このページを印刷
木曜日、10月2011 17:45

暴露評価の生物学的根拠

このアイテムを評価
(0票)

職場暴露評価は、労働者が接触する可能性のある病原体の特定と評価に関係しており、暴露指数は、一般環境または吸入空気中に存在する病原体の量を反映するように構築することができます。実際に吸入、飲み込み、またはその他の方法で吸収される薬剤 (摂取量)。 他の指標には、再吸収される薬剤の量 (取り込み) および標的器官での曝露が含まれます。 投与量は、被験者に投与される物質の量を示すために使用される薬理学的または毒物学的用語です。 投与率は、単位時間あたりに投与される量です。 人体への物質の吸入、取り込み、分布などの物理的および生物学的プロセスにより、ばく露と線量が複雑で非線形の関係を持つため、職場でのばく露の線量を実際の状況で決定することは困難です。 病原体への実際の曝露レベルに関する不確実性も、曝露と健康への影響との関係を定量化することを困難にします。

多くの職業被ばくについて、 時間枠 曝露または線量が、特定の健康関連の問題または症状の発症に最も関連している期間。 したがって、生物学的に関連する曝露または用量は、関連する時間枠中に発生する曝露になります。 職業上の発がん性物質への曝露には、そのような適切な時間枠があると考えられています。 がんは潜伏期間が長い病気であるため、病気の最終的な発症に関連する曝露は、がんが実際に現れる何年も前に起こった可能性があります。 この現象は直観に反するものであり、作業寿命にわたる累積暴露が関連するパラメータであると予想されていたからです。 病気の発現時の曝露は特に重要ではないかもしれません。

曝露のパターン(連続曝露、断続的な曝露、および鋭いピークの有無にかかわらず)も関連している可能性があります。 曝露パターンを考慮に入れることは、疫学研究と、健康基準への準拠を監視するために使用される可能性のある環境測定、または制御および予防プログラムの一部としての環境制御の両方にとって重要です。 たとえば、健康への影響がピーク暴露によって引き起こされる場合、そのようなピークレベルは、制御するために監視可能でなければなりません。 長期平均被ばくに関するデータのみを提供するモニタリングは、ピークエクスカーション値が平均化によってマスクされる可能性があり、発生時に制御できないため、役に立ちません。

摂取、取り込み、分布、排泄のパターン、または生体内変化のメカニズムが十分に詳細に理解されていないため、特定のエンドポイントに対する生物学的に関連する曝露または用量は、多くの場合不明です。 病原体が体内に出入りする速度 (動力学) と、物質を取り扱うための生化学的プロセス (生体内変化) の両方が、曝露、用量、および影響の間の関係を決定するのに役立ちます。

環境モニタリングとは、周囲への曝露と関連する健康リスクを評価するための職場での病原体の測定と評価です。 生物学的モニタリングは、組織、分泌物、または排泄物中の職場の病原体またはその代謝物を測定および評価して、暴露を評価し、健康リスクを評価することです。 ときどき バイオマーカー、DNA付加物などは、暴露の尺度として使用されます。 バイオマーカーは疾患プロセス自体のメカニズムを示すこともありますが、これは複雑な問題であり、この章で詳しく説明します 生物学的モニタリング 後でここで議論します。

ばく露反応モデリングの基本モデルを単純化すると、次のようになります。

暴露 摂取 分布、

消去、変換目標用量生理病理学効果

病原体によっては、曝露と取り込み、および曝露と摂取の関係が複雑になる場合があります。 多くのガスについては、作業日の空気中の薬剤濃度と吸入される空気の量に基づいて、簡単な概算を行うことができます。 粉塵のサンプリングでは、堆積パターンも粒子サイズに関連しています。 サイズを考慮すると、関係がより複雑になる場合もあります。 章 呼吸器系 呼吸器毒性の側面に関する詳細を提供します。

曝露と線量の評価は、定量的リスク評価の要素です。 健康リスク評価方法は、多くの場合、環境および職業上の基準のために、空気中の有毒物質の放出レベルの暴露限界が確立される基礎を形成します。 健康リスク分析は、特定の健康影響が発生する確率 (リスク) の推定値、またはこれらの健康影響を伴う症例数の推定値を提供します。 健康リスク分析によって、空気、水、または食品中の毒物の許容濃度を提供することができます。 アプリオリ 選択された許容可能なリスクの大きさ。 定量的リスク分析は癌疫学への応用が見出されており、遡及的曝露評価が非常に重視されている理由が説明されています。 しかし、より精巧な暴露評価戦略の適用は、遡及的暴露評価と将来的暴露評価の両方に見られ、暴露評価の原則は、良性呼吸器疾患などの他のエンドポイントにも焦点を当てた研究に適用されています (Wegman et al. 1992; Postら 1994)。 現時点では、研究の XNUMX つの方向性が優勢です。 XNUMX つは曝露モニタリング情報から得られた線量推定値を使用し、もう XNUMX つは曝露の尺度としてバイオマーカーに依存しています。

被ばくの監視と線量の予測

残念なことに、多くの曝露について、特定のエンドポイントを発現するリスクを予測するために利用できる定量的データはほとんどありません。 ハーバーは 1924 年に、健康への影響の程度 (H) は、暴露濃度 (X) と暴露時間 (T) の積に比例すると仮定しました。

H=X×T

いわゆるハーバーの法則は、時間加重平均 (TWA) エクスポージャー測定値 (つまり、特定の期間にわたって取得および平均化された測定値) がエクスポージャーの有用な測定値であるという概念の開発の基礎を形成しました。 時間加重平均の妥当性に関するこの仮定は、長年にわたって疑問視されてきました。 1952 年、Adams と共同研究者は、「時間加重平均を使用してさまざまなエクスポージャーを統合する科学的根拠はありません…」と述べました (Atherly 1985)。 問題は、多くの関係がハーバーの法則が表す関係よりも複雑であることです。 効果が時間の長さよりも濃度によってより強く決定される薬剤の多くの例があります. たとえば、実験室での研究からの興味深い証拠は、ラットが四塩化炭素に暴露された場合、暴露パターン (連続対断続的、およびピークの有無) と投与量によって、ラットが肝酵素レベルの変化を起こすという観察されたリスクを変更できることを示しています。 (Bogers et al. 1987)。 別の例は、生地改良剤であるα-アミラーゼ酵素などのバイオエアロゾルであり、パン業界で働く人々にアレルギー疾患を引き起こす可能性があります (Houba et al. 1996)。 このような疾患を発症するリスクが、主にピーク曝露、平均曝露、または累積曝露レベルによって決定されるかどうかは不明です。 (ウォン 1987; チェックウェイとライス 1992)。 一時的なパターンに関する情報は、ほとんどのエージェント、特に慢性的な影響を与えるエージェントでは利用できません。

被ばくパターンをモデル化し線量を推定する最初の試みは、1960 年代と 1970 年代に Roach (1966; 1977) によって発表されました。 彼は、排除がエージェントの取り込みを相殺するため、エージェントの濃度が無限の持続時間の暴露後に受容体で平衡値に達することを示しました。 標的器官での薬剤の半減期が約 90 時間半よりも短い場合、1985 時間の曝露でこの平衡レベルの XNUMX% の値に達する可能性があります。 これは、半減期が短い薬剤の場合、標的器官での投与量は XNUMX 時間よりも短い時間で決まることを示しています。 標的器官での用量は、半減期の長い薬剤の曝露時間と濃度の積の関数です。 Rappaport (XNUMX) は、同様のより精巧なアプローチを適用しています。 彼は、半減期の長い病原体を扱う場合、暴露の日内変動の影響が限定的であることを示しました。 彼は用語を導入した 受容体で減衰.

上記の情報は、主にコンプライアンス目的でのばく露測定の適切な平均時間に関する結論を導き出すために使用されています。 Roach の論文以降、刺激物については短い平均時間でグラブサンプルを採取する必要があることは周知の事実ですが、アスベストなどの半減期が長い病原体については、累積曝露の長期平均を概算する必要があります。 しかし、コンプライアンス目的で多くの国で採用されているグラブ サンプル戦略と XNUMX 時間平均暴露戦略への二分法は、上記で説明した生物学的原則の非常に大雑把な翻訳であることを認識しておく必要があります。

疫学における薬物動態学の原則に基づいて暴露評価戦略を改善した例は、Wegman らの論文に見られます。 (1992)。 彼らは、継続的な監視装置を使用して個人の粉塵曝露のピークレベルを測定し、これらを 15 分ごとに発生する急性の可逆性呼吸器症状に関連付けることによって、興味深い曝露評価戦略を適用しました。健康関連のピーク暴露の。 ピークの定義は、やはり生物学的な考慮事項に依存します。 Rappaport (1991) は、ピーク暴露が疾患プロセスに関連する 1 つの要件を示しています。(2) 病原体は体から急速に排除され、(XNUMX) ピーク暴露中の生物学的損傷の非線形率が存在します。 生物学的損傷の非線形率は、取り込みの変化に関連している可能性があり、これは、曝露レベル、宿主の感受性、他の曝露との相乗効果、より高い曝露または疾患プロセスの閾値レベルでの他の疾患メカニズムの関与に関連しています。

これらの例はまた、薬物動態学的アプローチが用量推定以外につながる可能性があることも示しています。 薬物動態モデリングの結果は、既存の曝露指標の生物学的関連性を調査したり、健康に関連する新しい曝露評価戦略を設計したりするためにも使用できます。

曝露の薬物動態モデリングは、標的臓器での実際の用量の推定値も生成する可能性があります。 例えば、急性刺激性ガスであるオゾンの場合、気管から一定の距離、すなわち気管の半径である肺の空域における平均オゾン濃度の関数として、気道の組織濃度を予測するモデルが開発されました。気道、平均気流速度、実効分散、および空気から肺表面へのオゾンフラックス (Menzel 1987; Miller and Overton 1989)。 このようなモデルは、環境のオゾン濃度と呼吸パターンに応じて、気道の特定の領域におけるオゾン量を予測するために使用できます。

ほとんどの場合、目標用量の推定値は、経時的な曝露パターンに関する情報、職歴、および薬剤の取り込み、分布、排除、および変換に関する薬物動態情報に基づいています。 全体のプロセスは、数学的に解くことができる一連の方程式によって記述できます。 多くの場合、薬物動態パラメーターに関する情報はヒトでは利用できず、動物実験に基づくパラメーター推定値を使用する必要があります。 推定用量を生成するために曝露の薬物動態モデリングを使用した例がいくつかあります。 被ばくデータから線量推定値へのモデル化に関する文献で最初に言及されたのは、Jahr (1974) の論文にさかのぼります。

線量推定値は一般に検証されておらず、疫学研究への適用は限られているが、新しい世代の暴露または線量指数は、疫学研究において最適な暴露反応分析をもたらすと期待されている (Smith 1985, 1987)。 薬物動態モデリングでまだ取り組まれていない問題は、毒性物質の動態に大きな種間差が存在することであり、したがって、薬物動態パラメーターの個体内変動の影響が重要です (Droz 1992)。

曝露のバイオモニタリングとバイオマーカー

生物学的モニタリングは線量の推定値を提供するため、環境モニタリングよりも優れていると見なされることがよくあります。 ただし、バイオ モニタリング指標の個人差はかなり大きい場合があります。 労働者の線量の許容可能な推定値を導き出すために、測定を繰り返し行う必要があり、環境モニタリングよりも測定作業が大きくなる場合があります。

これは、ガラス繊維で強化されたプラスチック製のボートを製造している労働者に関する興味深い研究によって示されています (Rappaport et al. 1995)。 スチレン曝露の変動性は、空気中のスチレンを繰り返し測定することによって評価されました。 暴露された労働者の呼気中のスチレンと、姉妹染色分体交換 (SCE) が監視されました。 彼らは、暴露の尺度として空気中のスチレンを使用した疫学的研究は、必要な測定数の点で、他の暴露指標を使用した研究よりも効率的であることを示しました。 空気中のスチレンの場合、一定の精度で長期平均ばく露を推定するには、20 回の繰り返しが必要でした。 呼気中のスチレンの場合、労働者 XNUMX 人あたり XNUMX 回の繰り返しが必要でしたが、SCE の場合は XNUMX 回の繰り返しが必要でした。 この観察結果の説明は、暴露における日ごとおよび作業者間の変動性によって決定される信号対雑音比であり、これは暴露の XNUMX つのバイオマーカーよりも空気中のスチレンに有利でした。 したがって、特定の曝露サロゲートの生物学的関連性は最適かもしれませんが、曝露反応分析のパフォーマンスは、信号対雑音比が限られているために依然として不十分であり、誤分類エラーにつながります。

Droz (1991) は、物質の半減期に依存するバイオモニタリング戦略と比較して、空気サンプリングに基づく暴露評価戦略の利点を研究するために、薬物動態モデリングを適用しました。 彼は、生物学的モニタリングも生物学的変動によって大きく影響を受けることを示しましたが、これは毒性試験の変動性とは関係ありません。 彼は、考慮される薬剤の半減期が約 XNUMX 時間よりも短い場合、生物学的指標を使用することに統計的利点は存在しないことを示唆しました。

測定される変数の変動性のために、効果の生物学的指標ではなく環境曝露を測定することを決定する傾向があるかもしれませんが、バイオマーカーを選択するための追加の引数が見つかります。かなりの皮膚暴露が存在する場合。 殺虫剤や一部の有機溶剤などの病原体の場合、空気を介した曝露よりも皮膚への曝露の方が関連性が高くなる可能性があります。 暴露のバイオマーカーにはこの暴露経路が含まれるが、皮膚暴露の測定は複雑であり、結果は容易に解釈できない(Boleij et al. 1995)。 「パッド」を使用して皮膚への曝露を評価する農業従事者の初期の研究では、作業者の作業に応じて、農薬が体表面に顕著に分布することが示されました。 しかし、皮膚への取り込みに関する情報はほとんどないため、暴露プロファイルを使用して内部線量を推定することはまだできません。

バイオマーカーは、がんの疫学においてもかなりの利点があります。 バイオマーカーが効果の初期マーカーである場合、その使用はフォローアップ期間の短縮につながる可能性があります。 検証研究が必要ですが、暴露または個人の感受性のバイオマーカーは、より強力な疫学研究とより正確なリスク推定につながる可能性があります.

タイム ウィンドウ分析

薬物動態モデリングの開発と並行して、疫学者は、関連する曝露期間をエンドポイントに関連付け、職業がん疫学における曝露またはピーク曝露における時間的パターンの影響を実装するために、「時間枠分析」などのデータ分析段階で新しいアプローチを探求してきました。 (チェックウェイとライス 1992)。 概念的には、この手法は薬物動態モデリングに関連しています。これは、曝露と結果の関係が、さまざまな曝露期間、曝露パターン、および曝露レベルに重みを付けることによって最適化されるためです。 薬物動態モデリングでは、これらの重みには生理学的な意味があると考えられており、事前に推定されています。 時間枠分析では、重みは統計的基準に基づいてデータから推定されます。 このアプローチの例は、英国のスズ鉱山労働者のコホートにおけるラドン ガス曝露と肺がんの関係を分析した Hodgson と Jones (1990) と、粉塵の関係を分析した Seixas、Robins と Becker (1993) によって示されています。米国の炭鉱労働者のコホートにおける曝露と呼吸器の健康。 タイム ウィンドウ分析の関連性を強調する非常に興味深い研究は、Peto らによるものです。 (1982)。

彼らは、中皮腫の死亡率が、断熱作業員のコホートにおける最初の暴露および累積暴露からの時間の関数に比例するように見えることを示しました。 最初の暴露からの時間は、この変数が肺の沈着場所から胸膜に繊維が移動するのに必要な時間の近似値であるため、特に関連性がありました。 この例は、沈着と移動の動力学がリスク関数をどのように決定するかを示しています。 時間枠分析の潜在的な問題は、曝露期間と曝露レベルに関する詳細な情報が必要であり、慢性疾患の転帰に関する多くの研究への適用を妨げることです。

結論

結論として、薬物動態モデリングと時間枠または時間ウィンドウ分析の基本原理は広く認識されています。 この分野の知識は、主にばく露評価戦略の開発に使用されてきました。 ただし、これらのアプローチをより精巧に使用するには、かなりの研究努力が必要であり、開発する必要があります。 そのため、まだ応募数に限りがあります。 エンドポイントに応じたより最適な曝露評価戦略の開発など、比較的単純なアプリケーションがより広く使用されています。 曝露または影響のバイオマーカーの開発における重要な問題は、これらの指標の検証です。 多くの場合、測定可能なバイオマーカーは、従来の方法よりも健康リスクを予測できると考えられています。 しかし、残念ながら、この仮定を実証する検証研究はほとんどありません。

 

戻る

読む 5298 <font style="vertical-align: inherit;">回数</font> 最終更新日 13 年 2011 月 20 日木曜日 42:XNUMX