUMXPD) 欠損症を除いて、これらは比較的まれな疾患です。

                    図 1. オキシダント防御と関連反応の赤血球酵素

                    GSH + GSH + (O) ←-グルタチオンペルオキシダーゼ-→ GSSG + H2O

                    GSSG + 2NADPH ←-グルタチオンペルオキシダーゼ-→ 2GSH + 2NADP

                    グルコース-6-リン酸 + NADP ←-G6PD-→ 6-ホスホグルコン酸 + NADPH

                    Fe+++・ヘモグロビン(メトヘモグロビン)+NADH ←-メトヘモグロビン還元酵素-→ Fe++・ヘモグロビン

                    酸化剤によって生成されるヘモグロビン変化の別の形態は、スルフェモグロビンとして知られる変性種です。 この不可逆的な生成物は、酸化剤によって生成された重大なメトヘモグロビン血症の個人の血液で検出できます。 スルフェモグロビンは、硫化水素中毒時に形成される特定の生成物に付けられた名前でもあり、より適切には.

                    溶血剤: 職場にはさまざまな溶血剤があります。 多くの人にとって懸念される毒性はメトヘモグロビン血症です。 他の溶血剤には、ナフタレンおよびその誘導体が含まれる。 さらに、銅などの特定の金属、およびトリブチルスズなどの有機金属は、少なくとも動物モデルでは、赤血球の生存を短縮します。 軽度の溶血は、外傷性の身体活動中にも発生する可能性があります (行進ヘモグロビン尿症)。 より現代的な観察では、長時間の運動による白血球数の増加 (ジョガー白血球増加症) があります。 赤血球の形成と労働者の生存に影響を与える金属の中で最も重要なものは鉛です。 百科事典。

                    アルシン: 正常な赤血球は、循環中に 120 日間生存します。 この生存期間の短縮は、骨髄による赤血球産生の増加によって補償されない場合、貧血につながる可能性があります。 溶血には本質的に 1 つのタイプがあります。 (2)脾臓または肝臓内で赤血球が破壊される血管外溶血。

                    最も強力な血管内溶血素の XNUMX つは、アルシン ガス (AsH3)。 比較的少量のこの薬剤を吸入すると、循環内の赤血球が腫れ、最終的に破裂します。 職場でのアルシン曝露と急性溶血エピソードとの因果関係を検出するのは難しいかもしれない(Fowler and Wiessberg 1974)。 これは、暴露と症状の発症の間にしばしば遅延があるためでもありますが、主な理由は、暴露源が明らかでないことが多いためです. アルシンガスは商業的に製造および使用されており、現在では電子産業でよく使用されています。 しかし、急性溶血エピソードの公表された報告のほとんどは、例えば、ヒ素で汚染された金属で作られた容器に酸が加えられた場合など、産業プロセスの望ましくない副産物としてアルシンガスが予期せず放出されたことによるものです。 酸性化などの化学的にヒ素を減らすプロセスは、アルシンガスの放出につながる可能性があります. ヒ素は多くの金属や石炭などの有機物質の汚染物質になる可能性があるため、アルシンへの曝露は予期しないことがよくあります。 アンチモンの水素化物であるスチビンは、アルシンと同様の溶血効果を生み出すようです。

                    赤血球が完全に失われると、直接死に至る可能性があります。 (ゼロのヘマトクリットが報告されています。)しかし、完全な溶血を引き起こすレベルよりも低いアルシンレベルでの主要な懸念は、循環内のヘモグロビンの大量放出による急性腎不全です. はるかに高いレベルでは、アルシンは急性肺水腫を引き起こし、おそらく直接的な腎臓への影響を引き起こす可能性があります. 低血圧は、急性エピソードを伴うことがあります。 通常、アルシンを吸入してから症状が現れるまでには、少なくとも数時間の遅れがあります。 ヘモグロビン尿症による赤い尿に加えて、患者はしばしば腹痛や吐き気、多くの原因による急性血管内溶血に付随して起こる症状を訴えます (Neilsen 1969)。

                    治療は、腎灌流の維持と正常な血液の輸血を目的としています。 アルシンの影響を受けた循環赤血球はある程度血管内溶血に運命づけられているように見えるため、アルシンに曝露された赤血球が曝露されていない細胞に置き換わる交換輸血が最適な治療法であると思われる. 重度の生命を脅かす出血の場合と同様に、組織に酸素を送達できるように、置換赤血球が適切な 2,3-ジホスホグリセリン酸 (DPG) レベルを持っていることが重要です。

                    その他の血液疾患

                    白血球

                    循環する多形核白血球の産生または生存に比較的選択的に影響を与えることが知られている、プロピルチオ尿素 (PTU) などのさまざまな薬物があります。 対照的に、非特異的な骨髄毒素は、赤血球や血小板の前駆体にも影響を与えます。 そのような薬物の調製または投与に従事する労働者は危険にさらされていると見なされるべきです。 ジニトロフェノール中毒の労働者に完全な顆粒球減少症が報告されている. リンパ球の数と機能、特にサブタイプの分布の変化は、職場や一般環境でのさまざまな化学物質、特に塩素化炭化水素、ダイオキシン、および関連化合物による影響の可能性のある微妙なメカニズムとして、より注目されています。 そのような変化の健康への影響の検証が必要です。

                    凝固

                    白血球減少症と同様に、循環血小板の産生または生存を選択的に減少させる多くの薬物があり、そのような薬剤の調製または投与に関与する労働者にとって問題となる可能性があります。 そうでなければ、労働者の血小板減少症の報告は散在するだけです。 ある研究では、トルエンジイソシアネート (TDI) が血小板減少性紫斑病の原因であるとされています。 凝固に関与するさまざまな血液因子の異常は、通常、仕事の結果として認められることはありません。 血友病などの既存の凝固異常を持つ個人は、多くの場合、労働力に入るのが困難です。 ただし、慎重に検討していくつかの仕事を除外することは合理的ですが、そのような個人は通常、職場で正常に機能することができます。

                    職場での血液学的スクリーニングと監視

                    感受性のマーカー

                    サンプルの入手が容易であることもあり、ヒトの血液成分の遺伝的変異については、他の臓器の遺伝的変異よりも多くのことが知られています。 家族性貧血の認識によって引き起こされた広範な研究により、遺伝子変化の構造的および機能的意味に関する基本的な知識が得られました。 労働衛生に関連するのは、職場の危険に対する感受性の増加につながる可能性のある遺伝的変異です。 労働者のスクリーニングのために考慮された、または実際に使用された、そのようなテスト可能なバリエーションが多数あります。 人間の遺伝学に関する知識が急速に増加することで、人間の反応の遺伝的変化の基礎をよりよく理解できるようになり、実験室でのテストを通じて個人の感受性の程度をより予測できるようになる.

                    現在利用可能な感受性マーカーの潜在的な価値を議論する前に、労働者にそのような検査を使用する際の主要な倫理的考慮事項を強調する必要があります。 そのようなテストが、労働者の利益のために作業現場を改善することに焦点を当てるのではなく、現場から労働者を除外することを支持するかどうかは疑問視されてきました. 少なくとも、職場で感受性マーカーの使用に着手する前に、テストの目的と調査結果の結果をすべての関係者に明確にする必要があります。

                    スクリーニングが最も頻繁に行われている血液学的感受性の 6 つのマーカーは、鎌状赤血球症と G1985PD 欠損症です。 前者はまれな状況ではほとんど価値がなく、後者は提唱されてきたほとんどの状況ではまったく価値がありません (Goldstein、Amoruso、および Witz XNUMX)。

                    ヘモグロビン S (HbS) のホモ接合性がある鎌状赤血球症は、アフリカ系の人々の間でかなり一般的な疾患です。 これは比較的深刻な疾患であり、常にではありませんが、労働力への参入を妨げることがよくあります。 HbS 遺伝子は、HbC などの他の遺伝子とともに遺伝する可能性があり、その影響の重症度を軽減する可能性があります。 鎌状赤血球症患者の基本的な欠陥は、微小梗塞を引き起こす HbS の重合です。 微小梗塞は、鎌状赤血球症として知られるエピソードで発生する可能性があり、外的要因、特に低酸素症や、程度は低いものの脱水を引き起こす外的要因によって引き起こされる可能性があります。 鎌状赤血球症患者の臨床経過と健康状態にはかなり大きなばらつきがあるため、雇用評価では個々の病歴に焦点を当てる必要があります。 頻繁な空の旅を必要とする仕事や、重大な脱水症状の可能性がある仕事など、低酸素にさらされる可能性のある仕事は適切ではありません。

                    鎌状赤血球症よりもはるかに一般的なのは、HbS の 2,200 つの遺伝子と HbA の 7,200 つの遺伝子の継承があるヘテロ接合状態である鎌状赤血球形質です。 この遺伝的パターンを持つ個人は、極端な低酸素条件下で鎌状赤血球症の危機を経験することが報告されています。 低酸素症が一般的なリスクである職場から鎌状赤血球症の個人を除外することについて、いくつかの考慮が払われてきました. ただし、鎌状赤血球症の形質を持つ人は、他のほとんどすべての状況で非常にうまく機能することを強調する必要があります. たとえば、鎌状赤血球症の選手は、1968 年の夏季オリンピックでメキシコシティの標高 (XNUMX m、または XNUMX フィート) で競技しても悪影響はありませんでした。 したがって、上記のいくつかの例外を除いて、鎌状赤血球症の患者の除外または勤務スケジュールの変更を検討する理由はありません。

                    赤血球成分の別の一般的な遺伝的変異は、A G6PD欠損症の一種。 これは、性連鎖劣性遺伝子として X 染色体上に遺伝し、米国の黒人男性の約 50 人に 6 人、黒人女性の 6 人に XNUMX 人に存在します。 アフリカでは、この遺伝子はマラリアのリスクが高い地域で特に流行しています。 鎌状赤血球形質と同様に、GXNUMXPD欠乏症はマラリアに対する保護上の利点を提供します。 通常の状況では、この形態の GXNUMXPD 欠乏症の人は、正常範囲内の赤血球数と指標を持っています。 しかし、還元型グルタチオンを再生できないため、赤血球は、酸化剤の摂取後や特定の病状で溶血を受けやすくなります. 酸化剤に対するこの感受性は、一般的な A を持つ個人は、G6PD欠乏症のバリアントは、酸化ガスの吸入によるリスクがあります。 実際、G6PD欠損個体の赤血球が懸念されるほどの酸化ストレスを受ける前に、そのようなガスが致命的な肺水腫を引き起こすレベルよりも何倍も高いレベルにさらされる必要があります(Goldstein、Amoruso、およびWitz 1985)。 . G6PD欠乏症は、アニリン染料や他のメトヘモグロビン誘発剤にさらされた個人の明白なハインツ小体溶血の可能性を高めます(表1)が、これらの場合、主な臨床的問題は生命を脅かすメトヘモグロビン血症のままです. G6PD の状態に関する知識は、主に治療の指針となるような場合に役立つ可能性がありますが、この知識を使用して労働者を職場から排除するべきではありません。

                    家族性G6PD欠乏症には他にも多くの形態がありますが、すべてA型よりはるかに一般的ではありません。バリアント (Beutler 1990)。 これらのバリアントの特定のもの、特に地中海盆地と中央アジアの個人では、赤血球の G6PD 活性レベルがはるかに低くなっています。 その結果、影響を受けた個人は進行中の溶血性貧血によって深刻な状態に陥る可能性があります。 酸化剤に対する防御で活性な他の酵素の欠乏も、G6PD欠乏症と同じように、赤血球を酸化剤ストレスの影響を受けやすくする不安定なヘモグロビンを持っていると報告されています.

                    監視

                    サーベイランスは、病気の患者の評価と、おそらく健康な個人の定期的なスクリーニングの両方において、臨床検査とは大きく異なります。 適切に設計された監視プログラムの目的は、臨床検査を使用して微妙な初期の変化を検出することにより、明白な病気を防ぐことです. したがって、わずかに異常な所見があれば、医師による対応、または少なくとも徹底的な調査が自動的に開始されるはずです。

                    ベンゼンなどのヘマトキシンにさらされる可能性のある従業員の血液学的監視データの最初のレビューでは、偽陽性を区別するのに特に役立つ XNUMX つの主要なアプローチがあります。 XNUMXつ目はノーマルとの差の度合い。 カウントが通常の範囲からさらに外れると、それが単なる統計的異常を表している可能性が急速に低下します。 第二に、ベンゼンによってもたらされる幅広い影響を念頭に置いて、正常値を含むその個人のデータ全体を活用する必要があります。 たとえば、血小板数がわずかに低い場合に、白血球数が正常値よりも低く、赤血球数も正常値よりも低く、赤血球の平均赤血球容積が正常値よりも高い場合、ベンゼン効果の可能性がはるかに高くなります ( MCV)。 逆に、他の血球数が正常スペクトルの反対側にある場合、この同じ血小板数とベンゼンの血液毒性との関連性は無視できます。 これらの同じ XNUMX つの考慮事項は、さらなる検査を待っている間にその個人を労働力から除外すべきかどうか、および追加の検査を全血球計算 (CBC) の繰り返しだけで構成すべきかどうかを判断する際に使用できます。

                    低いカウントの原因について疑問がある場合は、CBC 全体を繰り返す必要があります。 血球数が少ないのは、実験室の変動性または個人の短期的な生物学的変動性によるものである場合、血球数が再び低くなる可能性は低くなります。 置換前または他の利用可能な血球数との比較は、分布の下端にある固有の傾向を持つ個人を区別するのに役立ちます。 血液学的毒素による影響を受けた個々の労働者の検出は、労働条件と同僚の注意深い調査を促し、センチネルの健康事象とみなされるべきである (Goldstein 1988)。

                    血球数の正常検査値の広い範囲は、血球数がまだ正常範囲内にある場合でも実質的な影響がある可能性があるため、さらに大きな課題を提示する可能性があります. たとえば、ベンゼンまたは電離放射線にさらされた労働者は、ヘマトクリットが 50% から 40% に減少し、白血球数が立方ミリメートルあたり 10,000 から 5,000 に減少し、血小板数が立方ミリメートルあたり 350,000 から 150,000 - つまり、血小板が 50% 以上減少します。 それでも、これらの値はすべて、血球数の「正常な」範囲内にあります。 したがって、「異常な」血球数のみを監視する監視プログラムは、重大な影響を見逃す可能性があります。 したがって、血球数が正常範囲内で時間の経過とともに減少する場合は、特に注意が必要です。

                    職場監視におけるもう 7,500 つの困難な問題は、暴露された集団全体の平均血球数のわずかな減少を検出することです。たとえば、ベンゼンまたはベンゼンへの広範な暴露により、平均白血球数が立方ミリメートルあたり 7,000 から XNUMX に減少した場合です。電離放射線。 そのような観察結果の検出と適切な評価には、実験室試験手順の標準化、適切な対照群の利用可能性、および注意深い統計分析に細心の注意を払う必要があります。

                     

                    戻る

                    免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

                    内容

                    血液の参照

                    ベルタッツィ、A、AC ペサトーリ、D コンソンニ、A ティローニ、MT ランディ、C ゾケッティ。 1993. 2,3,7,8-テトラクロロジベンゾ-パラ-ダイオキシンに偶発的に暴露された集団における癌発生率、セベソ、イタリア。 疫学 4(5): 398-406。

                    Beutler, E. 1990. グルコース-6-リン酸デヒドロゲナーゼ欠損症の遺伝学。 Sem Hematol 27:137。

                    Beutler、E、SE Larsh、および CW Gurney。 1960年。慢性的に疲労した非貧血女性における鉄療法:二重盲検研究。 Ann Intern Med 52:378.

                    De Planque, MM, HC Kluin-Nelemans, HJ Van Krieken, MP Kluin, A Brand, GC Beverstock, R Willemze and JJ van Rood. 1988. 後天性重度の再生不良性貧血から骨髄異形成への進化、および成人におけるその後の白血病。 ブリット J ヘマトール 70:55-62。

                    フレミング、LE、W ティメニー。 1993.再生不良性貧血と農薬。 J Med 35(1):1106-1116。

                    ファウラー、BAおよびJB Wiessberg。 1974年。アルシン中毒。 New Engl J Med 291:1171-1174。

                    ゴールドスタイン、BD。 1988. ベンゼン毒性。 Occup Med: State Art Rev 3(3):541-554。

                    ゴールドスタイン、BD、MA アモルソ、G ウィッツ。 1985. 赤血球グルコース-6-リン酸デヒドロゲナーゼ欠乏症は、職場または一般環境で酸化剤ガスに曝露された黒人アメリカ人にリスクの増加をもたらさない. Toxicol Ind Health 1:75-80。

                    Hartge、P、および SS Devesa。 1992.非ホジキンリンパ腫発生率の時間的傾向に対する既知の危険因子の影響の定量化。 Cancer Res 52:5566S-5569S。

                    Hernberg、S等。 1966. ベンゼン中毒の予後的側面。 Brit J Ind Med 23:204。
                    インファンテ、P. 1993. コホート死亡率研究結果を特に参照したガソリンの発がん性に関する科学の現状。 Environ Health Persp 101 Suppl。 6:105-109。

                    国際がん研究機関 (IARC)。 1990. 癌: 原因、発生および制御。 IARC科学出版物、いいえ。 100. リヨン: IARC.

                    ——。 1992年。五大陸における癌発生率。 巻。 Ⅵ. IARC科学出版物、いいえ。 120. リヨン: IARC.

                    ——。 1993. がんの発生率と死亡率の傾向。 IARC科学出版物、いいえ。 121. リヨン: IARC.

                    キーティング、MJ、E エスティ、H カンタルジャン。 1993年。急性白血病。 In Cancer: Principles and Practice of Oncology、VTJ DeVita、S Hellman、SA Rosenberg 編集。 フィラデルフィア:JBリッピンコット。

                    Kiese、M. 1974. メトヘモグロビン血症: 包括的な論文。 クリーブランド:CRCプレス。

                    ラスキン、S、BD ゴールドスタイン。 1977. ベンゼン毒性、臨床評価。 J Toxicol Environ Health Suppl。 2.

                    リネット、MS。 1985.白血病、疫学的側面。 ニューヨーク:オックスフォード大学プレス。

                    ロンゴ、DL、VTJ デヴィータ、ES ジャッフェ、P マウフ、WJ アーバ。 1993年。リンパ球性リンパ腫。 In Cancer: Principles and Practice of Oncology、VTJ DeVita、S Hellman、SA Rosenberg 編集。 フィラデルフィア:JBリッピンコット。

                    Ludwig、H および I Kuhrer。 1994年。多発性骨髄腫の治療。 Wien klin Wochenschr 106:448-454.

                    Morrison、HI、K Wilkins、R Semenciw、Y Mao、および Y Wigle。 1992年。除草剤と癌。 J Natl Cancer Inst 84:1866-1874。

                    Neilsen, B. 1969. 金属精錬工場でのアルシン中毒: 496 の同時症例。 Acta Med Scand Suppl。 XNUMX。

                    パーキン、DM、P ピサニ、J フェルレイ。 1993. 1985 年の 54 の主要な癌の世界的な発生率の推定. Int J Cancer 594:606-XNUMX.

                    プリースター、ワシントン、TJ メイソン。 1974 年。南東部の 10 州における郡別の家禽個体数に対するヒトのがん死亡率。 J Natl Cancer Inst 53:45-49。

                    Rothman、N、GL Li、M Dosemeci、WE Bechtold、GE Marti、YZ Wang、M Linet、L Xi、W Lu、MT Smith、N Titenko-Holland、LP Zhang、W Blot、SN Yin、および RB Hayes。 1996. ベンゼンに大量に暴露された中国人労働者の血液毒性。 Am J Ind Med 29:236-246。

                    スナイダー、R、G ウィッツ、BD ゴールドスタイン。 1993. ベンゼンの毒物学。 Environ Health Persp 100:293-306。

                    テイラー、JA、DP サンドラー、CD ブルームフィールド、DL ショア、ED ボール、A ノイバウアー、OR マッキンタイア、E リウ。 1992.[r]as 急性骨髄性白血病におけるがん遺伝子の活性化と職業上の曝露。 J Natl Cancer Inst 84:1626-1632。

                    Tucker、MA、CN Coleman、RS Cox、A Varghese、および SA Rosenberg。 1988. ホジキン病の治療後の二次がんのリスク。 New Engl J Med 318:76-81。

                    Yin、SN、RB Hayes、MS Linet、GL Li、M Dosemeci、LB Travis、CY Li、ZN Zhang、DG Li、WH Chow、S Wacholder、YZ Wang、ZL Jiang、TR Dai、WY Zhang、XJ Chao、PZ Ye、QR Kou、XC Zhang、XF Lin、JF Meng、CY Ding、JS Zho、WJ Blot。 1996. 中国のベンゼン暴露労働者における癌のコホート研究: 全体的な結果。 Am J Ind Med 29:227-235。