この記事は、労働安全衛生百科事典の第 3 版に基づいています。
人体測定学は、自然人類学の基本的な分野です。 量的な側面を表しています。 理論と実践の幅広いシステムは、さまざまな応用分野の目的を関連付けるための方法と変数を定義することに専念しています。 労働衛生、安全、および人間工学の分野では、人体測定システムは主に体格、組成および体質、および職場の寸法、機械、産業環境、および衣服に対する人体の相互関係の寸法に関係しています。
人体測定変数
人体測定変数は、測定単位として定義、標準化、および参照できる身体の測定可能な特性です。 線形変数は、通常、身体まで正確に追跡できるランドマークによって定義されます。 ランドマークには一般に XNUMX つのタイプがあります。皮膚を通して骨隆起を感じることで検出およびトレースできる骨格解剖学的ランドマークと、キャリパーの枝を使用して最大距離または最小距離として単純に検出される仮想ランドマークです。
人体測定変数には、遺伝的要素と環境要素の両方があり、個人および集団の変動性を定義するために使用できます。 変数の選択は、特定の研究目的に関連し、同じ分野の他の研究と標準化されている必要があります。これは、文献に記載されている変数の数が非常に多く、人体については 2,200 まで記述されているためです。
人体測定変数は主に 線形 高さ、対象者が標準化された姿勢で立っているか座っているランドマークからの距離などの測定値。 直径、両側のランドマーク間の距離など。 長さ、XNUMX つの異なるランドマーク間の距離など。 湾曲対策、つまり、XNUMX つのランドマーク間の体表面上の距離などの弧。 と 胴回り一般に、少なくとも XNUMX つのランドマークまたは定義された高さに配置された、体表面上の閉じた全周測定など。
他の変数には、特別な方法と手段が必要になる場合があります。 たとえば、皮下脂肪の厚さは、特殊な定圧キャリパーによって測定されます。 体積は、計算または水中への浸漬によって測定されます。 体表面の特性に関する完全な情報を得るために、生物立体計測技術を使用して、表面点のコンピュータ マトリックスをプロットすることができます。
インストゥルメンツ
自動化されたデータ収集を目的として、洗練された人体計測機器が記述され、使用されてきましたが、基本的な人体計測機器は非常に単純で使いやすいものです。 ランドマークの誤解や被験者の姿勢の誤りに起因する一般的なエラーを避けるために、細心の注意を払う必要があります。
標準的な人体計測機器は人体計です。長さ 2 メートルの剛体の棒で、カウンター リーディング スケールが XNUMX つあり、床や座席からの目印の高さなどの垂直方向の身体寸法と、直径などの横方向の寸法を測定できます。
通常、ロッドは 3 つまたは 4 つのセクションに分割でき、互いに適合します。 直線または曲線の爪を備えたスライド ブランチを使用すると、床からの距離を高さで測定したり、固定ブランチから直径を測定したりできます。 より精巧な人体計には、高さと直径の単一の目盛りがあり、目盛りの誤差を避けるか、デジタルの機械的または電子的な読み取り装置が取り付けられています (図 1)。
スタディオメーターは固定された人体計であり、通常は身長のみに使用され、体重計と関連付けられることがよくあります。
横方向の直径については、一連のキャリパーを使用できます。600 mm までの測定用の骨盤計と 300 mm までのセファロメーターです。 後者は、スライディング コンパスと一緒に使用すると、頭の測定に特に適しています (図 2)。
フットボードは足を測定するために使用され、ヘッドボードは「フランクフォート平面」( ポリオン と 軌道 手はキャリパー、または XNUMX つのスライド式定規で構成された特別な装置で測定できます。
皮下脂肪の厚さは、一般的に 9.81 x 10 の圧力で一定圧力の皮下脂肪キャリパーで測定されます。4 Pa (10 mm の面積に 1 g の重りがかかる圧力2).
円弧と胴回りには、平らな部分を持つ細くて柔軟なスチール テープが使用されます。 自動矯正スチールテープは避ける必要があります。
変数のシステム
人体測定変数のシステムは、いくつかの特定の問題を解決するための身体測定の一貫したセットです。
人間工学と安全性の分野では、主な問題は、機器と作業スペースを人間に適合させ、衣服を適切なサイズに調整することです。
機器とワークスペースは、主にランドマークの高さと直径から簡単に計算できる手足と体のセグメントの線形測定を必要としますが、サイズの調整は主に弧、胴回り、柔軟なテープの長さに基づいています。 両方のシステムは、必要に応じて組み合わせることができます。
いずれにせよ、測定ごとに正確な空間参照が絶対に必要です。 したがって、ランドマークは高さと直径によってリンクされている必要があり、すべての円弧または胴回りには定義済みのランドマーク参照が必要です。 高さと勾配を示す必要があります。
特定の調査では、変数の数を最小限に制限して、被験者とオペレーターに過度のストレスを与えないようにする必要があります。
ワークスペースの変数の基本セットは、33 の測定変数 (図 3) に加えて、単純な計算によって導出された 20 に削減されました。 汎用軍事調査では、Hertzberg と共同研究者は 146 個の変数を使用します。 衣服および一般的な生物学的目的については、イタリアのファッション委員会 (エンテ イタリアーノ デッラ モーダ) は、32 個の汎用変数と 28 個の技術変数のセットを使用します。 衣服のコントロール ボディ寸法のドイツ基準 (DIN 61 516) には、12 の変数が含まれています。 人体測定に関する国際標準化機構 (ISO) の推奨事項には、36 の変数の主要なリストが含まれています (表 1 を参照)。 ILO によって公開された国際人体測定データ表には、世界の 19 の異なる地域の人口の 20 の身体寸法が記載されています (Jürgens、Aune、および Pieper 1990)。
1.1 前方へのリーチ (被験者が壁に直立した状態でハンド グリップを握る)
1.2 身長(床から頭頂までの垂直距離)
1.3 目の高さ(床から目尻まで)
1.4 肩の高さ (床から肩峰まで)
1.5 肘の高さ (床から肘の放射状のくぼみまで)
1.6 股の高さ(床から恥骨まで)
1.7 指先の高さ(床から拳の握り軸まで)
1.8 肩幅(肩峰径)
1.9 腰幅、立位 (腰の最大距離)
2.1 座高(座面から頭頂まで)
2.2 座った時の目の高さ(座から目頭まで)
2.3 肩の高さ、座位(座から肩峰まで)
2.4 座った状態の肘の高さ (座面から曲がった肘の最下点まで)
2.5 ひざの高さ(フットレストから太ももの上面まで)
2.6 下腿長(座面の高さ)
2.7 前腕と手の長さ(曲げた肘の後ろからグリップ軸まで)
2.8 体の深さ、座る(座面の深さ)
2.9 臀部から膝までの長さ (膝頭から臀部の最後部まで)
2.10 肘間幅(肘の側面間の距離)
2.11 腰幅、座位(座幅)
3.1 人差し指の幅、近位 (内側指骨と近位指骨の間の関節)
3.2 人差し指の幅、遠位 (遠位指骨と内側指骨の間の関節)
3.3 人差し指の長さ
3.4 手の長さ(中指の先から茎状突起まで)
3.5 手幅(中手骨)
3.6 手首周り
4.1 足幅
4.2 足の長さ
5.1 熱周長(眉間)
5.2 矢状弧(眉間から陰茎まで)
5.3 頭の長さ(眉間から後頭蓋まで)
5.4 頭幅(耳の上の最大)
5.5 Bitragion アーク (耳の間の頭上)
6.1 胴囲(臍の位置)
6.2 脛骨の高さ (床から脛骨関節窩の前内側縁の最高点まで)
6.3 頸椎の高さ(第 7 頸椎の棘突起の先端まで)の座位。
出典: ISO/DP 7250 1980 から適応)。
精度と誤差
生体の寸法精度は確率論的に考慮する必要があります。なぜなら、人体は静的構造と動的構造の両方で非常に予測不可能だからです。
一人の個人でも、筋肉質と肥満が成長または変化する可能性があります。 老化、病気または事故の結果として骨格変化を受ける; または行動や姿勢を修正します。 さまざまな主題は、一般的な寸法だけでなく、比率によっても異なります。 背の高い被写体は、背の低い被写体を単に拡大したものではありません。 体質型と体型は、おそらく一般的な寸法よりも大きく異なります。
マネキン、特にフィッティング トライアル用の標準的な 5、50、95 パーセンタイルを表すマネキンの使用は、体のプロポーションのバリエーションが考慮されていない場合、非常に誤解を招く可能性があります。
エラーは、ランドマークの誤解や機器の誤った使用 (個人的なエラー)、不正確または不正確な機器 (機器のエラー)、または被験者の姿勢の変化 (被験者のエラー - この後者は、文化的または言語的背景が異なる場合、コミュニケーションの困難が原因である可能性があります) に起因します。運営者とは対象が異なります)。
統計処理
人体計測データは、主に単変量 (平均、モード、パーセンタイル、ヒストグラム、分散分析など)、二変量 (相関、回帰)、および多変量 (多重相関と回帰、因子分析) を適用する推論方法の分野で、統計手順によって処理する必要があります。など)メソッド。 人間のタイプを分類するために、統計的アプリケーションに基づくさまざまなグラフィカルな手法が考案されています (アントロポメトログラム、モルフォソマトグラム)。
サンプリングと調査
人体測定データは全人口に対して収集することはできないため (特に人口が少ないというまれなケースを除いて)、通常はサンプリングが必要です。 基本的にランダムなサンプルは、人体測定調査の出発点であるべきです。 測定対象者の数を妥当なレベルに保つには、一般に、複数段階の層化サンプリングに頼る必要があります。 これにより、母集団をいくつかのクラスまたは階層に最も均一に細分化できます。
人口は、性別、年齢層、地理的領域、社会的変数、身体活動などによって細分化される場合があります。
調査フォームは、測定手順とデータ処理の両方を念頭に置いて設計する必要があります。 オペレーターの疲労とエラーの可能性を減らすために、測定手順の正確な人間工学的研究を行う必要があります。 このため、使用する器具に応じて変数をグループ化し、順番に並べて、オペレータが体を曲げる回数を減らす必要があります。
個人的なエラーの影響を減らすために、調査は XNUMX 人のオペレーターによって実行されるべきです。 複数のオペレーターを使用する必要がある場合は、測定の再現性を確保するためにトレーニングが必要です。
人口人体計測学
非常に批判されている「人種」の概念を無視しても、人間の集団は、個人のサイズとサイズの分布において非常にばらつきがあります。 一般に、人間集団は厳密にはメンデル型ではありません。 それらは通常、混合の結果です。 異なる起源と適応を持つXNUMXつ以上の個体群が、交配することなく同じ地域に一緒に住んでいることがあります. これは形質の理論的な分布を複雑にします。 人体測定の観点からは、性別は異なる集団です。 従業員の人口は、可能性のある適性選択または仕事の選択による自動選択の結果として、同じ地域の生物学的人口に正確に対応しない場合があります。
異なる地域からの集団は、異なる適応条件または生物学的および遺伝的構造の結果として異なる場合があります。
厳密なフィッティングが重要な場合は、無作為標本の調査が必要です。
フィッティング試験と規制
ワークスペースや機器を使用者に適応させることは、身体の大きさだけでなく、不快感への耐性や活動の性質、衣服、道具、環境条件などの変数にも依存する場合があります。 関連要因のチェックリスト、シミュレーター、および予想されるユーザー人口の体格の範囲を表すために選択された被験者のサンプルを使用した一連のフィッティング試験の組み合わせを使用できます。
目的は、すべての被験者の許容範囲を見つけることです。 範囲が重複する場合は、どの被験者の許容範囲外でもない、より狭い最終範囲を選択することができます。 オーバーラップがない場合は、構造を調整可能にするか、さまざまなサイズで提供する必要があります。 XNUMX つ以上の次元を調整できる場合、被験者は可能な調整のうちどれが自分に最も適しているかを判断できない場合があります。
特に不快な姿勢が疲労につながる場合、調整機能は複雑な問題になる可能性があります。 したがって、自分の人体測定特性についてほとんど、またはまったく知らないことが多いユーザーに、正確な指示を与える必要があります。 一般に、正確な設計により、調整の必要性が最小限に抑えられます。 いずれにせよ、関係するのは工学だけでなく人体測定学であることを常に念頭に置いておく必要があります。
動的人体測定学
適切な変数セットが選択されている場合、静的人体測定は動きに関する幅広い情報を提供する可能性があります。 それにもかかわらず、動きが複雑で産業環境との密接な適合が望ましい場合、ほとんどのユーザーと機械、および人間と車のインターフェースのように、姿勢と動きの正確な調査が必要です。 これは、リーチ ラインをトレースできる適切なモックアップを使用するか、写真によって行うことができます。 この場合、被写体の矢状面に配置された望遠レンズと人体測定ロッドを取り付けたカメラは、画像の歪みがほとんどない標準化された写真を可能にします。 被験者のアーティキュレーションに小さなラベルを付けると、動きを正確に追跡できます。
動きを研究するもう XNUMX つの方法は、関節を通過する一連の水平面と垂直面に従って、姿勢の変化を形式化することです。 繰り返しになりますが、コンピューター支援設計 (CAD) システムでコンピューター化された人体モデルを使用することは、人間工学に基づいた職場設計に動的人体測定を組み込むための実行可能な方法です。