水曜日、16月2011 21:33

暑熱ストレスと暑熱作業の影響

このアイテムを評価
(2票)

人が暖かい環境条件にさらされると、正常な体温を維持するために生理学的な熱損失メカニズムが活性化されます。 身体と環境の間の熱流束は、次の温度差によって異なります。

  1. 周囲の空気と、壁、窓、空などのオブジェクト
  2. 人の表面温度

 

人の表面温度は、皮膚への血流の変動や、汗腺から分泌される汗の蒸発などの生理学的メカニズムによって調節されています。 また、環境との熱交換を変えるために衣服を変えることもできます。 環境条件が暖かいほど、周囲温度と皮膚または衣服の表面温度との差は小さくなります。 これは、対流と輻射による「乾熱交換」が、涼しい条件と比較して暖かい条件で減少することを意味します。 表面温度を超える環境温度では、周囲から熱が得られます。 この場合、この余分な熱は、代謝プロセスによって解放された熱と一緒に、体温を維持するために汗の蒸発によって失われなければなりません. このように、汗の蒸発は、環境温度が上昇するにつれてますます重要になります。 汗の蒸発の重要性を考えると、風速と空気の湿度 (水蒸気圧) が暑い条件で重要な環境要因であることは驚くべきことではありません。 湿度が高い場合、汗はまだ生成されますが、蒸発は減少します。 蒸発できない汗には冷却効果がありません。 それは滴り落ち、体温調節の観点から無駄になります。

人間の体には約60%、成人で約35~40リットルの水分が含まれています。 体内の水分の約 XNUMX 分の XNUMX である細胞外液は、細胞間および血管系 (血漿) に分布しています。 体内の水分の残りの XNUMX 分の XNUMX である細胞内液は、細胞内にあります。 体内の水分区画の組成と量は、ホルモンと神経のメカニズムによって非常に正確に制御されています。 体温の上昇によって体温調節中枢が活性化されると、皮膚表面の数百万の汗腺から汗が分泌されます。 汗には塩分 (NaCl、塩化ナトリウム) が含まれていますが、細胞外液ほどではありません。 したがって、水分と塩の両方が失われ、発汗後に補充する必要があります.

発汗の影響

ニュートラルで快適な環境条件では、皮膚からの拡散によって少量の水分が失われます。 しかし、ハードな作業中や暑い環境では、アクティブな汗腺によって大量の汗が生成され、数時間にわたって最大 2 l/h を超える場合があります。 体重のわずか 1% (» 600 ~ 700 ml) の汗の損失でさえ、仕事を遂行する能力に測定可能な影響を及ぼします。 これは、心拍数 (HR) の上昇 (体の水分が 40% 失われるごとに 1 分間に約 XNUMX 拍動が増加する) および深部体温の上昇によって見られます。 作業を続けると、体温が徐々に上昇し、XNUMX℃前後の値に上昇することがあります。 この温度では、熱中症が発生する可能性があります。 これは、部分的には血管系からの体液の損失によるものです (図 XNUMX)。 血漿から水分が失われると、中心静脈と心臓を満たす血液の量が減少します。 したがって、各心拍はより少ない拍出量をポンピングします。 その結果、心拍出量 (XNUMX 分間に心臓から排出される血液の量) が低下する傾向があり、循環と血圧を維持するために心拍数を増加させる必要があります。

図 1. 室温 2°C での 30 時間の運動脱水前後の細胞外コンパートメント (ECW) および細胞内コンパートメント (ICW) の計算された水分分布。

HEA050F1

圧受容器反射系と呼ばれる生理学的制御システムは、あらゆる条件下で心拍出量と血圧を正常に近づけます。 反射には、心臓と動脈系(大動脈と頸動脈)の受容体、センサーが関与しており、心臓と血管を満たす血液によって心臓と血管の伸張の程度を監視しています。 これらからの衝動は神経を通って中枢神経系に伝わり、そこからの調整により、脱水症の場合、血管が収縮し、内臓(肝臓、腸、腎臓)および皮膚への血流が減少します。 このようにして、利用可能な血流が再分配され、働く筋肉と脳への循環が促進されます (Rowell 1986)。

重度の脱水は、熱中症や循環不全につながる可能性があります。 この場合、人は血圧を維持できず、結果として失神します。 熱中症の症状は身体的疲労であり、多くの場合、頭痛、めまい、吐き気を伴います。 熱中症の主な原因は、血管系からの水分損失によって引き起こされる循環系の緊張です。 血液量の減少は、腸や皮膚への循環を減少させる反射につながります。 皮膚の血流が減少すると、表面からの熱損失が減少するため、状況が悪化し、コア温度がさらに上昇します。 被験者は、血圧の低下とそれに伴う脳への血流の低下により失神する可能性があります。 横になっていると、心臓と脳への血液供給が改善され、体を冷やして水を飲むと、すぐに健康状態が回復します。

熱中症の原因となるプロセスが「暴走」すると、熱中症に発展します。 皮膚循環が徐々に減少すると、体温がますます上昇し、発汗が減少し、さらには停止し、深部体温がさらに急速に上昇し、循環の崩壊を引き起こし、死に至るか、または不可逆的な損傷を引き起こす可能性があります。脳。 血液の変化 (高浸透圧、低 pH、低酸素症、赤血球の細胞接着、血管内凝固など) および神経系の損傷は、熱射病患者に見られます。 熱ストレス中の腸への血液供給の減少は、組織の損傷を引き起こす可能性があり、熱中症に関連して熱を誘発する物質 (エンドトキシン) が放出される可能性があります (Hales and Richards 1987)。 熱中症は生命を脅かす急性の緊急事態であり、「熱中症」のセクションで詳しく説明します。

水分の損失とともに、発汗は電解質、主にナトリウム (Na) の損失を引き起こします。+) と塩化物 (Cl)だけでなく、マグネシウム(Mg++)、カリウム(K+) など (表 1 を参照)。 汗は、体液区画よりも少ない塩分を含んでいます。 これは、汗を失った後に塩味が強くなることを意味します。 増加した塩味は、血管が開く程度を制御する血管平滑筋への影響を介して、循環に特定の影響を与えるようです. しかし、何人かの研究者は、汗腺を刺激するために体温が高くなるように、発汗能力を妨げることを示しています。つまり、汗腺の感度が低下します (Nielsen 1984)。 汗の損失が水だけに置き換わると、体内の塩化ナトリウムが通常の状態よりも少なくなる状況 (低浸透圧) につながる可能性があります。 これは、神経と筋肉の機能不全によるけいれんを引き起こします。これは、以前は「鉱夫のけいれん」または「ストーカーのけいれん」として知られていた状態です. 塩分を食事に加えることで防ぐことができます(ビールを飲むことは、1920年代に英国で提案された予防策でした!).

表1 血漿中および汗中の電解質濃度

電解質およびその他
物質

血漿濃度
(g/l)

汗の濃度
(g/l)

ナトリウム(Na+)

3.5

0.2-1.5

カリウム(K+)

0.15

0.15

カルシウム(Ca++)

0.1

少量

マグネシウム(Mg++)

0.02

少量

塩化物(Cl)

3.5

0.2-1.5

重炭酸塩(HCO3-)

1.5

少量

タンパク質

70

0

脂肪、ブドウ糖、小イオン

15-20

少量

Vellar 1969 から適応。

皮膚循環の低下と汗腺の活動の両方が体温調節と熱損失に影響を与え、深部体温が完全に水和した状態よりも上昇します.

鉄鋼工場、ガラス産業、製紙工場、製パン工場、鉱業など、さまざまな業種の労働者が外部の熱ストレスにさらされています。 また、煙突掃除人や消防士は外部の熱にさらされます。 車両、船、航空機の限られたスペースで働く人々も、熱に苦しむ可能性があります。 ただし、防護服を着て作業したり、防水服を着てハードワークを行ったりする人は、中程度の涼しい環境温度条件でも熱疲労の犠牲者になる可能性があることに注意する必要があります. 熱ストレスの悪影響は、深部体温が上昇し、発汗量が多い状況で発生します。

水分補給

汗の損失による脱水の影響は、汗を補うのに十分な量を飲むことで元に戻すことができます. これは通常、仕事や運動後の回復中に起こります。 しかし、暑い環境での長時間の作業では、活動中に飲むことでパフォーマンスが向上します。 したがって、一般的なアドバイスは、のどが渇いたときに飲むことです。

しかし、これにはいくつかの非常に重要な問題があります。 12つは、同時に発生する水分の損失を補うほど、飲みたいという衝動が強くないことです。 第二に、大量の水不足を補うのに必要な時間は非常に長く、XNUMX 時間以上かかります。 最後に、水が胃 (貯蔵場所) から吸収が行われる腸 (腸) に移動できる速度には制限があります。 この率は、暑い状況での運動中に観測された発汗率よりも低い.

長時間の運動中にアスリートの体の水分、電解質、および炭水化物の貯蔵を回復するためのさまざまな飲料に関する多数の研究が行われてきました. 主な調査結果は次のとおりです。

    • 利用できる液体の量、つまり、胃を通って腸に運ばれる液体の量は、最大約 1,000 ml/h の「胃排出速度」によって制限されます。
    • 体液が「高浸透圧」(血液よりも高濃度のイオン/分子を含む)である場合、速度は遅くなります。 一方、「等浸透圧流体」(血液と同じ濃度、オスモル濃度の水とイオン/分子を含む)は、純水と同じ速度で通過します。
    • 少量の塩と砂糖を加えると、腸からの水分の取り込み率が上昇します (Maughan 1991)。

         

        これを念頭に置いて、独自の「水分補給液」を作成したり、多数の市販製品から選択したりできます. 通常、水分と電解質のバランスは食事と一緒に飲むことで回復します。 大量の汗をかく労働者や運動選手は、衝動以上に飲むよう奨励されるべきです. 汗には 1 リットルあたり約 3 ~ 5 g の NaCl が含まれています。 これは、食事が補われない限り、XNUMX 日あたり XNUMX リットル以上の発汗が塩化ナトリウムの欠乏を引き起こす可能性があることを意味します。

        また、労働者や運動選手は、定期的に(例えば、朝に(同じ時間と状態で))体重を測定して水分バランスを管理し、一定の体重を維持するようにアドバイスされています. しかし、体重の変化は必ずしも水分不足の程度を反映しているわけではありません。 水は、筋肉内の炭水化物貯蔵庫であるグリコーゲンに化学的に結合し、運動中にグリコーゲンが使用されると解放されます. 体のグリコーゲン含有量に応じて、最大約 1 kg の体重変化が生じることがあります。 体重「朝から朝」は、水分含有量の「生物学的変動」による変化も示します。テンション")。

        水と電解質の制御

        体内の水分区画の容積、つまり細胞外および細胞内の液体の容積と電解質の濃度は、液体と物質の摂取と喪失の間の調整されたバランスによって非常に一定に保たれます。

        水分は食物や水分の摂取から得られ、一部は食物からの脂肪や炭水化物の燃焼などの代謝プロセスによって放出されます. 呼吸中に肺から水分が失われます。ここで、吸気された空気は、吐き出す前に気道の湿った表面から肺の水を取り込みます。 また、安静時の快適な状態では、少量の水分が皮膚から拡散します。 ただし、発汗中は、数時間にわたって 1 ~ 2 リットル/時間以上の速度で水分が失われることがあります。 体内水分量をコントロール。 発汗による水分損失の増加は、飲酒と尿形成の減少によって補われますが、過剰な水分は尿産生の増加によって排泄されます.

        この水分の摂取と排出の両方の制御は、自律神経系とホルモンによって行われます。 喉が渇くと水分摂取量が増加し、腎臓による水分損失が調整されます。 尿の量と電解質組成の両方が制御されています。 制御機構のセンサーは心臓にあり、血管系の「充満」に反応します。 心臓の充満が減少すると、例えば、汗をかいた後などに、受容体はこのメッセージを、喉の渇きの感覚を司る脳中枢と、抗利尿ホルモン (ADH) の解放を誘導する領域に信号を送ります。下垂体後葉。 このホルモンは尿量を減らす働きがあります。

        同様に、生理学的メカニズムは、腎臓のプロセスを介して体液の電解質組成を制御します。 食品には、栄養素、ミネラル、ビタミン、電解質が含まれています。 現在の状況では、塩化ナトリウムの摂取が重要な問題です。 食事からのナトリウム摂取量は、食生活によって異なりますが、10 日あたり 20 ~ 30 ~ XNUMX g です。 これは通常、必要以上に多いため、過剰分は腎臓から排泄され、複数のホルモン機構 (アンギオテンシン、アルドステロン、ANF など) の作用によって制御されます。このメカニズムは、脳と腎臓の浸透圧受容体からの刺激によって制御されます。 、主に Na の浸透圧に対応+ とCl それぞれ、血液中および腎臓内の体液中です。

        個人差と民族差

        男性と女性だけでなく、若い人と年配の人の熱に対する反応の違いが予想される場合があります。 それらは、表面積、高さ/重量比、断熱皮膚脂肪層の厚さ、および仕事と熱を生成する身体能力(有酸素能力»最大酸素消費率)など、熱伝達に影響を与える可能性のある特定の特性が異なります。 利用可能なデータは、高齢者では熱耐性が低下していることを示唆しています。 若い人よりも汗をかき始めるのが遅く、年配の人は熱にさらされると皮膚の血流が高くなります。

        男女を比較すると、女性は男性よりも高温多湿に耐えることが観察されています。 この環境では、汗の蒸発が減少するため、女性の表面積/質量領域がわずかに大きいことが有利になる可能性があります. ただし、有酸素能力は、熱にさらされた個人を比較する際に考慮すべき重要な要素です。 実験室の条件では、同じ身体的作業能力 (「最大酸素摂取量」—VO2最大) がテストされます—たとえば、若い男性と年上の男性、または男性対女性 (Pandolf et al. 1988)。 この場合、特定の作業タスク (自転車エルゴメーターでの運動) は、年齢や性別に関係なく、循環系に同じ負荷、つまり同じ心拍数と同じ深部体温上昇をもたらします。

        同じ考慮事項は、民族グループ間の比較にも当てはまります。 サイズや有酸素能力の違いを考慮すると、人種による大きな違いは指摘できません。 しかし、一般的な日常生活では、高齢者は平均して VO が低い2 マックス 若い人よりも女性の方がVOが低い2 マックス 同年代の男性より。

        したがって、特定の絶対作業率 (たとえば、ワットで測定) で構成される特定のタスクを実行する場合、有酸素能力が低い人は心拍数と体温が高くなり、余分な負担に対処することができなくなります。より高い VO を持つものよりも、外部熱の2 マックス.

        労働安全衛生の目的で、多くの熱ストレス指数が開発されています。 これらでは、暑さと仕事に対する反応の個人差が大きく、指数が構成されている特定の暑い環境が考慮されています。 これらについては、この章の別の場所で扱います。

        繰り返し熱にさらされる人は、数日後には熱に耐えられるようになります。 彼らは順応します。 発汗量が増加し、結果として皮膚の冷却が増加し、同じ条件下での作業中の深部体温と心拍数が低下します.

        したがって、極度の暑さにさらされることが予想される人員 (消防士、救助隊員、軍人) の人為的順化は、おそらく負担を軽減するのに役立ちます。

        要約すると、人がより多くの熱を生成するほど、より多くの熱を放散する必要があります。 暑い環境では、汗の蒸発が熱損失の制限要因となります。 発汗能力の個人差はかなり大きい。 汗腺がまったくない人もいますが、ほとんどの場合、身体トレーニングを行い、熱に繰り返しさらされると、標準的な熱ストレス テストで生成される汗の量が増加します。 熱ストレスは、心拍数と深部体温の上昇をもたらします。 最大心拍数および/または深部体温約 40ºC は、暑い環境での作業パフォーマンスの絶対的な生理学的限界を設定します (Nielsen 1994)。

         

        戻る

        読む 11640 <font style="vertical-align: inherit;">回数</font> 26:先週の火曜日、7月2022 21 20に行わ
        このカテゴリの詳細: « 熱環境に対する生理反応 熱中症 »

        免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

        内容

        暑さと寒さの参照

        ACGIH (米国政府産業衛生士会議)。 1990. 1989 ~ 1990 年の限界値と生物学的暴露指数。 ニューヨーク: ACGIH.

        —。 1992年。寒冷ストレス。 作業環境における物理エージェントのしきい値制限値。 ニューヨーク: ACGIH.

        Bedford, T. 1940. 環境の暖かさとその測定。 Medical Research Memorandum No. 17. London: Her Majesty's Stationery Office.

        ベルディング、HS および TF ハッチ。 1955. 熱ストレスを結果として生じる生理学的ひずみの観点から評価するための指標。 暖房配管エアコン 27:129–136.

        ビッテル、JHM. 1987 年。男性の寒冷適応の指標としての暑熱負債。 J Appl Physiol 62(4):1627–1634。

        Bittel、JHM、C Nonotte-Varly、GH Livecchi-Gonnot、GLM Savourey、および AM Hanniquet。 1988. 男性の寒冷環境における体力と体温調節反応。 J Appl Physiol 65:1984-1989。

        Bittel、JHM、GH Livecchi-Gonnot、AM Hanniquet、JL Etienne。 1989 年。JL Etienne の北極点への旅の前後に観測された温度変化。 Eur J Appl Physiol 58:646–651。

        ブライ、J、KG ジョンソン。 1973. 熱生理学の用語集。 J Appl Physiol 35(6):941–961。

        ボッツフォード、JH。 1971. 環境熱測定用湿球温度計。 Am Ind Hyg J 32:1–10.

        Boutelier、C. 1979年。 ヌイイ・シュル・セーヌ: AGARD AG 211.

        Brouha、L. 1960.産業における生理学。 ニューヨーク:ペルガモンプレス。

        バートン、AC、OG エドホルム。 1955年。寒い環境にいる男。 ロンドン:エドワード・アーノルド。

        チェン、F、H ニルソン、RI ホルマー。 1994. アルミニウム表面に接触した指の腹の冷却反応。 Am Ind Hyg Assoc J 55(3):218-22。

        欧州正規化委員会 (CEN)。 1992 年。EN 344。寒さに対する防護服。 ブリュッセル: CEN.

        —。 1993. EN 511. 寒さに対する保護手袋。 ブリュッセル: CEN.

        欧州共同体委員会 (CEC)。 1988. 熱ストレス指標に関するセミナーの議事録。 ルクセンブルグ: CEC、健康安全総局。

        ダーネン、ハム。 1993. 寒くて風の強い条件での手動性能の低下。 アガード、NATO、CP-540。

        ダスラー、アーカンソー州。 1974年。陸上および海上での換気と熱ストレス。 第3章、海軍予防医学のマニュアル。 ワシントン DC: 海軍省、医学および外科局。

        —。 1977. 人の熱ストレス、仕事機能、生理的熱曝露限界。 熱分析 - 人間の快適さ - 室内環境。 NBS Special Publication 491。ワシントン DC: 米国商務省。

        Deutsches Institut für Normierung (DIN) 7943-2。 1992. Schlafsacke、Thermophysiologische Prufung。 ベルリン: DIN.

        デュボア、D および EF デュボア。 1916. 臨床熱量測定 X: 身長と体重がわかっている場合に適切な表面積を推定する式。 Arch Int Med 17:863–871.

        イーガン、CJ. 1963. 導入と用語。 Fed Proc 22:930–933。

        エドワーズ、JSA、DE ロバーツ、SH ムッター。 1992年。寒い環境での使用に関する関係。 J Wildlife Med 3:27–47.

        Enander, A. 1987. 適度な寒さにおける感覚反応とパフォーマンス。 博士論文。 Solna: 国立産業衛生研究所。

        フラー、FH、L ブルーハ。 1966. 仕事環境を評価するための新しい工学的手法。 アシュラエ J 8(1):39–52.

        フラー、FH、PE スミス。 1980. 暑い作業場での予防作業手順の有効性。 FN Dukes-Dobos および A Henschel (編)。 推奨される熱ストレス基準に関する NIOSH ワークショップの議事録。 ワシントン DC: DHSS (NIOSH) 発行番号 81-108。

        —。 1981. 生理学的測定による暑いワークショップでの熱ストレスの評価。 Am Ind Hyg Assoc J 42:32–37.

        Gagge、AP、AP Fobelets、LG Berglund。 1986. 熱環境に対する人間の反応の標準的な予測指標。 ASHRAE トランス 92:709–731。

        ジソルフィ、CV、CB ウェンガー。 1984. 運動中の体温調節: 古い概念、新しいアイデア。 運動スポーツ科学改訂 12:339–372。

        Givoni, B. 1963. 工業用熱暴露と最大許容作業負荷を評価するための新しい方法。 1963 年 XNUMX 月、フランスのパリで開催された国際生物気象会議に提出された論文。

        —。 1976. 人、気候および建築、第 2 版。 ロンドン:応用科学。

        ジヴォーニ、B、RF ゴールドマン。 1972. 仕事、環境、衣類に対する直腸温度の反応の予測。 J Appl Physiol 2(6):812–822。

        —。 1973. 仕事、環境、衣服に対する心拍数の反応を予測。 J Appl Physiol 34(2):201–204。

        ゴールドマン、RF。 1988 年。人間の熱暴露に関する基準。 環境エルゴノミクス、IB Mekjavic、EW Banister、JB Morrison が編集。 ロンドン:テイラー&フランシス。

        ヘイルズ、JRS、DAB リチャーズ。 1987.熱ストレス。 アムステルダム、ニューヨーク: Oxford Excerpta Medica.

        ハンメル、HT。 1963. 人間の比較熱パターンのまとめ。 Fed Proc 22:846–847.

        Havenith、G、R Heus、WA Lotens。 1990. 衣類の通気性、防湿性、透湿指数: 姿勢、動き、風による変化。 人間工学 33:989–1005。

        ヘイズ。 1988. IB Mekjavic、EW Banister、および JB Morrison によって編集された環境エルゴノミクス。 ロンドン:テイラー&フランシス。

        Holmér, I. 1988.必要な衣類の断熱材に関する寒冷ストレスの評価—IREQ。 Int J Ind Erg 3:159–166.

        —。 1993年。寒い中での作業。 寒冷ストレスの評価方法の見直し。 Int Arch Occ Env Health 65:147–155.

        —。 1994. 寒冷ストレス: 第 1 部 — 開業医のためのガイドライン。 Int J Ind Erg 14:1–10.

        —。 1994. 寒冷ストレス: パート 2 - ガイドの科学的根拠 (知識ベース)。 Int J Ind Erg 14:1–9.

        ホートン、FC、CP ヤゴグル。 1923. 同等のコンフォート ラインの決定。 J ASHVE 29:165–176。

        国際標準化機構 (ISO)。 1985. ISO 7726. 熱環境 - 物理量を測定するための機器と方法。 ジュネーブ: ISO。

        —。 1989a。 ISO 7243. 高温環境 - WBGT インデックス (湿球球温度) に基づく、働く男性の熱ストレスの推定。 ジュネーブ: ISO。

        —。 1989b. ISO 7933. 高温環境 - 必要な発汗量の計算を使用した熱応力の分析的決定と解釈。 ジュネーブ: ISO。

        —。 1989c。 ISO DIS 9886。エルゴノミクス—生理学的測定による熱ひずみの評価。 ジュネーブ: ISO。

        —。 1990. ISO 8996. 人間工学 - 代謝熱産生の測定。 ジュネーブ: ISO。

        —。 1992 年。ISO 9886。生理学的測定による熱ひずみの評価。 ジュネーブ: ISO。

        —。 1993.主観的判断スケールを使用した熱環境の影響の評価。 ジュネーブ: ISO。

        —。 1993. ISO CD 12894. 熱環境のエルゴノミクス - 高温環境または低温環境にさらされる個人の医療監督。 ジュネーブ: ISO。

        —。 1993. ISO TR 11079 寒冷環境の評価 - 必要な衣類断熱材の決定、IREQ。 ジュネーブ: ISO。 (テクニカルレポート)

        —。 1994年。ISO 9920。エルゴノミクス—衣類アンサンブルの熱特性の推定。 ジュネーブ: ISO。

        —。 1994 年。ISO 7730。中程度の熱環境 - PMV および PPD 指数の決定と熱的快適性のための条件の仕様。 ジュネーブ: ISO。

        —。 1995. ISO DIS 11933. 熱環境の人間工学。 国際規格の原則と適用。 ジュネーブ: ISO。

        Kenneth、W、P Sathasivam、AL Vallerand、TB Graham。 1990. 28 ℃および 5 ℃の安静時の男性の代謝反応に対するカフェインの影響。 J Appl Physiol 68(5):1889–1895。

        ケニー、WL、SR ファウラー。 1988.年齢の関数としてのメチルコリン活性化エクリン汗腺の密度と出力。 J Appl Physiol 65:1082–1086。

        カースレイク、DMcK。 1972. 高温環境のストレス。 ケンブリッジ: ケンブリッジ大学出版局。

        LeBlanc, J. 1975. 寒い中の男。 米国イリノイ州スプリングフィールド: Charles C Thomas Publ.

        カリフォルニア州ライトヘッドと AR リンド。 1964.熱ストレスと頭部障害。 ロンドン: カッセル。

        リンド、AR。 1957. すべての人の仕事の温度環境限界を設定するための生理学的基準。 J Appl Physiol 18:51–56。

        ローテンズ、ワシントン州。 1989年。多層衣類の実際の断熱。 Scand J Work Environ Health 15 Suppl。 1:66–75。

        —。 1993年。衣服を着た人間からの熱伝達。 論文、工科大学。 デルフト、オランダ。 (ISBN 90-6743-231-8)。

        Lotens、WA、G Havenith。 1991. 衣類の断熱性と耐蒸気性の計算。 人間工学 34:233–254。

        マクリーン、D および D Emslie-Smith。 1977. 偶発的な低体温症。 オックスフォード、ロンドン、エジンバラ、メルボルン: Blackwell Scientific Publication.

        マクファーソン、RK。 1960. 暑い環境に対する生理学的反応。 Medical Research Council Special Report Series No. 298. London: HMSO.

        Martineau、L、および I Jacob。 1988. ヒトの震え熱産生中の筋グリコーゲン利用。 J Appl Physiol 56:2046–2050。

        モーガン、RJ. 1991.運動中の体液と電解質の損失と補充。 J スポーツ科学 9:117–142。

        McArdle、B、W Dunham、HE Halling、WSS Ladell、JW Scalt、ML Thomson、JS Weiner。 1947. 暖かい環境と暑い環境の生理学的影響の予測。 医学研究評議会議員 47/391。 ロンドン: RNP.

        McCullough、EA、BW Jones、PEJ Huck。 1985. 衣類の断熱材を推定するための包括的なデータベース。 ASHRAE トランス 91:29–47。

        McCullough、EA、BW Jones、T Tamura。 1989. 衣服の蒸発抵抗を決定するためのデータベース。 ASHRAE トランス 95:316–328。

        マッキンタイア、DA。 1980年。室内気候。 ロンドン: Applied Science Publishers Ltd.

        Mekjavic、IB、EW Banister および JB Morrison (eds.)。 1988年。環境エルゴノミクス。 フィラデルフィア:テイラー&フランシス。

        Nielsen, B. 1984. 脱水、再水和および体温調節。 E Jokl と M Hebbelinck (編)。 医学とスポーツ科学。 バーゼル:S.カーガー。

        —。 1994.熱ストレスと順化。 人間工学 37(1):49–58.

        Nielsen、R、BW Olesen、PO Fanger。 1985. 衣服の断熱に対する身体活動と空気速度の影響。 人間工学 28:1617–1632。

        国立労働安全衛生研究所 (NIOSH)。 1972. 高温環境への職業暴露。 HSM 72-10269。 ワシントン DC: 米国保健教育福祉省。

        —。 1986. 高温環境への職業暴露。 NIOSH 出版物番号 86-113。 ワシントンDC:NIOSH。

        西、Y、AP Gagge。 1977 年。低気圧および高気圧環境に使用される実効温度スケール。 Aviation Space and Envir Med 48:97–107.

        オレセン、BW。 1985.熱ストレス。 Bruel and Kjaer Technical Review No. 2. デンマーク: Bruel and Kjaer.

        オレセン、BW、E スリウィンスカ、TL マドセン、PO ファンガー。 1982. 衣服の断熱に対する体の姿勢と活動の影響: 可動式サーマル マネキンによる測定。 ASHRAE トランス 88:791–805。

        Pandolf、KB、BS Cadarette、MN Sawka、AJ Young、RP Francesconi、RR Gonzales。 1988. J Appl Physiol 65(1):65–71.

        パーソンズ、K.C. 1993.人間の熱環境。 イギリス、ハンプシャー:テイラー&フランシス。

        リード、HL、D ブライス、KMM シャキール、KD バーマン、MM ダレサンドロ、JT オブライアン。 1990. 南極での長期滞在後の甲状腺ホルモンの遊離画分の減少。 J Appl Physiol 69:1467–1472。

        ローウェル、LB. 1983.人間の体温調節の心臓血管の側面。 Circ Res 52:367–379。

        —。 1986. 物理的ストレス中の人間の循環調節。 オックスフォード: OUP.

        佐藤、K、F 佐藤。 1983.ヒトエクリン汗腺の構造と機能の個人差。 Am J Physiol 245:R203–R208。

        Savourey、G、AL Vallerand、J Bittel。 1992. 厳しい北極環境でのスキー旅行後の一般的および局所的な適応. Eur J Appl Physiol 64:99–105。

        Savourey、G、JP Caravel、B Barnavol、J Bittel。 1994. 局所的な寒冷順応後の寒気環境における甲状腺ホルモンの変化。 J Appl Physiol 76(5):1963–1967。

        Savourey、G、B Barnavol、JP Caravel、C Feuerstein および J Bittel。 1996. 局所的な寒冷順応によって引き起こされる低体温の一般的な寒冷適応。 Eur J Appl Physiol 73:237–244。

        Vallerand、AL、I Jacob、MF Kavanagh。 1989. ヒトにおけるエフェドリン/カフェイン混合物による耐寒性増強のメカニズム。 J Appl Physiol 67:438–444。

        van Dilla, MA, R Day and PA Siple. 1949年。手の特別な問題。 熱調節の生理学、R Newburgh 編。 フィラデルフィア: サンダース。

        ベラー、OD。 1969. 発汗による栄養素の損失。 オスロ: Universitetsforlaget.

        Vogt、JJ、V Candas、JP Libert、F Daull。 1981. 産業界における熱ひずみの指標として必要な発汗量。 In Bioengineering, Thermal Physiology and Comfort, K Cena と JA Clark が編集. アムステルダム:エルゼビア。 99–110。

        Wang、LCH、SFP Man、AN Bel Castro。 1987. 男性のテオフィリン増加耐寒性における代謝およびホルモン反応。 J Appl Physiol 63:589–596。

        世界保健機関 (WHO)。 1969. 熱ストレス条件下での作業に関与する健康要因。 Technical Report 412. ジュネーブ: WHO。

        Wissler、EH。 1988年。人間の熱モデルのレビュー。 環境エルゴノミクス、IB Mekjavic、EW Banister、JB Morrison が編集。 ロンドン:テイラー&フランシス。

        ウッドコック、ああ。 1962年。テキスタイルシステムにおける水分移動。 パート I. Textile Res J 32:628–633。

        Yaglou、CP、および D Minard。 1957. 軍事訓練センターでの熱中症の管理。 Am Med Assoc Arch Ind Health 16:302–316 および 405。