火曜日、2月15 2011 19:36

気圧上昇下での作業

このアイテムを評価
(1の投票)

大気は通常、20.93% の酸素で構成されています。 人体は、海面で約 160 トルの圧力で大気中の酸素を呼吸するように自然に適応しています。 この圧力では、酸素を組織に運ぶ分子であるヘモグロビンは、約 98% 飽和しています。 オキシヘモグロビンの濃度は最初から事実上 100% であるため、酸素圧が高くなってもオキシヘモグロビンの重要な増加はほとんどありません。 ただし、圧力が上昇すると、かなりの量の未燃焼酸素が血漿中の物理溶液に移行する可能性があります。 幸いなことに、身体は、少なくとも短期的には、かなりの害を及ぼすことなく、かなり広い範囲の酸素圧に耐えることができます. 長期暴露は、酸素毒性の問題を引き起こす可能性があります。

潜水作業やケーソン作業のように、圧縮空気を呼吸する必要がある作業では、酸素欠乏症 (低酸素症) が問題になることはほとんどありません. 圧力を 42 倍にすると、圧縮空気を呼吸するときに 2 回の呼吸で吸入される分子の数が 10 倍になります。 したがって、呼吸される酸素の量は実質的に 42% に相当します。 言い換えれば、XNUMX 絶対気圧 (ATA) の圧力、または海面下 XNUMX m の圧力で空気を呼吸する労働者は、表面のマスクによって XNUMX% の酸素を呼吸するのと同じ量の酸素を呼吸します。

酸素毒性

地球の表面では、人間は 100 時間から 24 時間の間、36% の酸素を安全に呼吸し続けることができます。 その後、肺の酸素中毒が起こります (ロレイン・スミス効果)。 肺毒性の症状は、胸骨下の胸痛です。 乾いた非生産的な咳; 肺活量の低下; 界面活性剤生産の損失。 として知られている状態 斑状の無気肺 X線検査で見られ、継続的な曝露により、微小出血が発生し、最終的には肺に永久線維症が発生します. 微小出血状態までの酸素毒性のすべての段階は可逆的ですが、線維症が始まると、瘢痕化プロセスは不可逆的になります. 100% 酸素を 2 ATA (海水 10 m の圧力) で呼吸すると、約 20 時間後に酸素中毒の初期症状が現れます。 25 ~ XNUMX 分ごとに XNUMX 分間の短い空気呼吸を散在させると、酸素中毒の症状が現れるまでに必要な時間が XNUMX 倍になる可能性があることに注意してください。

酸素は、0.6 ATA 未満の圧力で悪影響を与えることなく呼吸できます。 たとえば、労働者は、0.6 気圧の酸素を 0.6 週間連続して呼吸しても、肺活量を失うことなく耐えることができます。 肺活量の測定は、初期の酸素毒性の最も敏感な指標であると思われます。 大深度で作業するダイバーは、60 気圧までの酸素を含むガス混合物を呼吸し、残りの呼吸媒体はヘリウムおよび/または窒素で構成されています。 大気の 1 分の XNUMX は、XNUMX ATA または海面で XNUMX% の酸素を呼吸することに相当します。

2 ATA を超える圧力では、酸素が脳酸素毒性に続発する発作を引き起こす可能性があるため、肺酸素毒性はもはや主要な懸念事項にはなりません。 神経毒性は、1878 年にポール バートによって最初に記述され、ポール バート効果として知られています。 人が 100 ATA の圧力で 3% の酸素を連続 XNUMX 時間よりずっと長く呼吸した場合、その人はおそらく、 グランマル 発作。 脳と肺の酸素毒性のメカニズムに関する活発な研究が 50 年以上行われているにもかかわらず、この反応はまだ完全には理解されていません。 しかし、特定の要因が毒性を高め、発作閾値を下げることが知られています。 運動、二酸化炭素貯留、ステロイドの使用、発熱の存在、寒気、アンフェタミンの摂取、甲状腺機能亢進症、および恐怖は、酸素耐性効果をもたらす可能性があります. たとえば、圧力のかかる乾燥した部屋に静かに横たわっている実験対象者は、敵船の下の冷たい水で活発に働いているダイバーよりもはるかに耐性があります. 軍のダイバーは、寒くて激しい運動、閉鎖回路の酸素リグを使用した CO2 の蓄積、および恐怖を経験する可能性があり、静かに横たわっている患者がわずか 2 m の深さで働くのに対し、10 ~ 15 分以内に発作を起こす可能性があります。ドライチャンバー内では、12 m の圧力で 90 分間、発作の大きな危険なしに容易に耐えることができます。 運動中のダイバーは、最大 20 分間、最大 1.6 ATA の酸素分圧にさらされる可能性があります。これは、水深 30 m で 100% の酸素を呼吸することに相当します。 被験者が静かに横になっている場合でも、6 ATA を超える圧力の 100% 酸素にさらしたり、その圧力で 3 分を超えて長時間さらしたりしてはならないことに注意することが重要です。

発作に対する感受性には、個人間でかなりの個人差があり、驚くべきことに、同じ個人内でも日によって差があります。 このため、「耐酸素性」検査は本質的に無意味です。 フェノバルビタールやフェニトインなどの発作抑制薬を投与すると、酸素発作を防ぐことができますが、圧力や時間制限を超えた場合、永久的な脳や脊髄の損傷を軽減することはできません.

一酸化炭素

一酸化炭素は、ダイバーやケーソン作業員の呼吸する空気の深刻な汚染物質になる可能性があります。 最も一般的な発生源は、コンプレッサーに動力を供給するために使用される内燃エンジン、またはコンプレッサーの近くにある他の作動機械です。 コンプレッサの空気取り入れ口がエンジンの排気源から十分に離れていることを確認するように注意する必要があります。 ディーゼル エンジンは通常、一酸化炭素をほとんど生成しませんが、大量の窒素酸化物を生成し、肺に深刻な毒性を引き起こす可能性があります。 米国では、吸気中の一酸化炭素レベルの現在の連邦基準は、35 日 8 時間の労働で 50 ppm です。 たとえば、地表では 50 ppm でも検出可能な害はありませんが、深さ 300 m では圧縮されて 40 ppm の影響が生じます。 この濃度は、一定期間にわたって最大 XNUMX% のカルボキシヘモグロビンのレベルを生成できます。 実際に分析された XNUMX 万分の XNUMX に、作業者に供給される雰囲気の数を掛ける必要があります。

ダイバーや圧縮空気作業員は、頭痛、吐き気、めまい、衰弱などの一酸化炭素中毒の初期症状に注意する必要があります。 コンプレッサの吸気口は、常にコンプレッサ エンジンの排気管から風上に配置することが重要です。 この関係は、風の変化や船舶の位置の変化に応じて継続的にチェックする必要があります。

何年もの間、一酸化炭素は体内のヘモグロビンと結合してカルボキシヘモグロビンを生成し、組織への酸素の輸送を遮断して致死効果を引き起こすと広く考えられていました. 最近の研究では、この効果は組織の低酸素を引き起こしますが、それ自体は致命的ではないことが示されています。 最も深刻な損傷は、一酸化炭素分子の直接的な毒性により、細胞レベルで発生します。 高圧酸素治療によってのみ終了させることができる細胞膜の脂質過酸化は、死亡および長期の後遺症の主な原因であると思われる.

二酸化炭素

二酸化炭素は代謝の正常な生成物であり、呼吸の正常なプロセスを通じて肺から除去されます。 しかし、さまざまなタイプの呼吸装置は、その除去を損なうか、ダイバーの吸気に高レベルを蓄積させる可能性があります.

実際的な観点から、二酸化炭素は 3 つの方法で体に有害な影響を与える可能性があります。 第一に、非常に高濃度 (2% 以上) では、判断ミスを引き起こす可能性があり、最初は不適切な多幸感につながり、暴露が長引くと抑うつ状態になる可能性があります。 もちろん、これは、安全を確保するために適切な判断を維持したい水中のダイバーに深刻な結果をもたらす可能性があります. 濃度が上昇するにつれて、レベルが 8% をはるかに超えると、最終的に CO40 は意識を失います。 二酸化炭素の 1993 つ目の影響は、窒素酔いを悪化させることです (以下を参照)。 分圧が 2 mm Hg を超えると、二酸化炭素はこの効果を持ち始めます (Bennett and Elliot 2)。 ダイビングなどで高い PO2 にさらされると、高い CO100 による呼吸ドライブが減衰し、特定の条件下では、CO2 を保持する傾向があるダイバーが意識を失うほどの二酸化炭素レベルを上昇させる可能性があります。 圧力下の二酸化炭素の最後の問題は、被験者が 1.5 ATA を超える圧力で 2% 酸素を呼吸している場合、二酸化炭素レベルが上昇するにつれて発作のリスクが大幅に高まることです。 潜水艦の乗組員は、一度に 0.5% の CO2 を 100 か月間呼吸しても、機能的な悪影響はなく、大気中の通常の濃度の XNUMX 倍の濃度に容易に耐えました。 XNUMX ppm、つまり通常の新鮮な空気に見られるレベルの XNUMX 倍は、工業的な制限のために安全と見なされます。 ただし、XNUMX% の酸素混合物に XNUMX% の COXNUMX を加えただけでも、高い圧力で呼吸すると発作を起こしやすくなります。

窒素

窒素は、正常な人間の代謝に関して不活性ガスです。 体内の化合物や化学物質との化学的結合のいかなる形態にもなりません。 ただし、高圧下で呼吸すると、ダイバーの精神機能に深刻な障害が発生します。

大気圧が上昇すると、窒素は脂肪族麻酔薬として作用し、窒素濃度も上昇します。 窒素は、任意の脂肪族麻酔薬がその油水溶解度比に正比例して麻酔効力を示すと述べている Meyer-Overton 仮説によく適合します。 水よりも脂肪にXNUMX倍溶けやすい窒素は、予測された比率で正確に麻酔効果を生み出します。

実際には、50 m の深さまでの潜水は圧縮空気で行うことができますが、窒素酔いの影響は 30 ~ 50 m の間で初めて明らかになります。 ただし、ほとんどのダイバーは、これらのパラメーター内で適切に機能できます。 50 m より深い場所では、窒素麻酔の影響を避けるためにヘリウムと酸素の混合ガスが一般的に使用されます。 空気潜水は、水深 90 m をわずかに超える深さまで行われましたが、これらの極度の圧力では、ダイバーはほとんど機能できず、達成するために派遣されたタスクをほとんど思い出せませんでした。 前述のように、過剰な CO2 の蓄積は窒素の影響をさらに悪化させます。 換気力学は大きな圧力でガスの密度の影響を受けるため、細気管支内の層流の変化と呼吸ドライブの減少により、肺に自動的に CO2 が蓄積します。 したがって、50m を超える深海への空中潜水は非常に危険です。

窒素は、神経組織に溶解した単純な物理的存在によってその効果を発揮します。 神経細胞膜のわずかな腫れを引き起こし、ナトリウムイオンとカリウムイオンの透過性を高めます. 正常な脱分極/再分極プロセスへの干渉が、窒素酔いの臨床症状の原因であると考えられています。

減圧

減圧テーブル

減圧表は、高圧状態にさらされた人を減圧するための、深度と曝露時間に基づいたスケジュールを設定します。 減圧手順について、いくつかの一般的な説明を行うことができます。 すべての人に減圧症 (DCI) を回避することを保証できる減圧テーブルはありません。実際、以下で説明するように、現在使用されている一部のテーブルには多くの問題が指摘されています。 どんなに遅くても、通常の減圧のたびに気泡が発生することを覚えておく必要があります。 このため、減圧時間が長ければ長いほど DCI の可能性は低くなると言えますが、可能性が最も低い極端な場合、DCI は本質的にランダムなイベントになります。

慣れ

慣れ、または順化は、ダイバーと圧縮空気の労働者で発生し、繰り返し曝露した後、DCI の影響を受けにくくなります。 順応は約 5 週間の毎日の暴露で生じますが、1 日間から 30 週間の仕事の欠席や圧力の急激な上昇によって失われます。 残念なことに、建設会社は、非常に不適切な減圧テーブルと見なされている作業を可能にするために順応に依存してきました。 順化の効用を最大化するために、新しい労働者は、DCI を取得せずに慣れることができるように、シフトの途中で開始されることがよくあります。 例えば、現在の圧縮空気労働者に関する日本語の表 4 では、分割シフトを利用しており、午前と午後に圧縮空気にさらし、その間に XNUMX 時間の表面間隔を空けています。 最初の曝露からの減圧は、米海軍が必要とする減圧の約 XNUMX% であり、XNUMX 回目の曝露からの減圧は、海軍が必要とする減圧のわずか XNUMX% です。 それにもかかわらず、慣れは生理学的減圧からのこの逸脱を可能にします。 減圧症に罹りやすい普通の労働者でも、圧縮空気作業を自ら選択します。

慣れや順化のメカニズムは理解されていません。 しかし、労働者が痛みを感じていなくても、脳、骨、または組織に損傷が生じている可能性があります。 圧縮空気労働者の脳から採取した MRI では、研究された同年齢の対照と比較して最大 1991 倍の変化が見られます (Fueredi、Czarnecki、および Kindwall XNUMX)。 これらはおそらくラクナ梗塞を反映しています。

ダイビング減圧

ダイバーとケーソン作業員のための最新の減圧スケジュールのほとんどは、1908 年に JS Haldane によって最初に開発されたものと同様の数学的モデルに基づいています。 Haldane は、ヤギの場合、圧力が 2/1 に低下しても、症状が出ずに耐えることができることを観察しました。 これを出発点として使用し、数学的な便宜上、古典的な半減期方程式に基づいてさまざまな速度で窒素をロードおよびアンロードする体内の XNUMX つの異なる組織を考えました。 彼の段階的な減圧テーブルは、どの組織でも XNUMX:XNUMX の比率を超えないように設計されました。 何年にもわたって、Haldane のモデルは、ダイバーが許容できるものに適合するように実験的に修正されてきました。 しかし、ガスの負荷と除去に関するすべての数学的モデルには欠陥があります。これは、時間と深さが増すにつれて、安全性を維持したり、より安全になったりする減圧テーブルがないためです。

おそらく、現在エア ダイビングで使用できる最も信頼性の高い減圧テーブルは、カナダ海軍の DCIEM テーブル (Defence and Civil Institute of Environmental Medicine) として知られているものです。 これらのテーブルは、慣れていないダイバーによって幅広い条件で徹底的にテストされており、減圧症の発生率は非常に低くなっています。 現場で十分にテストされた他の減圧スケジュールは、フランスのダイビング会社であるコメックスによって最初に開発されたフランス国家標準です。

米海軍の空中減圧テーブルは、特に限界までプッシュした場合、信頼性が低くなります。 実際の使用では、米国海軍のマスター ダイバーは、問題を回避するために、実際の潜水に必要な深さよりも 3 m (10 フィート) 深く、および/または 17 露出時間セグメントが長くなるように定期的に減圧します。 Exceptional Exposure Air Decompression Tables は特に信頼性が低く、すべてのテスト ダイビングの 33% から XNUMX% で減圧症が発生しています。 一般に、米海軍の減圧停止はおそらく浅すぎます。

トンネリングとケーソン減圧

現在広く使用されている、減圧中に空気呼吸を必要とする空気減圧テーブルはどれも、トンネル作業員にとって安全ではないようです。 米国では、労働安全衛生局 (OSHA) によって実施されている現在の連邦政府の減圧スケジュール (米国労働法局 1971 年) では、42 人または複数の労働者が就業日の 1.29% で DCI を生成することが示されています。 2.11 ~ 2.45 bar の圧力で使用されています。 33 bar を超える圧力では、骨の無菌性壊死 (dysbaric ostonecrosis) の発生率が 83% になることが示されています。 英国のブラックプール テーブルにも欠陥があります。 香港の地下鉄の建設中に、これらのテーブルを使用していた労働者の 8% が DCI の症状を訴えました。 また、比較的適度な圧力で最大 XNUMX% の高気圧骨壊死の発生率を生み出すことも示されています。

1992 年に Faesecke によって考案された新しいドイツの酸素減圧テーブルは、キール運河の下のトンネルで使用され、成功を収めています。 新しいフランスの酸素テーブルも検査によって優れているように見えますが、大規模なプロジェクトではまだ使用されていません.

Kindwall と Edel は、15 年に米国国立労働安全衛生研究所のために、成功した商業潜水と失敗した商業潜水からの 1983 年間のデータを調査したコンピューターを使用して、経験的アプローチを使用して圧縮空気ケーソン減圧テーブルを考案しました (Kindwall、Edel および Melton 1983)。これにより、数学的モデリングの落とし穴のほとんどが回避されました。 モデリングは、実際のデータ ポイント間を補間するためだけに使用されました。 これらの表の基となった調査では、減圧中に空気を吸った場合、表のスケジュールでは DCI が発生しないことがわかりました。 しかし、使用された時間は非常に長く、建設業界にとっては実用的ではありませんでした。 しかし、テーブルの酸素バリアントが計算されたとき、減圧時間は、上記で引用された現在の OSHA 強制空気減圧テーブルと同様の時間、またはそれよりもさらに短い時間まで短縮できることがわかりました。 その後、これらの新しいテーブルは、0.95 bar から 3.13 bar の範囲の圧力 (0.13 bar 刻み) で、さまざまな年齢の慣れていない被験者によってテストされました。 平均作業レベルは、暴露中の重量挙げとトレッドミル歩行によってシミュレートされました。 曝露時間は、作業時間と減圧時間の合計が XNUMX 日 XNUMX 時間の作業時間に収まるように、可能な限り長くしました。 これらは、シフト勤務の実際の実践で使用される唯一のスケジュールです。 これらの検査中に DCI は報告されず、骨のスキャンと X 線では、背圧性骨壊死は明らかになりませんでした。 今日まで、これらは、圧縮空気作業員のために存在する唯一の実験室でテストされた減圧スケジュールです。

高圧室職員の減圧

米海軍の空中減圧スケジュールは、DCI 発生率が 5% 未満になるように設計されています。 これは、ダイビングの運用には十分ですが、臨床現場で働く高圧作業員には許容できないほど高すぎます。 高圧チャンバーアテンダントの減圧スケジュールは、海軍の空気減圧スケジュールに基づくことができますが、暴露は非常に頻繁であり、通常はテーブルの限界にあるため、それらを十分に長くする必要があり、減圧中の圧縮空気呼吸の代わりに酸素を使用する必要があります。 慎重な措置として、選択した減圧スケジュールで要求される深さよりも少なくとも 101 メートル深く、酸素を呼吸しながら 2.5 分間停止することをお勧めします。 たとえば、米国海軍は、6 ATA で 3 分間曝露した後、空気を呼吸しながら 1994 メートルで XNUMX 分間の減圧停止を要求していますが、同じ曝露を受ける高圧室の乗務員の許容可能な減圧スケジュールは XNUMX 分間の停止です。 XNUMX m で酸素を呼吸し、続いて XNUMX m で XNUMX 分間酸素を呼吸します。 上記のように変更されたこれらのスケジュールが実際に使用される場合、内部係員の DCI は非常にまれです (Kindwall XNUMXa)。

窒素を除去するための「酸素ウィンドウ」が 2 倍になることに加えて、酸素呼吸には他の利点もあります。 静脈血の POXNUMX を上げると、血液のスラッジが減少し、白血球の粘着性が低下し、ノーリフロー現象が減少し、毛細血管を通過する際に赤血球がより柔軟になり、白血球の変形性と濾過性の大幅な低下に対抗することが実証されています。圧縮空気にさらされています。

言うまでもなく、酸素減圧を使用するすべての作業者は、徹底的に訓練を受け、火災の危険性について知らされている必要があります。 減圧室の環境は、可燃物や着火源のない状態に保つ必要があります。船外ダンプシステムを使用して呼気酸素を室外に運び出す必要があり、高酸素アラームを備えた冗長酸素モニターを提供する必要があります。 チャンバー内の酸素が 23% を超えるとアラームが鳴ります。

圧縮空気を扱ったり、高圧条件下で臨床患者を治療したりすることで、他の方法では不可能な作業を達成したり、病気の寛解をもたらすことができる場合があります。 これらの方法を安全​​に使用するための規則が守られていれば、労働者は体圧障害の重大なリスクにさらされている必要はありません。

ケーソン工事とトンネル工事

建設業界では、時々、水で完全に飽和している地面、地元の地下水面の下にある地面、または川や湖の底などの完全に水中にあるコースをたどる地面を掘削またはトンネルする必要があります。 この状況を管理するための定評のある方法は、作業エリアに圧縮空気を適用して地面から水を押し出し、十分に乾燥させて採掘できるようにすることでした。 この原則は、橋脚の建設と軟弱地盤のトンネリングに使用されるケーソンの両方に適用されています (Kindwall 1994b)。

ケーソン

ケーソン (caisson) は単純に大きな逆さの箱であり、 橋の基礎の寸法に合わせて作られ、 典型的には乾ドックで建設され、 慎重に配置される場所に浮かんでいる。 その後、橋脚自体が建設されるにつれて、水が底に触れるまで浸水して下降し、その後、橋脚自体が建設されるにつれて重量を追加してさらに下降します。 ケーソンの目的は、柔らかい地盤を切り開いて橋脚を固い岩または良好な地質学的重量支持層に着陸させる方法を提供することです。 ケーソンのすべての側面が泥の中に埋まると、圧縮空気がケーソンの内部に適用され、水が押し出され、ケーソン内で作業する男性が掘削できる泥床が残ります。 ケーソンの端は鋼製のくさび形のカッティング シューで構成され、下降し続けるケーソンの下で土が取り除かれ、橋の塔が建設されるときに上から重りが加えられると、このカッティング シューは下降し続けます。 岩盤に達すると、作業室はコンクリートで満たされ、橋の基礎の恒久的な土台になります。

ケーソンはほぼ 150 年間使用されており、31.4 年のハーバー ブリッジのオークランド (ニュージーランド) のブリッジ ピア No. 3 のように、平均高水面下 1958 m の深さの基礎の建設に成功しています。

ケーソンの設計は、通常、はしごまたは機械式リフトのいずれかで降りることができる労働者用のアクセス シャフトと、スポイルを取り除くためのバケット用の別のシャフトを提供します。 シャフトの両端には密閉されたハッチがあり、作業員や資材が出入りする間もケーソンの圧力を一定に保つことができます。 泥濘シャフトの上部ハッチには、泥濘バケット用のホイスト ケーブルをスライドできる圧力シール グランドが装備されています。 上部ハッチを開く前に、下部ハッチを閉じます。 設計によっては、安全のためにハッチ インターロックが必要になる場合があります。 ハッチを開く前に、ハッチの両側で圧力が等しくなければなりません。 ケーソンの壁は一般に鋼またはコンクリートでできているため、圧力がかかっている間、縁の下を除いてチャンバーからの漏れはほとんどまたはまったくありません。 圧力は、カッティング シューのエッジでオフ シー プレッシャーのバランスをとるのに必要な圧力よりもわずかに大きい圧力まで徐々に上げられます。

加圧されたケーソンで働く人々は圧縮空気にさらされ、深海ダイバーが直面するのと同じ生理学的問題の多くを経験する可能性があります. これらには、減圧症、耳の圧外傷、洞腔および肺が含まれ、減圧スケジュールが不適切な場合、骨の無菌性壊死 (dysbaric ostonecrosis) の長期的なリスクがあります。

泥床から発生する CO2 とガス (特にメタン)、および作業室内での溶接または切断作業から発生する可能性のあるガスを排出するために、換気率を確立することが重要です。 経験則では、ケーソン内の各作業員に毎分 XNUMX 立方メートルの自由空気を提供する必要があります。 マックロックとマンロックが人員と材料の通過に使用されるときに失われる空気も考慮に入れる必要があります。 水はカッティングシューで正確なレベルまで押し下げられるため、余分な水がエッジの下で泡立つため、換気用の空気が必要です。 独立した電源を備えた第 XNUMX の空気供給と同じ容量の第 XNUMX の空気供給は、コンプレッサーまたは電源障害の場合に緊急に使用できるようにする必要があります。 多くの地域で、これは法律で義務付けられています。

採掘されている地面が均質で砂で構成されている場合は、ブローパイプを地表に立てることができます。 ケーソン内の圧力は、ブロー パイプの端がサンプに配置され、掘削された砂がサンプにシャベルで運ばれるときに、作業室から砂を抽出します。 粗い砂利、岩、または岩に遭遇した場合、これらを粉砕して従来の泥バケツで除去する必要があります。

上部に重量が追加されているにもかかわらず、ケーソンが沈まない場合は、作業者をケーソンから引き離し、作業室の空気圧を下げてケーソンを落下させる必要がある場合があります。 作業室の上部にあるダイヤフラムへの応力を軽減するために、ケーソンの上の空気シャフトを囲む桟橋構造内の井戸にコンクリートを配置するか、水を入れなければなりません。 ケーソンの作業を開始したばかりのときは、ケーソンが突然落下して作業員が押しつぶされるのを防ぐために、安全なベビーベッドまたはサポートを作業室に保管する必要があります。 実際の考慮事項は、男性が泥を手で採掘するために使用される場合、空気で満たされたケーソンを駆動できる深さを制限します。 3.4 kg/cm2 ゲージ (3.4 バールまたは 35 m の淡水) の圧力は、作業員の減圧を考慮して、ほぼ最大許容限界です。

自動化されたケーソン掘削システムが日本人によって開発されました。このシステムでは、ケーソンの隅々まで到達できる遠隔操作の油圧式バックホー ショベルが掘削に使用されます。 地表からテレビの制御下にあるバックホーは、掘削された土砂をケーソンから離れた位置にあるバケツに落とします。 このシステムを使用すると、ケーソンはほぼ無制限の圧力まで下げることができます。 労働者が作業室に入る必要があるのは、掘削機械を修理するか、ケーソンの切断シューの下に現れ、遠隔操作のバックホーでは除去できない大きな障害物を除去または解体するときだけです。 このような場合、労働者はダイバーと同じように短期間で入り、窒素酔いを避けるために高圧の空気または混合ガスを呼吸することができます。

0.8 kg/cm2 (0.8 bar) を超える圧力の圧縮空気の下で長時間働いた場合、段階的に減圧する必要があります。 これは、マン シャフトの上部に大きな減圧室をケーソンに取り付けるか、マン シャフトに「ブリスター ロック」を取り付けることによって達成できます。 これらは、立位で一度に数人の労働者しか収容できない小さな部屋です。 これらのブリスターロックでは、予備的な減圧が行われ、費やされる時間は比較的短くなります。 次に、かなりの過剰なガスが体内に残っているため、労働者は水面まで急速に減圧し、標準的な減圧室にすばやく移動します。標準的な減圧室は、隣接するはしけにあることもあります。 圧縮空気作業では、このプロセスは「デカント」として知られており、イギリスなどではかなり一般的でしたが、アメリカでは禁止されています。 目的は、気泡が十分に大きくなって症状を引き起こす前に、XNUMX分以内に労働者を圧力に戻すことです。 しかし、大規模な労働者集団をある部屋から別の部屋に移動させるのは難しいため、これは本質的に危険です。 再加圧中に XNUMX 人の労働者が耳を澄ませるのに苦労すると、シフト全体が危険にさらされます。 ダイバーにとっては、一度に XNUMX つまたは XNUMX つのみを減圧する「表面減圧」と呼ばれる、より安全な手順があります。 オークランド ハーバー ブリッジ プロジェクトではあらゆる予防策が講じられていましたが、橋梁の作業員が圧力を受けるまでに XNUMX 分もかかることがありました。

圧縮空気トンネリング

トンネルは人口の増加に伴い、下水処理と大都市中心部の下の障害物のない交通幹線と鉄道サービスの両方の目的で、ますます重要になっています。 多くの場合、これらのトンネルは、現地の地下水面よりかなり下の軟弱地盤を通らなければなりません。 川や湖の下では、作業者の安全を確保するために、トンネルに圧縮空気を入れる以外に方法がないかもしれません。 水を抑えるために圧縮空気で表面に油圧駆動のシールドを使用するこの技術は、プレナムプロセスとして知られています。 混雑した都市の大きな建物の下では、表面の沈下を防ぐために圧縮空気が必要になる場合があります。 これが発生すると、大きな建物の基礎にひび割れが発生したり、歩道や道路が落下したり、パイプやその他の設備が損傷したりする可能性があります。

トンネルに圧力をかけるために、圧力境界を提供するためにトンネルを横切って隔壁が立てられます。 直径 15 メートル未満の小さなトンネルでは、単一または組み合わせのロックを使用して、労働者と材料のアクセス、および掘削された地面の除去を提供します。 取り外し可能なトラック セクションはドアによって提供されるので、それらはマック トレインのレールからの干渉なしに操作することができます。 これらの隔壁には、ツール用の高圧空気、トンネルを加圧するための低圧空気、消防本管、圧力計線、通信線、照明および機械用の電力線、および換気用の吸引線を通すための多数の貫通孔が設けられています。インバート内の水の除去。 これらはブロー ラインまたは「モップ ライン」と呼ばれることがよくあります。 トンネルのサイズに応じて、直径 35 ~ 2 cm の低圧空気供給パイプを作業面まで延長して、作業員の換気を確保する必要があります。 同じサイズの第 2 の低圧空気管も両方の隔壁を貫通し、内部隔壁のすぐ内側で終端し、一次空気供給の破裂または破損の場合に空気を供給できるようにする必要があります。 これらのパイプには、供給パイプが破損した場合にトンネルの減圧を防ぐために自動的に閉じるフラッパー バルブを取り付ける必要があります。 トンネルを効率的に換気し、COXNUMX レベルを低く保つために必要な空気の量は、地面の空隙率と、完成したコンクリート ライニングがシールドにどれだけ接近しているかによって大きく異なります。 土壌中の微生物が大量の COXNUMX を生成することがあります。 明らかに、そのような条件下では、より多くの空気が必要になります。 圧縮空気のもう XNUMX つの有用な特性は、メタンなどの爆発性ガスを壁やトンネルから追い出す傾向があることです。 これは、ガソリンや脱脂剤などのこぼれた溶剤が地面を飽和させた採掘エリアに当てはまります。

Richardson と Mayo (1960) によって開発された経験則では、必要な空気の量は通常、作業面の面積 (平方メートル) を XNUMX 倍し、XNUMX 人あたり XNUMX 立方メートルを足すことで計算できます。 これは、XNUMX 分間に必要な自由空気の立方メートル数を示します。 この数値を使用すると、ほとんどの実際的な不測の事態がカバーされます。

消防本管も顔まで伸び、火災の場合に使用するために XNUMX メートルごとにホース接続を提供する必要があります。 水で満たされた消火口には、XNUMX メートルの防腐ホースを取り付ける必要があります。

直径が約 XNUMX メートルを超える非常に大きなトンネルでは、 XNUMX つの水門を設ける必要があり、 XNUMX つはマック水門 (muck lock) と呼ばれ、 マック (muck) 列車が通過するためのもので、 マン水門 (man lock) は通常マック水門の上に配置され、労働者用である。 大規模なプロジェクトでは、マン ロックは多くの場合 XNUMX つのコンパートメントで構成されているため、エンジニア、電気技師、その他の人々は、減圧中の作業シフトを過ぎてロックインおよびロックアウトできます。 これらの大きなマンロックは通常、メインのコンクリート隔壁の外側に構築されるため、外気に開放されたときにトンネル圧力の外部圧縮力に抵抗する必要はありません。

非常に大規模な水中トンネルでは、トンネルの上半分にまたがる安全スクリーンが建てられ、川や湖の下をトンネルしているときにトンネルが噴出に続いて突然浸水した場合に備えて、ある程度の保護を提供します. 安全スクリーンは通常、掘削機械を避けて、実行可能な限り顔の近くに配置されます。 フライング ギャングウェイまたはハンギング ウォークウェイがスクリーンとロックの間に使用され、ギャングウェイは落下してスクリーンの下端から少なくとも 3.6 メートル下を通過します。 これにより、突然の洪水が発生した場合に、労働者が男性のロックに出ることができます。 安全スクリーンは、爆発する可能性のある軽いガスをトラップするためにも使用でき、モップ ラインをスクリーンに取り付けて、吸引ラインまたはブロー ラインに接続することができます。 バルブにひびが入っていると、作業環境から軽いガスをパージするのに役立ちます。 安全スクリーンはトンネルのほぼ中央まで伸びているため、使用できる最小のトンネルは約 XNUMX m です。 衣服がパイプに吸い込まれると重大な事故が発生する可能性があるため、労働者はモップ ラインの開放端に近づかないように注意する必要があります。

表 1 は、圧縮空気作業者が最初に圧縮空気環境に入る前に行うべき指示のリストです。

空気の純度基準が維持され、すべての安全対策が実施されていることを確認するのは、トンネル プロジェクトの担当医または職業保健専門家の責任です。 トンネルとマンロックからの圧力記録グラフを定期的に調べることにより、確立された減圧スケジュールの順守も注意深く監視する必要があります。


表 1. 圧縮空気作業者への指示

  • 雇用主によって規定された減圧時間と使用中の公式の減圧コードを決して「短く」しないでください。 節約された時間は、潜在的に致命的または不自由な病気である減圧症 (DCI) のリスクに値するものではありません。
  • 減圧中は窮屈な姿勢で座らないでください。 そうすることで、窒素の泡が関節に集まって集中し、それによって DCI のリスクに寄与します。 帰宅後も体から窒素を排出している最中なので、仕事の後も就寝や窮屈な姿勢で休むことは控えましょう。
  • 減圧後 XNUMX 時間までは温水をシャワーや入浴に使用する必要があります。 非常に熱いお湯は、実際に減圧症を引き起こしたり、悪化させたりする可能性があります。
  • 重度の疲労、睡眠不足、前夜の大量飲酒も減圧症の原因となります。 飲酒やアスピリンの服用は、減圧症の痛みの「治療」として決して使用すべきではありません。
  • ひどい風邪などの発熱や病気は、減圧症のリスクを高めます。 筋肉や関節の捻挫や捻挫も、DCI を開始するのに「好まれる」場所です。
  • 職場から離れた場所で減圧症にかかった場合は、直ちに会社の医師またはこの病気の治療に詳しい人に連絡してください。 識別ブレスレットまたはバッジを常に着用してください。
  • 喫煙具は更衣室に置いておきます。 作動油は可燃性であり、トンネルの閉鎖環境で火災が発生した場合、大規模な損傷や仕事の停止を引き起こす可能性があり、仕事を解雇することになります. また、圧縮によりトンネル内の空気が厚くなるため、熱がたばこに伝わり、短くなるにつれて熱くなりすぎて保持できなくなります。
  • 圧縮中にストッパーを緩めない限り、魔法びんをお弁当箱に持ち込まないでください。 そうしないと、栓が魔法びんの奥まで押し込まれてしまいます。 減圧中は、ボトルが爆発しないようにストッパーも緩める必要があります。 非常に壊れやすいガラス魔法びんは、圧力がかかると、栓が緩んでいても破裂する可能性があります。
  • エアロックのドアを閉めて圧力をかけると、エアロック内の空気が温かくなるのがわかります。 これは「圧縮熱」と呼ばれ、正常です。 圧力が変化しなくなると、熱が放散され、温度が正常に戻ります。 圧縮中に最初に気付くのは、耳が詰まっていることです。 飲み込んだり、あくびをしたり、鼻をつまんだりして「耳から空気を吐き出そう」として「耳を澄ませ」ない限り、圧迫中に耳の痛みを感じるでしょう. 耳を澄ませることができない場合は、すぐにシフト長に連絡して、圧縮を停止できるようにしてください。 そうしないと、鼓膜が破れたり、耳がひどく圧迫されたりする可能性があります。 最大圧力に達すると、残りのシフトで耳に問題が発生することはありません。
  • 圧迫後に数時間以上持続する耳鳴り、耳鳴り、または難聴を経験した場合は、評価のために圧縮空気の医師に報告する必要があります。 非常に重度ではあるがまれな状況下では、耳をきれいにするのが非常に困難な場合、鼓膜以外の中耳構造の一部が影響を受ける可能性があり、その場合、永続的な回避のためにXNUMX、XNUMX日以内に外科的に修正する必要があります困難。
  • 風邪や花粉症の発作がある場合は、それが終わるまでエアロックで圧縮しようとしないのが最善です. 風邪をひくと、耳や副鼻腔を均等にすることが困難または不可能になる傾向があります。

 

高圧室作業員

高圧酸素療法は世界のすべての地域でより一般的になりつつあり、現在約 2,100 の高圧チャンバー施設が機能しています。 これらのチャンバーの多くは、圧縮空気で 1 ~ 5 kg/cm2 ゲージの範囲の圧力に圧縮されるマルチユニット ユニットです。 患者は、最大 100 kg/cm2 ゲージの圧力で、呼吸するために 2% の酸素を与えられます。 それ以上の圧力では、減圧症の治療のために混合ガスを呼吸することがあります。 しかし、チャンバーのアテンダントは通常、圧縮空気を呼吸するため、チャンバー内での曝露は、ダイバーや圧縮空気の作業員が経験するものと似ています。

通常、複数のチャンバー内で働くチャンバー アテンダントは、看護師、呼吸療法士、元ダイバー、または高圧技術者です。 このような労働者の身体的要件は、ケーソン労働者の身体的要件と同様です。 ただし、高圧分野で働くチャンバーアテンダントの多くは女性であることを覚えておくことが重要です。 妊娠の問題を除いて、女性は男性よりも圧縮空気作業による悪影響を受ける可能性が高くありません。 妊娠中の女性が圧縮空気にさらされると、胎盤を介して窒素が運ばれ、これが胎児に移行します。 減圧が行われるたびに、静脈系に窒素の泡が形成されます。 これらは静かな泡であり、肺フィルターによって効率的に除去されるため、小さい場合は害はありません. しかし、これらの泡が発育中の胎児に現れるというのは賢明ではありません。 行われた研究は、そのような状況下で胎児の損傷が発生する可能性があることを示しています. ある調査では、妊娠中にスキューバダイビングを行った女性の子供に先天性欠損症がより一般的であることが示唆されました。 妊娠中の女性を高圧室の状態にさらすことは避け、医学的および法的考慮事項の両方に一致する適切な方針を策定する必要があります。 このため、妊娠中の女性労働者は、妊娠中のリスクについて予防措置を講じる必要があり、妊娠中の女性が高圧室の状態にさらされないように、適切な職員の職務割り当てと健康教育プログラムを導入する必要があります。

ただし、妊娠中の患者は、100% 酸素を呼吸するため、窒素塞栓術を受けないため、高圧チャンバーで治療される場合があることを指摘しておく必要があります。 胎児が水晶体後線維形成症または新生児の網膜症のリスクが高いという以前の懸念は、大規模な臨床試験で根拠がないことが証明されています. 別の状態である動脈管開存の時期尚早の閉鎖も、暴露との関連は見出されていません。

その他の危険

身体的損傷

さまざまな

一般に、ダイバーは、建設現場で働く労働者が受けやすいのと同じタイプの身体的損傷を被りやすい傾向があります。 ケーブルの切断、負荷の故障、機械による圧挫、クレーンの回転などは日常的に発生する可能性があります。 ただし、水中環境では、ダイバーは他の場所では見られない特定の種類の固有の怪我をする傾向があります。

吸引/挟み込みによる損傷は特に注意が必要です。 船体の開口部、潜水士の反対側の水位が低いケーソン、またはダムでの作業は、この種の事故の原因となる可能性があります。 ダイバーは、この種の状況を「重い水」に閉じ込められているとよく言います。

ダイバーの腕、脚、または全身がトンネルやパイプなどの開口部に吸い込まれる危険な状況を回避するために、厳重な予防措置を講じて、ダムのパイプ バルブや水門にタグを付け、作業中に開かないようにする必要があります。ダイバーは彼らの近くの水にいます。 同じことは、ダイバーが作業している船内のポンプや配管にも当てはまります。

損傷には、閉じ込められた四肢の浮腫および低酸素症が含まれ、筋肉の壊死、永久的な神経損傷、または四肢全体の喪失さえも引き起こす可能性があります。単純な大規模なトラウマ。 長時間冷水に閉じ込められると、ダイバーは曝露により死亡する可能性があります。 ダイバーがスキューバ ギアを使用している場合、追加のスキューバ タンクが提供されない限り、リリースを行う前に空気が不足して溺れる可能性があります。

プロペラの損傷は単純であり、ダイバーが水中にいる間に船の主要な推進機にタグを付けることによって、予防する必要があります。 ただし、蒸気タービン動力船は、港にいるとき、ジャッキ装置を使用してタービンブレードの冷却と歪みを回避しながら、非常にゆっくりとスクリューを回転させ続けていることを覚えておく必要があります。 したがって、ダイバーは、このようなブレードで作業する場合 (たとえば、絡み合ったケーブルからブレードを取り除こうとする場合)、回転するブレードが船体に近い狭い場所に近づくため、回避する必要があることに注意する必要があります。

全身スクイーズは、柔軟なゴム引きスーツに合わせた古典的な銅製ヘルメットを使用している深海ダイバーに発生する可能性がある独特の怪我です. 空気パイプがヘルメットに接続する場所に逆止弁または逆止弁がない場合、表面で空気ラインを切断すると、ヘルメット内に即座に相対的な真空が発生し、全身がヘルメットに引き込まれる可能性があります. この影響は、瞬時に壊滅的なものになる可能性があります。 例えば、水深10mでは、ダイバーのドレスの柔らかい部分に約12トンの力がかかります。 ヘルメットの加圧が失われると、この力が彼の体をヘルメットに押し込みます。 ダイバーが予期せず失敗し、補償空気をオンにしなかった場合にも、同様の影響が生じる可能性があります。 水面近くで起きた場合、水面から 10 メートル落下するとドレスの体積が半分になるため、重傷や死亡事故につながる可能性があります。 40 ~ 50 m で同様の落下が発生した場合、スーツの体積は約 17% しか変化しません。 これらの体積変化は、ボイルの法則に従っています。

ケーソンおよびトンネル作業員

トンネル作業員は、大規模な建設現場で見られる通常のタイプの事故にさらされており、落盤による転倒や負傷の発生率が高いという追加の問題があります。 肋骨を骨折した可能性のある負傷した圧縮空気作業員は、そうでないことが証明されるまで気胸を疑うべきであり、したがって、そのような患者の減圧には細心の注意を払う必要があることを強調しなければなりません。 気胸が存在する場合は、減圧を試みる前に作業チャンバー内の圧力を解放する必要があります。

ノイズ

エアモーター、空気圧ハンマー、ドリルにはサイレンサーが適切に装備されていないため、圧縮空気作業員への騒音被害は深刻な場合があります。 ケーソンとトンネルの騒音レベルは 125 dB 以上と測定されています。 これらのレベルは身体的な痛みを伴うだけでなく、内耳に恒久的な損傷を与える原因にもなります. トンネルやケーソンの境界内でのエコーは、問題を悪化させます。

多くの圧縮空気労働者は、近づいてくる泥列車の音を遮断するのは危険だと言って、耳の保護具を着用することに躊躇しています。 聴覚保護はせいぜい音を減衰させるだけで、音をなくすわけではないため、この信念にはほとんど根拠がありません。 さらに、動く泥列車は保護された労働者に「無音」ではないだけでなく、動く影や地面の振動などの他の手がかりも与えます。 本当の懸念は、しっかりとフィットするイヤーマフまたはプロテクターによって提供される耳道の完全な気密閉塞です。 圧縮中に外耳道に空気が入れられないと、耳管を介して中耳に入る空気によって鼓膜が外側に押し出されるため、外耳の圧迫が生じる可能性があります。 ただし、通常の防音イヤーマフは通常、完全に気密ではありません。 総シフト時間のごく一部しか持続しない圧縮中、圧力の均等化に問題がある場合は、マフをわずかに緩めることができます。 外耳道にフィットするように成形できる成形ファイバー耳栓は、ある程度の保護を提供しますが、気密性はありません。

目標は、85 dBA を超える時間加重平均ノイズ レベルを回避することです。 すべての圧縮空気労働者は、高騒音環境に起因する可能性のある聴覚障害を監視できるように、雇用前のベースライン オージオグラムを取得する必要があります。

高圧チャンバーと減圧ロックには、チャンバーに入る空気供給パイプに効率的なサイレンサーを装備できます。 そうしないと、作業員は換気の騒音にかなり悩まされ、チャンバーを適切に換気することを怠る可能性があるため、これを主張することが重要です。 平均的なオフィスの騒音レベルとほぼ同じ 75dB を超えないサイレンシングされた空気供給により、継続的なベントを維持できます。

火災

火災は、圧縮空気トンネル作業および臨床高圧チャンバー操作において常に大きな懸念事項です。 スチール製の屋根と不燃性の湿った泥だけでできた床を持つスチール製の壁のケーソンで作業すると、誤った安心感に陥ることがあります。 ただし、このような状況でも、電気火災は断熱材を燃やす可能性があり、非常に有毒であることが判明し、作業員が非常に迅速に死亡または無力化する可能性があります. コンクリートが流し込まれる前に木製のラギングを使用して駆動されるトンネルでは、危険性はさらに大きくなります。 一部のトンネルでは、コーキングに使用される作動油とストローが追加の燃料を供給できます。

高圧条件下での火災は、燃焼をサポートするために利用できる酸素が多いため、常により激しくなります。 酸素の割合が 21% から 28% に上昇すると、燃焼速度が 4 倍になります。 圧力が増加すると、燃焼に利用できる酸素の量が増加します。この増加は、利用可能な酸素のパーセンテージに大気圧の数を絶対値で掛けた値に等しくなります。 たとえば、30 ATA (海水 84 m に相当) の圧力では、有効酸素パーセンテージは圧縮空気で 84% になります。 ただし、そのような条件下で燃焼が非常に加速されたとしても、3 気圧で XNUMX% の酸素で燃焼する速度と同じではないことを覚えておく必要があります。 その理由は、大気中に存在する窒素が一定の消光効果を持っているからです。 アセチレンは爆発性があるため、XNUMX bar を超える圧力では使用できません。 ただし、鋼の切断には他のトーチガスと酸素を使用できます。 これは、最大 XNUMX bar の圧力で安全に行われています。 ただし、このような状況では細心の注意を払う必要があり、誤った火花が可燃物と接触した場合に発生する可能性のある火災をすぐに消すために、誰かが消火ホースで待機する必要があります。

火には、燃料、酸素、着火源の 23 つの要素が存在する必要があります。 このXNUMXつの要素がXNUMXつでも欠けていれば、火災は発生しません。 高圧条件下では、問題の機器を窒素で満たすか周囲を囲んで環境に挿入できない限り、酸素を除去することはほとんど不可能です。 燃料を除去できない場合は、着火源を避ける必要があります。 臨床の高圧作業では、細心の注意を払って、多場所チャンバー内の酸素割合が XNUMX% を超えないようにします。 さらに、チャンバー内のすべての電気機器は、アークを生成する可能性がなく、本質的に安全でなければなりません。 チャンバー内の職員は、難燃剤で処理された綿の服を着用する必要があります。 散水システムと、独立して作動する手持ち式消火ホースを設置する必要があります。 複数の場所にある臨床用高圧チャンバーで火災が発生した場合、すぐに逃げることはできないため、手持ちのホースと洪水システムを使用して消火しなければなりません。

100% 酸素で加圧された一室の部屋では、火災は居住者にとって即座に致命的になります。 人体自体は、100% 酸素、特に加圧下での燃焼をサポートしています。 このため、合成材料によって生成される可能性のある静電気の火花を避けるために、単層チャンバー内の患者は無地の綿の服を着用します。 この衣服を耐火にする必要はありませんが、火災が発生した場合、衣服は保護されません. 酸素で満たされた部屋で火災を避ける唯一の方法は、発火源を完全に避けることです。

10 kg/cm2 ゲージを超える圧力の高圧酸素を扱う場合、断熱加熱が着火源の可能性があることを認識しなければなりません。 150 kg/cm の圧力で酸素の場合2 急速に開くボールバルブを介して突然マニホールドに流入すると、少量の汚れでも酸素が「ディーゼル」する可能性があります。 これにより、激しい爆発が発生する可能性があります。 このような事故が発生しているため、高圧酸素システムではクイック オープン ボール バルブを使用しないでください。

 

戻る

読む 11237 <font style="vertical-align: inherit;">回数</font> 26:先週の火曜日、7月2022 20 57に行わ
このカテゴリの詳細: 減圧障害 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

大気圧、参照の増加

ベネット、P および D エリオット (編) 1993。 ダイビングの生理学と医学。 ロンドン:WBサンダース。

 

Fuedi、GA、DJ Czarnecki、EP Kindwall。 1991. 圧縮空気トンネル作業員の脳における MR 所見: 心理測定結果との関係。 Am J Neuroradiol 12(1):67-70。

 

キンドウォール、EP。 1994a。 高圧医療の実践。 アリゾナ州フラッグスタッフ: ベスト パブリッシャー。

—。 1994b. 商用潜水および圧縮空気作業の医療面。 の 職業医学、C Zenz によって編集されました。 セントルイス: モスビー。

 

Kindwall、EP、PO Edel、HE Melton。 1983 年。ケーソン作業員のための安全な減圧スケジュール。 最終報告書、国立労働安全衛生研究所研究助成金番号 5R01-OH0094703、XNUMX 月 XNUMX 日。

 

リチャードソン、HW、RS メイヨー。 1960年。 実用的なトンネル運転。 ニューヨーク:McGraw-Hill

米国労働統計局。 1971年。連邦官報。 巻。 36、いいえ。 75、パート 2、サブパート S、パラ。 1518.803、17 月 XNUMX 日。