木曜日、24月2011 18:15

基本概念

このアイテムを評価
(4票)

火の化学と物理学

火災は、制御されていない燃焼の現れです。 これには、私たちが生活し、仕事をし、遊ぶ建物の中で私たちの周りに見られる可燃性物質と、産業や商業で遭遇するさまざまな気体、液体、固体が含まれます。 それらは一般に炭素ベースであり、まとめて次のように呼ばれることがあります。 燃料 この議論の文脈で。 これらの燃料は、化学的状態と物理的状態の両方で多種多様ですが、火の中では、それらすべてに共通する特徴を共有しています。 発砲のしやすさに違いがあります (点火)、発火率 (延焼)、発電できる電力(熱放出率)、しかし、火災の科学に対する理解が深まるにつれて、火災の挙動を定量化および予測し、知識を一般的な火災安全に適用できるようになります。 このセクションの目的は、基礎となる原則のいくつかを確認し、火災プロセスを理解するためのガイダンスを提供することです。

基本概念

私たちの身の回りには可燃物があふれています。 適切な状況が与えられれば、それらを火にかけることによって燃やすことができます。 発火源 自己持続的な反応を開始することができます。 このプロセスでは、「燃料」が空気中の酸素と反応してエネルギー (熱) を放出すると同時に、有害な燃焼生成物に変換されます。 発火と燃焼のメカニズムを明確に理解する必要があります。

日常の火災のほとんどは、固体材料 (木材、木材製品、合成ポリマーなど) に関係していますが、気体燃料や液体燃料も珍しくありません。 基本的な概念のいくつかを説明する前に、気体と液体の燃焼について簡単に説明しておくことが望ましいです。

拡散炎と予混合炎

可燃性ガス(例、プロパン、C3H8) は XNUMX つの方法で燃焼することができます: パイプからのガスの流れまたは噴流 (空気入口を閉じた単純なブンゼン バーナーを参照) に点火し、ガスとして燃焼します。 拡散炎 気体燃料と空気が拡散プロセスによって混合する領域で燃焼が発生します。 このような炎は特徴的な黄色の光度を持ち、不完全燃焼の結果として形成された微細なすす粒子の存在を示します。 これらのいくつかは炎の中で燃えますが、他のものは炎の先端から現れて形になります .

ガスと空気が点火前に密接に混合されている場合、ガス/空気混合物が下限と上限で囲まれた濃度範囲内にある場合、予混合燃焼が発生します。 可燃限界 (表 1 を参照)。 これらの制限外では、混合物は不燃性です。 (注意してください 予混合炎 空気入口が開いている場合、ブンゼン バーナーの口で安定します。) 混合物が可燃性である場合、電気火花などの小さな発火源によって着火することができます。 の 化学量論 混合気は最も着火しやすく、存在する酸素の量は、すべての燃料を二酸化炭素と水に燃焼させるのに適切な比率になっています (下記の式を参照してください。空気中ですが、反応には関与しません)。 プロパン (C3H8) は、この反応における可燃性物質です。

C3H8 + 5O2 + 18.8N2 = 3CO2 + 4H2O + 18.8N2

0.3 mJ 程度の小さな放電でも、図示の反応で化学量論的プロパン/空気混合物に点火するのに十分です。 これは、合成カーペットの上を歩き、接地された物体に触れた人が経験するような、かろうじて知覚できる静電気の火花を表しています。 水素、エチレン、エチンなどの特定の反応性ガスには、さらに少量のエネルギーが必要です。 純粋な酸素 (上記の反応のように、希釈剤として窒素が存在しない場合) では、さらに低いエネルギーでも十分です。

表 1. 空気中での可燃性の下限と上限

 

低燃焼性 
限界 (体積%)

上部燃焼性 
限界 (体積%)

一酸化炭素

12.5

74

メタン

5.0

15

プロパン

2.1

9.5

n-ヘキサン

1.2

7.4

n-デカン

0.75

5.6

メタノール

6.7

36

エタノール

3.3

19

アセトン

2.6

13

ベンゼン

1.3

7.9

 

気体燃料の流れに関連する拡散炎は、液体または固体燃料が炎上燃焼しているときに観察される燃焼モードを例示しています。 しかしながら、この場合、火炎は、凝縮相の表面で生成された燃料蒸気によって供給される。 これらの蒸気の供給速度は、拡散炎での燃焼速度と連動しています。 エネルギーは炎から表面に伝達され、蒸気を生成するのに必要なエネルギーを提供します。 これは液体燃料の単純な蒸発プロセスですが、固体の場合、燃料の化学分解を引き起こすのに十分なエネルギーを提供する必要があります。これにより、大きなポリマー分子が小さな断片に分解され、蒸発して表面から逃げることができます。 この熱フィードバックは、蒸気の流れを維持するために不可欠であり、したがって拡散炎をサポートします (図 1)。 炎は、さまざまな方法でこのプロセスを妨害することによって消すことができます (以下を参照)。

図 1. 熱および物質移動プロセスを示す燃焼面の概略図。

FIR010F1

熱伝達

熱 (またはエネルギー) の移動を理解することは、火災の挙動と火災プロセスを理解するための鍵です。 この主題は注意深く研究する価値があります。 参照できる優れたテキストが多数ありますが (Welty、Wilson、および Wicks 1976; DiNenno 1988)、現在の目的では、伝導、対流、および放射の XNUMX つのメカニズムに注意を向けることだけが必要です。 定常熱伝達の基本方程式 () は次のとおりです。

伝導:   

対流:    

放射線:      

伝導は、固体を介した熱伝達に関連しています。 (k は熱伝導率 (kW/mK) として知られる材料特性であり、 l 温度が下がる距離 (m) T1 〜へ T2 (ケルビン度)。 このコンテキストでの対流とは、流体 (この場合は空気、炎、または火製品) から表面 (固体または液体) への熱の移動を指します。 h は対流熱伝達係数 kW/m2K) であり、表面の構成とその表面を通過する流体の流れの性質に依存します。 放射は可視光に似ていますが (ただし波長はより長く)、介在する媒体を必要としません (真空を通過できます)。 e は放射率 (表面が放射できる効率)、s はステファン・ボルツマン定数 () です。 熱放射は光速 (3 x 108 m/s) と、介在する固体オブジェクトが影を落とします。

燃焼速度と熱放出速度

火炎から凝縮した燃料 (液体および固体) の表面への熱伝達には、対流と放射の混合が関係しますが、火の有効直径が 1 m を超えると後者が支配的になります。 燃焼速度 (, (g/s)) は、次の式で表すことができます。

は炎から表面への熱流束 (kW/m2); は表面からの熱損失 (例えば、放射による、および固体を介した伝導による) であり、フラックス (kW/m2); A燃料 は燃料の表面積 (m2); そして Lv は気化熱(液体の蒸発潜熱に相当)(kJ/g)。 密閉された空間で火災が発生すると、火災から上昇する高温の煙のようなガス (浮力によって駆動される) が天井の下でそらされ、上面が加熱されます。 結果として生じる煙の層と高温の表面は、エンクロージャーの下部、特に燃料の表面まで放射状に広がるため、燃焼速度が増加します。

コラボレー は、エンクロージャの上部からの放射によって供給される余分な熱です (kW/m2)。 この追加のフィードバックにより、燃焼速度が大幅に向上し、火災を維持するのに十分な空気と燃料が十分に供給されている密閉空間でのフラッシュオーバー現象が発生します (Drysdale 1985)。

燃焼速度は、の値の大きさによって緩和されます。 Lv、ガス化の熱。 これは、液体の場合は低く、固体の場合は比較的高くなる傾向があります。 その結果、固体は液体よりもはるかにゆっくりと燃焼する傾向があります。

材料 (または材料の集合体) の発火挙動を決定する最も重要な単一パラメータは、 熱放出率 (RHR) は、次の式で燃焼速度に結合されます。

ここで、燃料の有効燃焼熱 (kJ/g) です。 さまざまな熱流束で RHR を測定するための新しい技術が利用できるようになりました (たとえば、コーン熱量計)。また、酸素消費量を使用する大規模な熱量計で、布張りの家具や壁の内張りなどの大きなアイテムの RHR を測定することが可能になりました。熱放出率を決定するための測定 (Babrauskas and Grayson 1992)。

火災の規模が大きくなるにつれて、熱放出率が増加するだけでなく、「火災製品」の生産率も増加することに注意してください。 これらには有毒で有毒な種と粒子状の煙が含まれており、建物のエンクロージャー内で発生した火災が換気不足になると、その発生量が増加します。

点火

液体または固体の点火には、蒸気が点火された後、火炎を維持するのに十分な速度で蒸気が発生するまで、表面温度を上げる必要があります。 液体燃料は、次のように分類できます。 引火点可燃性蒸気/空気混合物が表面に存在する最低温度 (すなわち、蒸気圧は可燃性の下限に対応します)。 これらは、標準的な装置を使用して測定できます。典型的な例を表 2 に示します。拡散炎を維持するのに十分な蒸気の流れを生成するには、わずかに高い温度が必要です。 これは、 火点. 可燃性固体の場合、同じ概念が有効ですが、化学分解が関与するため、より高い温度が必要です。 燃料にもよりますが、発火点は通常 300 °C を超えます。 一般に、難燃性材料は非常に高い発火点を持っています (表 2 を参照)。

表 2. 液体燃料と固体燃料の引火点と発火点

 

クローズドカップ引火点1 (°C)

ファイアポイント2 (°C)

ガソリン (100 オクタン) (l)

-38

n-デカン (l)

46

61.5

n・ドデカン(l)

74

103

ポリメチルメタクリレート

310

FR ポリメチルメタクリレート

377

ポリプロピレン

330

FR ポリプロピレン

397

ポリスチレン

367

FRポリスチレン

445

l = 液体; s = ソリッド。
1 Pensky-Martens クローズド カップ装置による。
2 液体:クリーブランドオープンカップ装置による。 固体: Drysdale と Thomson (1994)。
(難燃性種の結果は、37 kW/m の熱流束を参照していることに注意してください。2).

 

したがって、固体物質の着火のしやすさは、たとえば放射熱または高温ガスの流れにさらされることによって、その表面温度が発火点まで上昇しやすいかどうかに依存します。 これは、固体の厚さと物理的特性よりも分解プロセスの化学的性質に依存しません。 熱伝導率 (k), 密度 (r)と 熱容量 (c)。 木の削りくず (およびすべての薄い部分) などの薄い固形物は、熱質量が小さいため、つまり、温度を発火点まで上げるのに必要な熱が比較的少ないため、非常に簡単に着火できます。 ただし、熱が厚い固体の表面に伝達されると、一部が表面から固体の本体に伝導され、表面の温度上昇が緩和されます。 表面温度の上昇率は、 熱慣性 素材、つまり製品の クローク. 熱慣性が高い厚い材料 (例: オーク、固体ポリウレタン) は、同じ条件下で熱慣性が低い厚い材料 (例:ファイバー断熱ボード、ポリウレタンフォーム) はすぐに発火します (Drysdale 1985)。

着火源

点火は、図 2 に概略的に示されています (パイロット点火)。 点火を成功させるには、 発火源 表面温度を火点以上に上昇させるだけでなく、蒸気を発火させなければなりません。 衝突する炎は両方の能力で作用しますが、離れた場所から課せられた放射フラックスは、蒸気が発火することなく、火点を超える温度で蒸気を発生させる可能性があります。 ただし、発生した蒸気が十分に熱くなっている場合 (表面温度が発火点よりもはるかに高い必要があります)、空気と混ざり合って自然発火する可能性があります。 このプロセスは次のように知られています。 自然発火.

図 2. パイロット点火のシナリオ。

FIR010F2

多数の発火源を特定することができますが、共通点が 1991 つあります。それは、何らかの不注意または不作為の結果であるということです。 典型的なリストには、裸火、「喫煙者の材料」、摩擦加熱、電気機器 (ヒーター、アイロン、調理器具など) などが含まれます。 優れた調査が Cote (3) に見られるかもしれません。 これらの一部を表 XNUMX にまとめます。

 


表 3. 着火源

 

 


 

電動機器

電気ストーブ、ドライヤー、電気毛布など

直火ソース

マッチ、ライター、トーチなど

ガス燃料機器

ガス火、ストーブ、コンロなど

その他の燃料装備

薪ストーブなど

火のついたたばこ

葉巻、パイプなど

熱い物体

高温パイプ、機械火花など

加熱への暴露

隣接火災等

自然発熱

亜麻仁油を染み込ませたぼろ、石炭の山など

化学反応

希少例、グリセロールを含む過マンガン酸カリウム

 


 

くすぶっている紙巻たばこは、(一般的なガス燃料であっても)直接燃焼を開始することはできませんが、 くすぶり このタイプの燃焼を受ける傾向がある物質で。 これは、加熱すると焦げる材料でのみ観察されます。 くすぶりはチャーの表面酸化を含み、隣接する未燃燃料から新鮮なチャーを生成するのに十分な熱を局所的に生成します。 これは非常にゆっくりとしたプロセスですが、最終的に炎上に移行する可能性があります。 その後、火災は非常に急速に進行します。

くすぶりやすい材料は、自己発熱の現象を示すこともあります (Bowes 1984)。 これは、そのような材料が大量に保存され、ゆっくりとした表面酸化によって生成された熱が逃げることができず、塊内の温度が上昇する場合に発生します。 条件が正しければ、これは暴走プロセスにつながり、最終的には材料内の深部でくすぶり反応に発展する可能性があります。

延焼

火災の成長における主要な要素は、炎が隣接する可燃性表面に広がる速度です。 火炎の広がりは、火炎の前縁がまだ燃焼していない燃料の着火源として機能する前進する着火面としてモデル化できます。 拡散速度は、部分的には着火のしやすさを制御する同じ材料特性によって、また部分的には既存の炎と前面前方の表面との間の相互作用によって決定されます。 浮力によって炎が上向きに流れ、燃焼領域の上の表面が炎からの直接の熱伝達にさらされるため、上向きの垂直拡散が最も急速です。 これは、燃焼領域からの炎が表面から離れて垂直に上昇するときに水平表面上に広がることと対照的です. 実際、垂直方向の広がりが最も危険であることはよくあることです (例えば、カーテンやドレープ、ドレスやナイトガウンなどのゆったりとした衣服での炎の広がり)。

拡散率は、課せられた放射熱流束の影響も受けます。 部屋で火災が発生すると、火災が進行するにつれて蓄積される放射線レベルが増加するため、火災の範囲はより急速に拡大します。 これは、フラッシュオーバーの特徴である火の成長の加速に貢献します。

消火理論

消火・鎮火は、上記の火の理論の概要から考察することができます。 気相燃焼プロセス(すなわち、火炎反応)は、化学阻害剤に非常に敏感です。 いくつかの 難燃剤 材料の「燃焼特性」を改善するために使用される燃料蒸気は、燃料蒸気とともに放出される少量の抑制剤が炎の確立を抑制するという事実に依存しています。 難燃剤の存在は、可燃性物質を不燃性にすることはできませんが、着火をより困難にする可能性があります。着火源が小さい場合は、着火を完全に防ぐことができます。 ただし、難燃性材料が既存の火災に巻き込まれると、高熱流束が難燃剤の効果を圧倒するため、燃焼します。

火災の消火は、いくつかの方法で達成できます。

1.燃料蒸気の供給停止

2. 化学消火器による消火(抑制)

3. 火への空気(酸素)の供給を取り除く(窒息)

4.「ブローアウト」。

燃料蒸気の流れの制御

燃料蒸気の供給を停止する最初の方法は、燃料の供給を簡単に停止できるガスジェット火災に明らかに適用できます。 ただし、これは、凝縮した燃料が関係する火災を消火する最も一般的で安全な方法でもあります。 固体が関与する火災の場合、蒸気の流れが炎を維持するには小さすぎると、燃料の表面を発火点より下に冷却する必要があります。 これは、手動または自動システム (スプリンクラー、散水など) を使用して水を適用することによって最も効果的に達成されます。 一般に、液体火災はこの方法では対処できません。火点の低い液体燃料は十分に冷却できませんが、火点の高い燃料の場合、高温の液体と接触すると水が激しく気化します。表面が燃える可能性があり、コンテナから燃料が排出されます。 これは、消火活動をしている人々に非常に深刻な結果をもたらす可能性があります。 (自動高圧散水システムが後者のタイプの火災に対処するように設計されている特殊なケースがいくつかありますが、これは一般的ではありません。)

液体火災は通常、泡消火剤を使用して消火します (Cote 1991)。 これは、泡の濃縮物を水の流れに吸引することによって生成され、水の流れに空気を混入させる特別なノズルを介して火に向けられます。 これにより、液体の上に浮かぶ泡が生成され、閉塞効果と炎からの熱伝達から表面を保護することにより、燃料蒸気の供給速度が低下します。 泡は、液面を覆うように徐々にサイズが大きくなる「ラフト」を形成するために慎重に塗布する必要があります。 筏が成長するにつれて炎のサイズが小さくなり、同時に泡が徐々に崩壊し、表面の冷却を助ける水が放出されます. メカニズムは実際には複雑ですが、最終的な結果は蒸気の流れを制御することです。

利用可能なフォーム濃縮物は数多くありますが、保護する液体と適合するものを選択することが重要です。 オリジナルの「プロテイン フォーム」は、炭化水素液体火災用に開発されましたが、水溶性の液体燃料と接触すると急速に分解します。 遭遇する可能性のある液体火災の全範囲に対処するために、一連の「合成フォーム」が開発されました。 これらの XNUMX つである水性膜形成フォーム (AFFF) は、液体燃料の表面に水の膜を生成する多目的フォームであり、その効果を高めます。

炎を消す

この方法では、炎を消すために化学抑制剤を使用します。 炎の中で起こる反応にはフリーラジカルが含まれます。これは非常に反応性の高い種で、つかの間の存在しかありませんが、反応全体 (例えば、R1 タイプの反応) を進行させるのに十分な高濃度を維持する分枝鎖プロセスによって継続的に再生されます。高速で。 十分な量の化学抑制剤を適用すると、これらのラジカルの濃度が劇的に低下し、効果的に炎が消えます。 このように機能する最も一般的な薬剤は、ハロンと乾燥粉末です。

ハロンは炎の中で反応して、炎のラジカルが優先的に反応する他の中間種を生成します。 消火に必要なハロンの量は比較的少量であるため、伝統的に非常に望ましいと考えられていました。 消火濃度は「呼吸可能」です (ただし、炎を通過する際に生成される生成物は有害です)。 乾燥粉末も同様に作用しますが、特定の状況下でははるかに効果的です。 微粒子が火炎中に飛散し、ラジカル連鎖を停止させます。 粒子が小さく、多数であることが重要です。 これは、多くの専有ブランドの乾燥粉末の製造業者が、高温の炎にさらされたときに粒子が細かく砕ける粉末を選択することによって達成されます。

衣服に火がついた場合、粉末消火器が炎を制御し、その人を保護する最善の方法であると認識されています。 迅速な介入により迅速な「ノックダウン」が行われ、怪我が最小限に抑えられます。 ただし、粒子はすぐに地面に落ち、残りの炎はすぐに元に戻るため、炎を完全に消す必要があります。 同様に、ハロンは、局所濃度が維持されている場合にのみ有効です。 戸外で使用すると、ハロン蒸気は急速に分散し、炎が残っていると急速に再燃します。 さらに重要なことに、表面温度が十分に高い場合、抑制剤の損失に続いて燃料が再点火されます。 ハロンも乾燥粉末も、燃料表面に大きな冷却効果はありません。

空気の供給を取り除く

以下の説明は、プロセスを単純化しすぎています。 「空気の供給を取り除く」ことは確かに消火につながりますが、これを行うには、酸素濃度を臨界レベル以下に下げるだけで十分です。 よく知られている「酸素指数試験」は、燃焼をサポートする酸素/窒素混合物中の最小酸素濃度に従って可燃性物質を分類します。 多くの一般的な材料は、酸素濃度が周囲温度 (約 14°C) で約 20% まで低下し、熱伝達が課されない場合に燃焼します。 臨界濃度は温度に依存し、温度が上昇すると減少します。 したがって、しばらくの間燃え続けている火は、おそらく 7% という低い濃度でも炎を維持することができます。 ドアや窓を閉めたままにしておくことで酸素の供給が制限されている場合、部屋の火災は抑えられ、自己消火することさえあります. 燃焼は止むかもしれませんが、くすぶりは非常に低い酸素濃度で続きます。 部屋が十分に冷える前にドアを開けたり、窓を割ったりして空気が入ると、 バックドラフトまたは バックドラフト.

「空気抜き」が難しい。 しかし、大気は、窒素、二酸化炭素、または酸素が少なく酸素が多い燃焼プロセス(例えば、船のエンジン)からのガスなど、燃焼をサポートしないガスによる完全なフラッディングによって「不活性」になる場合があります。二酸化炭素中。 この技術は、火が完全に消えるか消火活動が開始されるまで、必要な濃度の「不活性ガス」を維持する必要があるため、密閉された空間でのみ使用できます。 総フラッディングには、船の船倉や図書館の珍しい本のコレクションなど、特別な用途があります。 不活性ガスの必要な最小濃度を表 4 に示します。これらは、火災が早期に検出され、スペースに過度の熱が蓄積する前にフラッディングが実行されるという仮定に基づいています。

表 4: 不活性化に必要なさまざまなガスの濃度の比較

エージェント

最小濃度 (体積%)

ハロン1301

8.0

ハロン1211

8.1

窒素

二酸化炭素

 

「空気の除去」は、消火器から抑制剤を局所的に適用することにより、小さな火災のすぐ近くで行うことができます。 二酸化炭素は、この方法で使用される唯一のガスです。 ただし、このガスはすぐに分散するため、火の攻撃中にすべての炎を消すことが不可欠です。 そうしないと、フレーミングが再確立されます。 二酸化炭素は冷却効果があったとしてもほとんどないため、再点火も可能です。 炎に同伴された細かい水噴霧は、液滴の蒸発 (燃焼ゾーンを冷却する) と水蒸気による希釈による酸素濃度の低下 (同じように作用する) の組み合わせの結果として消火を引き起こす可能性があることに注意する価値があります。二酸化炭素として)。 ハロンの代替として、細かい水しぶきやミストが検討されています。

ここで、ガスの流れをすぐに止められない限り、ガスの炎を消すことはお勧めできません。 そうしないと、かなりの量の可燃性ガスが蓄積して発火し、深刻な結果を招く可能性があります。

吹き消す

このメソッドは、完全を期すためにここに含まれています。 マッチの炎は、炎の近くで空気速度を臨界値以上に上げると、簡単に吹き消すことができます。 このメカニズムは、燃料の近くで火炎を不安定にすることによって作動します。 原則として、より大きな火災は同じ方法で制御できますが、通常、十分な速度を生み出すには爆薬が必要です。 油井火災は、この方法で消火することができます。

最後に、強調する必要がある一般的な特徴は、火が大きくなるにつれて、火を消すことができる容易さが急速に減少することです。 早期発見により、最小量の抑制剤で絶滅が可能になり、損失が減少します。 抑制システムを選択する際には、潜在的な火災発生率と、利用可能な検出システムの種類を考慮する必要があります。

爆発

爆発は、エネルギーの突然の放出によって特徴付けられ、遠隔損傷を引き起こす可能性がある衝撃波または爆風を生成します。 ソースには、XNUMX つの異なるタイプ、すなわち、高圧爆薬と圧力バーストがあります。 高性能爆薬は、トリニトロトルエン(TNT)やシクロトリメチレントリニトラミン(RDX)などの化合物に代表されます。 これらの化合物は非常に発熱性の種であり、分解してかなりの量のエネルギーを放出します。 熱的に安定していますが (それほど安定しておらず、安全に取り扱うために減感作が必要な場合もあります)、それらは爆発を誘発し、分解して固体中を音速で伝播する可能性があります。 放出されるエネルギー量が十分に高い場合、爆風が発生源から伝播し、離れた場所に重大な損害を与える可能性があります。

遠隔地の損傷を評価することで、爆発の規模を「TNT 相当量」(通常はトン単位) で見積もることができます。 この手法は、TNT の潜在的な損傷 (その多くは戦時中) について収集された大量のデータに依存しており、既知の量の TNT によって引き起こされた損傷の研究から開発された経験的尺度法を使用しています。

平時には、鉱業、採石、大規模な土木工事など、さまざまな活動で高性能爆薬が使用されています。 サイト上にそれらが存在することは、特定の管理を必要とする特定の危険を表しています。 ただし、「爆発」のもう XNUMX つの原因は、特に危険が認識されていない場合、同様に壊滅的な影響を与える可能性があります。 圧力バーストにつながる過圧は、プラント内の化学プロセスの結果、または純粋に物理的な影響の結果である可能性があります。これは、容器が外部から加熱されて過圧につながる場合に発生します。 用語 ブリーブ (沸騰した液体が膨張する蒸気爆発) の語源はここにあり、元々は蒸気ボイラーの故障を指しています。 現在では、LPG (液化石油ガス) などの液化ガスを含む圧力容器が火災で失敗し、可燃性内容物が放出され、それが発火して「火の玉」を生成するイベントを表すためにも一般的に使用されています。

一方、過圧は化学プロセスによって内部的に引き起こされる可能性があります。 プロセス産業では、自己発熱が暴走反応を引き起こし、圧力バーストを引き起こす可能性のある高温と圧力を生成する可能性があります。 ただし、最も一般的なタイプの爆発は、プラントのアイテム内、または実際には密閉構造またはエンクロージャ内に閉じ込められた可燃性ガス/空気混合物の発火によって引き起こされます。 前提条件は可燃性混合物の形成であり、これは適切な設計と管理によって回避する必要があります。 偶発的な放出が発生した場合、ガス (または蒸気) の濃度が可燃性の下限と上限の間にある場合はどこでも可燃性雰囲気が存在します (表 1)。 着火源がこれらの領域の 2,100 つに導入されると、予混合火炎が発火源から急速に広がり、燃料と空気の混合物が高温の燃焼生成物に変換されます。 これは 300 K にもなる可能性があり、最初は 7 K の完全に閉じたシステムでは、XNUMX バールの過圧が可能であることを示しています。 特別に設計された圧力容器だけが、このような過圧を抑えることができます。 通常の建物は、圧力リリーフ パネルや破裂板、または爆発抑制システムによって保護されていない限り、倒壊します。 建物内で可燃性混合物が形成された場合、爆発の初期段階で作成された開口部 (窓の破損など) から爆発が外部に放出されない限り、その後の爆発は重大な構造的損傷 (おそらく完全な破壊) を引き起こす可能性があります。

このタイプの爆発は、空気中の粉塵懸濁液の発火にも関連しています (Palmer 1973)。 これらは、建物内の棚、垂木、棚から取り除かれて雲を形成する「爆発性の」粉塵がかなり蓄積され、その後発火源(製粉工場、穀物エレベーターなど)にさらされる場合に発生します。 .)。 粉塵は (明らかに) 可燃性でなければなりませんが、すべての可燃性粉塵が周囲温度で爆発するわけではありません。 粉塵が爆発性かどうかを判断するための標準試験が設計されています。 これらは、ガスや蒸気の「可燃限界」と概念が似ている、爆発性粉塵が「爆発限界」を示すことを示すためにも使用できます。 一般に、粉塵爆発は、初期のイベントでより多くの粉塵が除去され、さらに大きな粉塵雲が形成され、必然的に発火してさらに大きな爆発を引き起こす可能性があるため、多大な損害を与える可能性があります。

爆発ベントまたは 爆発の救済、静止した可燃性混合物または爆発性の粉塵雲を通る予混合火炎の伝播に関連するなど、爆発の発生速度が比較的遅い場合にのみ正常に動作します。 爆発が関係している場合、爆発ベントは役に立ちません。 この理由は、圧力がまだ比較的低いイベントの初期段階で圧力逃がし開口部を作成する必要があるためです。 爆発が起きた場合、圧力が急激に上昇して安全を確保することができず、囲んでいる容器やプラントのアイテムは非常に高い内圧にさらされ、大規模な破壊につながります。 可燃性ガス混合物の爆発 混合物が長いパイプまたはダクト内に含まれている場合に発生する可能性があります。 特定の条件下では、予混合火炎の伝播により、乱流が増加する速度で未燃焼ガスが火炎前面の前に押し出され、それが伝播速度を増加させます。 これは、衝撃波が形成されるまで炎を加速させるフィードバック ループを提供します。 これは、燃焼プロセスと組み合わされて、1,000 m/s をはるかに超える速度で伝播するデトネーション波です。 これは、 基本燃焼速度 0.45 m/s の化学量論的プロパン/空気混合物の(これは、火炎が静止した (つまり、乱流のない) プロパン/空気混合物を伝播する速度です。)

このタイプの爆発の発生における乱気流の重要性を過小評価することはできません。 防爆システムの正常な動作は、早期のベントまたは早期の抑制にかかっています。 爆発の進行速度が速すぎると、保護システムが効果を発揮せず、許容できない過圧が発生する可能性があります。

爆発救済の代替手段は 爆発抑制. このタイプの保護では、爆発をできるだけ点火に近い非常に早い段階で検出する必要があります。 検出器を使用して、伝播する火炎の経路への抑制剤の急速な放出を開始し、周囲の境界の完全性が脅かされる程度まで圧力が上昇する前に爆発を効果的に停止します。 ハロンはこの目的で一般的に使用されてきましたが、これらが段階的に廃止されているため、高圧水噴霧システムの使用に注意が払われています. このタイプの保護は非常に高価であり、抑制剤を迅速かつ均一に分配できる比較的小さな容積 (可燃性蒸気または爆発性粉塵を運ぶダクトなど) でしか使用できないため、用途が限られています。

防火のための情報分析

一般的に言えば、火災科学は、安全性の問題を含む工学設計に関する合理的な決定の基礎となる知識ベースを提供できる段階にまで発展したのはごく最近のことです。 伝統的に、火災安全は アドホック 事案が発生した場合には、再発防止のための規制その他の制限を課すことにより、効果的に対応する。 多くの例を引用することができます。 たとえば、1666 年のロンドン大火は、やがて最初の建築規則 (またはコード) の確立と火災保険の開発につながりました。 1972 年と 1974 年にブラジルのサンパウロで発生した高層オフィスビルの火災などの最近の事件では、建築基準法に変更が加えられ、同様の多数の死者が出た火災が将来発生するのを防ぐように組み立てられました。 他の問題も同様の方法で対処されています。 米国カリフォルニア州では、特定の種類のモダンな布張り家具 (特に標準的なポリウレタン フォームを含むもの) に関連する危険性が認識され、最終的にその入手可能性を制御するための厳しい規制が導入されました。

これらは、火災の影響を観察した結果、火災発生時の個人と地域社会の安全を向上させることを目的とした一連の規則を課すことになった単純な事例です。 あらゆる問題に対する行動の決定は、火災事故に関する私たちの知識の分析に基づいて正当化されなければなりません。 問題が現実であることを示す必要があります。 サンパウロの火事のように、この演習は学問的なものもありますが、現代の家具が問題であることを「証明する」などの場合は、関連するコストが賢明に費やされるようにする必要があります。 これには、火災件数、死亡者数、特定のタイプの発火の発生率などの傾向を長年にわたって示すことができる、火災事故に関する信頼できるデータベースが必要です。傾向または変化が重要であり、適切な措置が講じられている。

多くの国では、消防隊は参加した各火災について報告書を提出する必要があります。 英国と米国では、担当官がレポート フォームに記入し、中央組織 (英国の Home Office、米国の National Fire Protection Association、NFPA) に提出します。所定の方法でデータを処理します。 その後、データは政府機関やその他の利害関係者による検査に利用できます。 これらのデータベースは、(たとえば) 主な着火源や最初に着火したアイテムを強調するのに非常に役立ちます。 死亡者の発生率と着火源との関係などを調べたところ、喫煙者の材料によって引き起こされた火災で死亡した人の数は、この方法で発生した火災の数とは著しく釣り合わないことが示されました。

これらのデータベースの信頼性は、消防士が火災調査を行うスキルに依存します。 火災調査は容易な作業ではなく、かなりの能力と知識、特に火災科学の知識が必要です。 英国の消防署には、参加したすべての火災について火災報告書を提出するという法定義務があり、これは担当官にかなりの責任を課しています。 必要な情報を十分に詳細に引き出す必要があるため、フォームの構成は非常に重要です。 NFPA が推奨する「基本インシデント レポート フォーム」は、 防火ハンドブック (コート 1991)。

データは 1980 つの方法で使用できます。1989 つは、火災の問題を特定するため、または公的または私的支出を必要とする可能性のある特定の一連の行動を正当化するために必要な合理的な議論を提供するためです。 長い間確立されたデータベースを使用して、実行されたアクションの効果を示すことができます。 次の 1991 点は、XNUMX 年から XNUMX 年までの NFPA 統計から収集されました (Cote XNUMX)。

1. 家庭用煙感知器は広く使用されており、非常に効果的です (ただし、検出器戦略には大きなギャップが残っています)。

2. 自動スプリンクラーは、生命と財産の損失を大幅に削減します。 携帯型暖房器具や地域暖房器具の使用の増加により、暖房器具が関係する住宅火災が急激に増加しました。

3. 焼夷弾や不審火は 1970 年代のピークから減少し続けましたが、関連する物的損害は減少を止めました。

4. 消防士の死亡事故の多くは、心臓発作や火事場から離れた場所での活動が原因です。

5. 農村地域は、火災による死亡率が最も高い。

6. 布張りの家具、マットレス、または寝具に着火する喫煙材料は、最も致命的な住宅火災のシナリオを生み出します。

7. 米国とカナダの火災死亡率は、すべての先進国の中で最高です。

8. 米国の旧南部の州は、火災による死亡率が最も高い。

9. 高齢者は、火事で死亡するリスクが特に高い。

 

もちろん、そのような結論は国によって異なりますが、いくつかの共通の傾向があります。 このようなデータを注意深く使用することで、地域社会の火災安全に関する健全な政策を策定する手段を提供できます。 ただし、これらは必然的に「積極的」ではなく「受動的」であることを覚えておく必要があります。 積極的な対策は、詳細な火災危険性評価の後にのみ導入できます。 このような一連の行動は、原子力産業から始まり、リスクが他の産業よりもはるかに容易に定義される化学、石油化学、オフショア産業に移行して、徐々に導入されています。 一般に、ホテルや公共の建物への適用ははるかに困難であり、火災の経過と、火災生成物が建物全体に広がって居住者に影響を与える方法を予測するために、火災モデリング技術を適用する必要があります。 このタイプのモデリングは大きな進歩を遂げていますが、これらの手法を自信を持って使用できるようになるまでには長い道のりがあると言わざるを得ません。 火災安全工学は、信頼できる火災危険性評価ツールが広く利用可能になる前に、火災安全科学の多くの基礎研究を必要としています。

 

戻る

読む 10963 <font style="vertical-align: inherit;">回数</font> 最終更新日 13 年 2011 月 21 日木曜日 13:XNUMX
このカテゴリの詳細: 火災の危険源 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

火の参照

アメリカ化学工学会 (AIChE)。 1993. 化学プロセス安全の技術管理のための工場ガイドライン。 ニューヨーク:化学プロセス安全センター。

アメリカ溶接協会 (AWS)。 1988. 有害物質を収容したコンテナの溶接および切断の準備に関する推奨安全慣行。 マイアミ: AWS.

Babrauskas、V、および SJ Grayson。 1992. 火災時の熱放出。 吠える:エルゼビア科学。

ブライ、P、P ベーコン。 1991. 商工業における防火慣行。 チャプ。 2、防火ハンドブックのセクション 2、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

ボウズ、PC。 1984. 自己発熱: ハザードの評価と制御。 ロンドン:女王陛下の文房具オフィス。

ブラッドフォード、WJ. 1991. 化学処理装置。 チャプ。 15、防火ハンドブックのセクション 2、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

英国規格協会 (BSI)。 1992.雷に対する構造の保護。

英国標準実施基準、BS6651。 ロンドン: BSI.

Bugbee、P. 1978。防火の原則。 マサチューセッツ州クインシー:NFPA。

コート、AE。 1991 年。防火ハンドブック、第 17 版。 マサチューセッツ州クインシー:NFPA。

ニューハンプシャー州デイビス。 1991年。避雷システム。 チャプ。 32、防火ハンドブックのセクション 2、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

ディネンノ、PJ. 1988.防火工学ハンドブック。 ボストン: SFPE.

ドリスデール、DD。 1985年。火のダイナミクスの紹介。 チチェスター: ワイリー。

Drysdale、DD、HE Thomson。 1994. 火災安全科学に関する第 XNUMX 回国際シンポジウム。 オタワ: IAFSS.

欧州委員会指令 (ECD)。 1992. 労働規則における健康と安全の管理。

ファクトリーミューチュアルエンジニアリングコーポレーション(FM)。 1977年。切断と溶接。 Loss Prevention Data Sheets 10-15、1977 年 XNUMX 月。

—。 1984. 電気システムの雷およびサージ保護。 Loss Prevention Data Sheets 5-11/14-19、1984 年 XNUMX 月。

Gratton, J. 1991. 防火教育。 チャプ。 2、セクション 1 in Fire Protection Handbook、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

ヒギンズ、JT。 1991.ハウスキーピングの実践。 チャプ。 34、セクション 2 in Fire Protection Handbook、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

Hrbacek、EM。 1984年 粘土製品工場。 J Linville 編集の Industrial Fire Hazards Handbook。 マサチューセッツ州クインシー:NFPA。

Hunter, K. 1991. 技術が日本の消防を際立たせている。 Natl Fire Prev Agen J (XNUMX 月/XNUMX 月)。

Jernberg、LE。 1993 年。スウェーデンにおけるリスクの改善。 前の 257 (XNUMX 月) を発射します。

Keith, R. 1994. FREM-火災リスク評価法。 メルボルン: R. Keith & Assoc.

コッフェル、私たち。 1993. 産業火災安全プログラムの確立。 Natl Fire Prev Agen J (XNUMX 月/XNUMX 月)。

ラタイユ、JJ. 1990.製材窯と農業用脱水機と乾燥機。 J Linville 編集の Industrial Fire Hazards Handbook。 マサチューセッツ州クインシー:NFPA。

リーズ、FP。 1980 年。プロセス産業における損失防止。 巻。 1, 2. ロンドン: バターワース。

ルイス、RRJ。 1979. サックスの工業材料の危険性。 ニューヨーク:ヴァン・ノストランド・ラインホールド。

Linville、J(編)。 1990. 産業火災危険ハンドブック。 マサチューセッツ州クインシー:NFPA。
損失防止協議会。 1992. 建設現場での防火。 ロンドン:ロスプリベンションカウンシル。

Manz, A. 1991. 溶接と切断。 チャプ。 14、防火ハンドブックのセクション 2、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

全米防火協会 (NFPA)。 1983. Firesafety Educator's Handbook: A Comprehensive Guide to Planning, Designing, and Implementing Firesafety Programs. FSO-61。 マサチューセッツ州クインシー:NFPA。

—。 1990a。 材料の火災危険を識別するための標準システム。 NFPA No. 704。マサチューセッツ州クインシー: NFPA。

—。 1992. 防火コード。 NFPA No.1。 マサチューセッツ州クインシー:NFPA。

—。 1995a。 火災安全概念ツリーへのガイド。 NFPA No. 550。マサチューセッツ州クインシー: NFPA。

—。 1995b. 照明保護システムの設置に関する規格。 NFPA No.780。 マサチューセッツ州クインシー:NFPA。

Osterhoust、C. 1990. Public Fire Education. IFSTA No. 606. オクラホマ州スティルウォーター: 国際消防訓練協会 (IFSTA)。

Ostrowski, R. 1991. オイルクエンチング。 防火ハンドブック、第 17 版、AE Cote 編。 マサチューセッツ州クインシー:NFPA。

パーマー、KN。 1973年。粉塵爆発と火災。 ロンドン:チャップマン&ホール。

シモンズ、JM. 1990. 熱処理装置。 産業火災危険ハンドブック。 マサチューセッツ州クインシー:NFPA。

Welch, J. 1993. FPA トレーニングの変化する顔: 防火。 火災前(261月/XNUMX月):XNUMX.

ウェルティ、JR、RE ウィルソン、CE ウィックス。 1976年。運動量、熱および物質移動の基礎。 ニューヨーク:ジョン・ワイリー&サンズ。

ワッツ、KI. 1990年 油焼き入れ。 J Linville 編集の Industrial Fire Hazards Handbook。 マサチューセッツ州クインシー:NFPA。