火曜日、15 March 2011 14:45

電界および磁界と健康転帰

このアイテムを評価
(1の投票)

近年、弱い電場と磁場の生物学的影響と健康への影響への関心が高まっています。 磁場とがん、生殖、神経行動反応に関する研究が発表されています。 以下では、私たちが知っていること、まだ調査する必要があること、特にどのような方針が適切であるかを要約します。

私たちが知っていること

小児白血病と電力線からの住宅曝露に関する疫学的研究は、リスクのわずかな増加を示しているようであり、過剰な白血病と脳腫瘍のリスクは「電気」の職業で報告されています. 曝露評価の技術が改善された最近の研究では、一般に関連性の証拠が強化されています。 しかし、ばく露の特徴についてはまだ明確にされていません。 考えられる交絡因子または効果修正因子についてはあまり知られていません。 さらに、ほとんどの職業研究は、白血病の特殊な形態である急性骨髄性白血病を示していますが、別の形態である慢性リンパ性白血病の発生率が高いことを発見した研究もあります。 報告された少数の動物がん研究は、リスク評価にあまり役立たず、多数の実験的細胞研究にもかかわらず、発がん作用を説明できるもっともらしく理解できるメカニズムは提示されていません.

妊娠の転帰を特に参照した生殖

疫学的研究では、母体および父方の磁場への曝露後に妊娠の有害転帰および小児がんが報告されており、父方の曝露は遺伝毒性効果を示しています。 他の研究チームによる肯定的な結果を再現する努力は成功していません. 画面から放出される電界および磁界にさらされているビジュアル ディスプレイ ユニット (VDU) オペレーターに関する疫学研究は、主に否定的であり、VDU のような電界を使用した動物の催奇形性研究は、矛盾が多すぎて信頼できる結論を裏付けることができませんでした。

神経行動反応

若いボランティアに対する挑発研究は、比較的弱い電界および磁界への曝露後の心拍数の低下および脳波 (EEG) の変化などの生理学的変化を示しているようです。 電気に対する過敏症の最近の現象は、複数の要因が原因であると思われ、フィールドが関与しているかどうかは明らかではありません。 皮膚や神経系を中心に、多種多様な症状や不快感が報告されています。 ほとんどの患者は、紅潮、赤み、赤み、熱、暖かさ、チクチクする感覚、痛み、こわばりなど、顔にびまん性の皮膚の愁訴を持っています。 頭痛、めまい、疲労と失神、手足のうずきと刺すような感覚、息切れ、動悸、多量の発汗、うつ病、記憶障害などの神経系に関連する症状も説明されています. 特徴的な器質的な神経疾患の症状は示されていません。

暴露

電界へのばく露は、家庭、職場、学校、および電動輸送手段の操作など、社会全体で発生します。 電線、電気モーター、電子機器があるところはどこでも、電場と磁場が作られます。 0.2 から 0.4 μT (マイクロテスラ) の平均作業日の電界強度は、それを超えるとリスクが増加する可能性があるレベルであると思われ、送電線の下または近くに住む対象者の年間平均で同様のレベルが計算されています。

多くの人々は、短期間ではありますが、自宅で(電気ラジエーター、シェーバー、ヘアドライヤー、その他の家庭用電化製品、または建物内の電気接地システムの不均衡による迷走電流を介して)、職場でこれらのレベルを超えて同様に被ばくしています。 (電気および電子機器に近接する特定の業界およびオフィスで)または電車やその他の電気駆動の乗り物での移動中。 このような断続的な暴露の重要性は知られていません。 ばく露(電磁界周波数の重要性、その他の修正または交絡因子、または昼夜の総ばく露に関する知識に関連する質問を含む)および影響(がんの種類に関する調査結果の一貫性を考えると)に関しては、他の不確実性があります。 、および疫学研究では、すべてのリスク評価を細心の注意を払って評価する必要があります。

リスク評価

スカンジナビアの住宅研究では、0.2 μT を超えると白血病のリスクが 50 倍になるという結果が示されています。この曝露レベルは、架空送電線から 100 ~ XNUMX メートル以内で一般的に遭遇する曝露レベルに相当します。 しかし、電力線の下での小児白血病の症例数は少ないため、社会における他の環境ハザードと比較してリスクは低い. スウェーデンでは毎年、送電線の下または近くで小児白血病の症例が XNUMX 件あると計算されています。 これらのケースの XNUMX つは、磁界のリスクが原因である可能性があります。

一般に、磁場への職業曝露は住宅曝露よりも高く、曝露された労働者の白血病および脳腫瘍のリスクを計算すると、電力線の近くに住む子供よりも高い値が得られます。 スウェーデンの研究で発見された寄与リスクに基づく計算によると、毎年約 20 例の白血病と 20 例の脳腫瘍が磁場に起因する可能性があります。 これらの数値は、スウェーデンにおける年間 40,000 件のがん症例の総数と比較されるべきであり、そのうち 800 件が職業上の起源を持つと計算されています。

まだ調査が必要なもの

これまでに得られた疫学研究の結果を十分に理解するには、さらなる研究が必要であることは明らかです。 世界中のさまざまな国で進行中の追加の疫学研究がありますが、問題は、これらが私たちがすでに持っている知識にさらに追加されるかどうかです. 実際のところ、フィールドのどの特性が効果の原因であるかはわかっていません。 したがって、私たちが集めた調査結果を説明するには、考えられるメカニズムについてさらに研究する必要があります.

しかし、文献には膨大な数があります。 ビトロ 可能なメカニズムの探索に専念する研究。 カルシウムイオンの細胞表面および細胞膜輸送の変化、細胞コミュニケーションの破壊、細胞増殖の調節、調節されたリボ核酸(RNA)転写による特定の遺伝子配列の活性化、抑制に基づいて、いくつかの癌促進モデルが提示されています。松果体のメラトニン産生、オルニチン脱炭酸酵素活性の調節、およびホルモンおよび免疫系の抗腫瘍制御メカニズムの破壊の可能性。 これらの各メカニズムには、報告されている磁場がんの影響を説明するのに適用できる機能があります。 しかし、問題や本質的な異議がないものはありません。

メラトニンとマグネタイト

がんの進行に関連し、特別な注意が必要なメカニズムが XNUMX つ考えられます。 これらの XNUMX つは、磁場によって誘発される夜間のメラトニン レベルの減少に関係しており、もう XNUMX つは、人間の組織におけるマグネタイト結晶の発見に関係しています。

動物研究から、メラトニンが循環性ホルモンレベルへの影響を介して、間接的な腫瘍抑制効果を有することが知られています. また、磁場が松果体のメラトニン産生を抑制することも動物実験で示されています。これは、磁場への曝露が原因であると報告されている(たとえば)乳がんの増加の理論的メカニズムを示唆する発見です。 最近、がんリスクの増加について別の説明が提案されています。 メラトニンは最も強力なヒドロキシル ラジカル スカベンジャーであることがわかっており、その結果、フリー ラジカルによる DNA への損傷は、メラトニンによって著しく阻害されます。 磁場などによってメラトニンレベルが抑制されると、DNA は酸化攻撃を受けやすくなります。 この理論は、磁場によるメラトニンの抑制が、どのような組織においても癌の発生率を高める可能性があることを説明しています.

しかし、個人が弱い磁場にさらされると、人間のメラトニンの血中濃度が低下するのでしょうか? その可能性を示唆するいくつかの兆候がありますが、さらなる研究が必要です。 鳥が季節の移動中に方向を定める能力は、地球の磁場に反応する細胞内のマグネタイト結晶を介して媒介されることが、数年前から知られていました。 さて、前述のように、マグネタイト結晶は、理論的には弱い磁場に反応するのに十分な濃度でヒト細胞に存在することが実証されています. したがって、電場および磁場の潜在的に有害な影響に関して提案される可能性のあるメカニズムに関する議論では、マグネタイト結晶の役割を考慮する必要があります。

メカニズムに関する知識の必要性

要約すると、そのような可能なメカニズムに関するさらなる研究が明らかに必要です。 疫学者は、暴露評価において電場と磁場のどの特性に焦点を当てるべきかについての情報を必要としています。 ほとんどの疫学研究では、電界強度の平均値または中央値 (50 ~ 60 Hz の周波数) が使用されています。 他では、暴露の累積測定値が研究されました。 最近の研究では、より高い周波数のフィールドがリスクに関連していることがわかりました。 いくつかの動物実験では、最後に、フィールド トランジェントが重要であることがわかっています。 疫学者にとって、問題は効果側にあるのではありません。 今日、疾病に関する登録簿は多くの国に存在します。 問題は、疫学者が研究で考慮すべき関連する暴露特性を知らないことです。

どのポリシーが適切か

保護システム

一般に、規制、ガイドライン、ポリシーに関して考慮すべきさまざまな保護システムがあります。 ほとんどの場合、健康に基づくシステムが選択されます。このシステムでは、化学的または物理的な暴露の種類に関係なく、特定の暴露レベルで特定の健康への悪影響を特定できます。 XNUMX 番目のシステムは、既知の受け入れられたハザードの最適化として特徴付けることができ、これを下回るとリスクが存在しないしきい値はありません。 この種のシステムに該当する被ばくの例は、電離放射線です。 第 XNUMX のシステムは、暴露と結果の間の因果関係が合理的な確実性で示されていないが、潜在的なリスクについて一般的な懸念があるハザードまたはリスクを対象としています。 この最新の保護システムは、 注意の原則、または最近 慎重な回避これは、科学的な確実性がない場合に不要な被ばくを将来低コストで回避することと要約できます。 電界および磁界へのばく露はこのように議論されており、ばく露を最小限に抑えるために将来の電力線をどのように配線するか、作業場を配置し、家庭用電化製品を設計するなど、体系的な戦略が提示されています。

最適化のシステムが電場と磁場の制限に関連して適用できないことは明らかです。なぜなら、それらはリスクとして知られておらず、受け入れられていないからです。 ただし、他の XNUMX つのシステムは現在検討中です。

保健医療制度における被ばく制限の規制・指針

国際的なガイドラインによると、電磁界曝露の制限は、架空送電線から測定できるものや電気関連の職業で見られるものよりも数桁大きいものです。 国際放射線防護協会 (IRPA) 発行 50/60 Hz 電界および磁界へのばく露制限に関するガイドライン これは、多くの国家規格の基礎として採用されています。 その後、重要な新しい研究が発表されたため、1990 年に国際非電離放射線防護委員会 (ICNIRP) によって補遺が発行されました。 さらに、1993 年には、IRPA のリスク評価と一致するリスク評価が英国でも行われました。

これらの文書は、今日の科学的知識の状態では、公衆および労働者の暴露レベルを μT レベルまで制限することを保証していないこと、および健康被害が存在するかどうかを確認するにはさらなるデータが必要であることを強調しています。 IRPA および ICNIRP のガイドラインは、体内で通常見られる電流 (最大約 10 mA/m2)。 50/60 Hz の磁界への職業暴露は、終日暴露の場合は 0.5 mT、5 時間までの短時間暴露の場合は 10 mT に制限することが推奨されます。 電界への曝露は 30 および 24 kV/m に制限することをお勧めします。 公衆の 5 時間制限は、0.1 kV/m および XNUMX mT に設定されています。

曝露の規制に関するこれらの議論は、完全にがんの報告に基づいています。 電界および磁界に関連するその他の健康への影響の可能性に関する研究 (生殖障害や神経行動障害など) では、結果は一般に、暴露を制限するための科学的根拠を構成するには、明確で一貫性が不十分であると考えられています。

注意または慎重な回避の原則

XNUMX つの概念に実際の違いはありません。 ただし、電界および磁界の議論では、慎重な回避がより具体的に使用されています。 上で述べたように、慎重な回避とは、健康への影響について科学的な不確実性がある限り、不必要な曝露を将来的に低コストで回避することと要約できます。 スウェーデンでは採用されていますが、他の国では採用されていません。

スウェーデンでは、XNUMX つの政府機関 (スウェーデン放射線防護研究所、国家電気安全委員会、国家保健福祉委員会、国家労働安全衛生委員会、国家住宅建築計画委員会) が共同で次のように述べています。 「現在蓄積されている総知識は、フィールドパワーを減らすための措置を講じることを正当化します」. コストが合理的である場合、ポリシーは、長時間の高磁気曝露から人々を保護することです。 高い磁場ばく露を引き起こす可能性のある新しい機器または新しい電力線の設置中は、これらの解決策が大きな不便やコストを意味しない限り、より低いばく露を与える解決策を選択する必要があります。 一般に、放射線防護協会が述べているように、被ばくレベルが通常発生するレベルを XNUMX 倍以上超える場合、合理的なコストでそのような低減を行うことができれば、磁場を低減するための措置を講じることができます。 既存の設備からの被ばくレベルが通常発生するレベルの XNUMX 倍を超えない状況では、費用のかかる再構築は避けるべきです。 言うまでもなく、現在の回避コンセプトは、電力供給業界の専門家など、さまざまな国の多くの専門家によって批判されてきました。

結論

本論文では、電場と磁場の健康への影響の可能性について私たちが知っていることと、まだ調査する必要があることについてまとめました。 どのポリシーを採用すべきかという質問には答えがありませんが、任意の保護システムが提示されています。 これに関連して、手元にある科学データベースが μT レベルでの暴露限界を作成するには不十分であることは明らかであり、これは、これらの暴露レベルで高価な介入を行う理由がないことを意味します。 ある種の注意戦略(慎重な回避など)を採用するかどうかは、各国の公衆衛生当局および労働衛生当局の決定事項です。 そのような戦略が採用されない場合、通常は、健康に基づく閾値が日常の公衆および職業曝露をはるかに上回っているため、曝露の制限が課されないことを意味します。 そのため、現在、規制、ガイドライン、およびポリシーに関して意見が異なる場合でも、基準設定者の間では、将来の行動の確固たる基礎を得るにはさらに調査が必要であるという一般的なコンセンサスがあります。

 

戻る

読む 4952 <font style="vertical-align: inherit;">回数</font> 26:先週の火曜日、7月2022 21 39に行わ

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

放射線:非電離の参考文献

アレン、SG。 1991. 無線周波数フィールド測定とハザード評価。 J Radiol Protect 11:49-62。

米国政府産業衛生士会議 (ACGIH)。 1992. しきい値限界値のドキュメント。 オハイオ州シンシナティ: ACGIH.

—。 1993年。化学物質および物理的作用物質の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1994a。 ACGIH Physical Agents Threshold Limit Values Committee の年次報告書。 オハイオ州シンシナティ: ACGIH.

—。 1994b. 1994 ~ 1995 年の TLV の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1995. 1995-1996 化学物質および物理的作用物質の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1996. TLVs© および BEIs©。 化学物質および物理的作用物質の限界値; 生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

米国規格協会 (ANSI)。 1993. レーザーの安全な使用。 標準番号 Z-136.1。 ニューヨーク: ANSI.

Aniolczyk, R. 1981. ジアテルミー、溶接機、および誘導加熱器の環境における電磁界の衛生評価の測定。 Medicina Pracy 32:119-128。

バセット、CAL、SN ミッチェル、SR ガストン。 1982年。結合していない骨折および関節節の障害におけるパルス電磁界治療。 J Am Med Assoc 247:623-628。

Bassett、CAL、RJ Pawluk、および AA Pilla。 1974. 誘導結合電磁界による骨修復の増強。 科学 184:575-577。

Berger、D、F Urbach、および RE Davies。 1968. 紫外線によって誘発される紅斑の作用スペクトル。 予備報告 XIII。 Congressus Internationalis Dermatologiae、Munchen、W Jadassohn および CG Schirren が編集。 ニューヨーク:Springer-Verlag。

ベルンハルト、JH. 1988a。 電界および磁界の周波数依存限界の確立と間接効果の評価。 Rad Envir Biophys 27:1。

Bernhardt、JHおよびR Matthes。 1992. ELF および RF 電磁源。 非電離放射線防護、MW Greene 編集。 バンクーバー: UBC プレス。

Bini、M、A Checcucci、A Ignesti、L Millanta、R Olmi、N Rubino、R Vanni。 1986. プラスチック シーラーから漏れる強力な RF 電界に労働者がさらされる。 J マイクロ波パワー 21:33-40.

Buhr、E、E Sutter、およびオランダ保健評議会。 1989年。保護装置用の動的フィルター。 GJ Mueller および DH Sliney によって編集された医学および生物学におけるレーザー放射の線量測定。 ウォッシュ州ベリンガム: SPIE.

放射線保健局。 1981. ビデオ ディスプレイ端末からの放射放出の評価。 メリーランド州ロックビル: 放射線保健局。

Cleuet、A、およびA Mayer。 1980年。Risques liés à l'utilisation industrielle des lasers。 Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, No. 99 Paris: Institut National de Recherche et de Sécurité.

コブレンツ、WR、R ステア、および JM ホーグ。 1931. 紫外線に対する皮膚のスペクトル紅斑関係。 アメリカ合衆国ワシントン DC の国立科学アカデミーの議事録: 国立科学アカデミー。

カリフォルニア州コール、DF フォーブス、PD デイビス。 1986. UV 光発癌の作用スペクトル。 Photochem Photobiol 43(3):275-284。

Commission Internationale de L'Eclairage (CIE)。 1987. 国際照明語彙。 ウィーン: CIE.

Cullen、AP、BR Chou、MG Hall、SE Jany。 1984. 紫外線 B による角膜内皮の損傷。 Am J Optom Phys Opt 61(7):473-478.

Duchene、A、J Lakey、および M Repacholi。 1991. 非電離放射線に対する保護に関する IRPA ガイドライン。 ニューヨーク:ペルガモン。

長老、JA、PA Czerki、K Stuchly、K Hansson Mild、AR Sheppard。 1989. 高周波放射。 MJ Suess と DA Benwell-Morison が編集した非電離放射線防護。 ジュネーブ: WHO.

Eriksen, P. 1985. MIG 溶接アーク点火からの時間分解光スペクトル。 Am Ind Hyg Assoc J 46:101-104。

マサチューセッツ州エベレット、RL オルセン、RM セイヤー。 1965年。紫外線紅斑。 Arch Dermatol 92:713-719。

Fitzpatrick、TB、MA Pathak、LC Harber、M Seiji、および A Kukita。 1974. 日光と人間、正常および異常な光生物学的反応。 東京:大学東京プレスの。

フォーブス、PD、PD デイビス。 1982年。光発癌に影響を与える要因。 チャプ。 JAM Parrish、L Kripke、および WL Morison によって編集された光免疫学の 7。 ニューヨーク:プレナム。

フリーマン、RS、DW オーエンズ、JM ノックス、HT ハドソン。 1966. 太陽スペクトルに存在する紫外線の単色波長に対する皮膚の紅斑応答の相対エネルギー要件。 J Invest Dermatol 47:586-592。

グランドルフォ、M アンド K ハンソン マイルド。 1989 年。世界的な公衆および職業の無線周波数およびマイクロ波保護。 電磁生物相互作用。 G Franceschetti、OP Gandhi、および M Grandolfo が編集したメカニズム、安全基準、保護ガイド。 ニューヨーク:プレナム。

グリーン、MW。 1992年。非電離放射線。 第 2 回国際非電離放射線ワークショップ、10 月 14 ~ XNUMX 日、バンクーバー。

ハム、WTJ。 1989. レーザーやその他の光源によって生成される青色光および近紫外線網膜病変の光病理学と性質。 ML Wolbarsht が編集した、医学および生物学におけるレーザーの応用。 ニューヨーク:プレナム。

ハム、WT、HA ミューラー、JJ ラフォロ、D ゲリー III、RK ゲリー。 1982.無水晶体サルにおける近紫外線による網膜損傷の作用スペクトル。 Am J Ophthalmol 93(3):299-306。

Hansson Mild, K. 1980. 無線周波数電磁界への職業暴露。 議事録 IEEE 68:12-17。

ハウサー、KW。 1928年。放射線生物学における波長の影響。 Strahlentherapie 28:25-44。

電気電子技術者協会 (IEEE)。 1990a。 IEEE COMAR RF およびマイクロ波の位置づけ。 ニューヨーク:IEEE。

—。 1990b. RFシーラーおよび誘電ヒーターからの電場および磁場への曝露の健康面に関するIEEE COMARの見解表明。 ニューヨーク:IEEE。

—。 1991. 無線周波数電磁界への人体曝露に関する安全レベルに関する IEEE 規格 3 KHz ~ 300 GHz。 ニューヨーク:IEEE。

非電離放射線防護に関する国際委員会 (ICNIRP)。 1994年。静磁場への曝露の限界に関するガイドライン。 健康物理 66:100-106。

—。 1995. レーザー放射に対する人間の暴露限界に関するガイドライン。

ICNIRP ステートメント。 1996. 携帯型無線電話と基地局送信機の使用に関連する健康問題。 健康物理学、70:587-593。

国際電気標準会議 (IEC)。 1993. IEC 規格 No. 825-1。 ジュネーブ: IEC.

国際労働局 (ILO)。 1993a。 電力周波数の電界および磁界からの保護。 労働安全衛生シリーズ、第 69 号。ジュネーブ:ILO。

国際放射線防護協会 (IRPA)。 1985. レーザー放射への人体曝露の制限に関するガイドライン。 健康物理 48(2):341-359。

—。 1988a。 変更: レーザー放射への曝露の制限に関する IRPA 1985 ガイドラインのマイナーな更新に関する推奨事項。 健康物理 54(5):573-573。

—。 1988b. 100 kHz から 300 GHz までの周波数範囲の高周波電磁場への曝露の制限に関するガイドライン。 健康物理 54:115-123。

—。 1989 年。IRPA 1985 ガイドラインの紫外線への曝露制限に対する変更案。 健康物理 56(6):971-972。

国際放射線防護協会 (IRPA) および国際非電離放射線委員会。 1990 年。50/60 Hz の電場および磁場への曝露の制限に関する暫定ガイドライン。 健康物理 58(1):113-122。

Kolmodin-Hedman、B、K Hansson Mild、E Jönsson、MC Anderson、A Eriksson。 1988. プラスチック溶接機の操作と無線周波数電磁界への曝露における健康問題。 Int Arch Occup Environ Health 60:243-247.

Krause, N. 1986. 技術、医学、研究、および公共生活における静磁場および時間変動磁場への人々の曝露: 線量測定の側面。 静電界および ELF 磁界の生物学的影響、JH Bernhardt 編集。 ミュンヘン: MMV Medizin Verlag.

Lövsund、PおよびKHマイルド。 1978. いくつかの誘導ヒーター付近の低周波電磁界。 ストックホルム: ストックホルム労働安全衛生委員会。

Lövsund、P、PA Oberg、SEG Nilsson。 1982 年。電気鋼および溶接産業における ELF 磁界。 ラジオ科学 17(5S):355-385.

ラッキーッシュ、ML、L ホラデイ、AH テイラー。 1930年。日焼けしていない人間の皮膚の紫外線に対する反応。 J Optic Soc Am 20:423-432。

マッキンレー、AF、B ディフィー。 1987. ヒトの皮膚における紫外線誘発紅斑の参照作用スペクトル。 紫外線放射への人間の暴露: リスクと規制、WF Passchier と BFM Bosnjakovic によって編集されました。 ニューヨーク: Excerpta medica Division, Elsevier Science Publishers.

マッキンレー、A、JB アンダーセン、JH ベルンハルト、M グランドルフォ、KA ホスマン、FE ヴァン レーウェン、K ハンソン マイルド、AJ スワードロウ、L ヴェルシェーヴ、B ベイレット。 欧州委員会の専門家グループによる研究プログラムの提案。 無線電話の使用に関連する可能性のある健康への影響。 未発表レポート。

Mitbriet、IM および VD Manyachin。 1984年。骨の修復に対する磁場の影響。 モスクワ、ナウカ、292-296。

放射線防護および測定に関する全国評議会 (NCRP)。 1981. 無線周波電磁界。 プロパティ、量と単位、生物物理学的相互作用、および測定。 メリーランド州ベセスダ: NCRP.

—。 1986. 無線周波数電磁界の生物学的影響とばく露基準。 レポート No. 86。メリーランド州ベセスダ: NCRP。

国家放射線防護委員会 (NRPB)。 1992. 電磁界とがんのリスク。 巻。 3(1)。 イギリス、チルトン:NRPB。

—。 1993. 静的および時間変化する電磁場および放射線への人体曝露に関する制限。 イギリス、ディドコット:NRPB。

国立研究評議会 (NRC)。 1996. 住宅の電界および磁界への曝露による健康への影響の可能性。 ワシントン:NASプレス。 314。

オルセン、EG、A Ringvold。 1982年。ヒト角膜内皮と紫外線。 Acta Ophthalmol 60:54-56。

パリッシュ、JA、KF ジェニッケ、RR アンダーソン。 1982. 紅斑とメラニン形成: 正常な人間の皮膚の作用スペクトル。 Photochem Photobiol 36(2):187-191。

Passchier、WF、BFM ボスニャコビッチ。 1987. 紫外線への人間の暴露: リスクと規制。 ニューヨーク:Elsevier Science Publishers の Excerpta Medica Division。

ピッツ、DG. 1974. 人間の紫外線作用スペクトル。 Am J Optom Phys Opt 51(12):946-960.

ピッツ、DG、TJ トレディチ。 1971. 目に及ぼす紫外線の影響。 Am Ind Hyg Assoc J 32(4):235-246。

Pitts、DG、AP Cullen、および PD Hacker。 1977a。 295 から 365nm までの紫外線の眼への影響。 Invest Ophthalmol Vis Sci 16(10):932-939.

—。 1977b. ウサギの目における295~400nmの紫外線効果。 オハイオ州シンシナティ: 国立労働安全衛生研究所 (NIOSH)。

Polk、CおよびE Postow。 1986. 電磁界の生物学的影響に関する CRC ハンドブック。 ボカラトン:CRCプレス。

レパコリ、MH。 1985. ビデオ表示端末 - オペレータは心配する必要がありますか? Austalas Phys Eng Sci Med 8(2):51-61。

—。 1990. 50760 Hz の電界および磁界への曝露による癌: 主要な科学的議論。 Austalas Phys Eng Sci Med 13(1):4-17。

レパコリ、M、A バステン、V ゲブスキー、D ヌーナン、J フィニック、AW ハリス。 1997. パルス 1 MHz 電磁場に曝露された E-Pim900 トランスジェニック マウスのリンパ腫。 放射線研究、147:631-640。

ライリー、MV、S スーザン、MI ピーターズ、CA シュワルツ。 1987. 角膜内皮に対する UVB 照射の影響。 Curr Eye Res 6(8):1021-1033。

Ringvold、A. 1980a。 角膜と紫外線。 Acta Ophthalmol 58:63-68。

—。 1980b. 房水と紫外線。 Acta Ophthalmol 58:69-82。

—。 1983. 紫外線による角膜上皮の損傷。 Acta Ophthalmol 61:898-907。

Ringvold、A および M Davanger。 1985. 紫外線によるウサギの角膜実質の変化。 Acta Ophthalmol 63:601-606。

Ringvold、A、M Davanger、および EG Olsen。 1982. 紫外線照射後の角膜内皮の変化。 Acta Ophthalmol 60:41-53。

ニュージャージー州ロバーツとSMマイケルソン。 1985. 無線周波放射への人体曝露に関する疫学研究: 批判的レビュー。 Int Arch Occup Environ Health 56:169-178。

ロイ、CR、KH ジョイナー、HP ギース、MJ バンゲイ。 1984. ビジュアル ディスプレイ端末 (VDT) から放射される電磁放射の測定。 Rad Prot Austral 2(1):26-30.

スコット、J、TR フィアーズ、GB ゴリ。 1980. 米国における紫外線放射の測定と皮膚がんデータとの比較。 ワシントン DC: 米国政府印刷局。

Sienkiewicz、ZJ、RD Saunder、および CI Kowalczuk。 1991年。非電離電磁場および放射線への曝露の生物学的影響。 11 超低周波電場および磁場。 ディドコット、英国: 国家放射線防護委員会。

Silverman, C. 1990. がんと電磁場の疫学研究。 章で。 17 in 生物学的効果と電磁エネルギーの医療への応用、OP Gandhi 編集。 ニュージャージー州エンゲルウッド クリフ: プレンティス ホール。

スライニー、DH. 1972. 紫外線暴露基準のためのエンベロープ アクション スペクトルのメリット。 Am Ind Hyg Assoc J 33:644-653。

—。 1986.白内障発生における物理的要因:周囲の紫外線と温度。 Invest Ophthalmol Vis Sci 27(5):781-790.

—。 1987 年。眼内レンズ インプラントへの太陽紫外線曝露の推定。 J 白内障屈折手術 13(5):296-301。

—。 1992. 新しい溶接フィルターの安全管理者向けガイド。 溶接 J 71(9):45-47.
スライニー、DH、ML ウォルバーシュト。 1980. レーザーおよびその他の光源の安全性。 ニューヨーク:プレナム。

Stenson, S. 1982. 色素性乾皮症の眼所見: 14 例の報告。 アン眼科 6(580):585-XNUMX。

Sterenborg、HJCM、JC van der Leun。 1987. 紫外線による腫瘍形成の作用スペクトル。 紫外線放射への人間の暴露: リスクと規制、WF Passchier と BFM Bosnjakovic によって編集されました。 ニューヨーク:Elsevier Science Publishers の Excerpta Medica Division。

Stuchly、MA。 1986. 静磁場および時変磁場への人間の曝露。 健康物理 51(2):215-225。

Stuchly、MA と DW Lecuyer。 1985. 電磁場への誘導加熱とオペレーターの曝露。 健康物理 49:693-700。

—。 1989. アーク溶接における電磁場への曝露。 健康物理 56:297-302。

Szmigielski、S、M Bielec、S Lipski、G Sokolska。 1988. 低レベルのマイクロ波および無線周波数場への曝露の免疫学的および癌関連の側面。 現代の生体電気、AA マリオによって編集されました。 ニューヨーク:マルセル・デッカー。

Taylor、HR、SK West、FS Rosenthal、B Munoz、HS Newland、H Abbey、EA Emmett。 1988年。白内障形成に対する紫外線の影響。 New Engl J Med 319:1429-1433。

教えて、RA。 1983. 電磁場の測定のための機器: 機器、校正、および選択されたアプリケーション。 M Grandolfo、SM Michaelson、および A Rindi によって編集された、非電離放射線、高周波およびマイクロ波エネルギーの生物学的効果および線量測定。 ニューヨーク:プレナム。

Urbach, F. 1969. 紫外線の生物学的影響。 ニューヨーク:ペルガモン。

世界保健機関 (WHO)。 1981. 無線周波数とマイクロ波。 環境衛生基準、No.16。 ジュネーブ: WHO.

—。 1982年。レーザーと光放射。 環境衛生基準、第 23 号。ジュネーブ: WHO。

—。 1987年。磁場。 環境衛生基準、No.69。 ジュネーブ: WHO.

—。 1989 年。非電離放射線防護。 コペンハーゲン: WHO ヨーロッパ地域事務所。

—。 1993. 電磁界 300 Hz ~ 300 GHz。 環境衛生基準、No. 137。ジュネーブ: WHO。

—。 1994. 紫外線。 環境衛生基準、No. 160。ジュネーブ: WHO。

世界保健機関 (WHO)、国連環境計画 (UNEP)、および国際放射線防護協会 (IRPA)。 1984. 超低周波 (ELF)。 環境衛生基準、第 35 号。ジュネーブ: WHO。

ザファネッラ、LE、DW デノ。 1978. 超高圧送電線の静電および電磁効果。 カリフォルニア州パロアルト:電力研究所。

Zuclich、JA、およびJS Connolly。 1976年。近紫外レーザー放射による眼の損傷。 Invest Ophthalmol Vis Sci 15(9):760-764.