火曜日、15 March 2011 14:46

電磁スペクトル: 基本的な物理的特性

このアイテムを評価
(4票)

電磁エネルギーの最もよく知られている形態は太陽光です。 太陽光 (可視光) の周波数は、より強力な高周波数の電離放射線 (X 線、宇宙線) と低周波数の良性の非電離放射線との境界線です。 非電離放射線のスペクトルがあります。 この章のコンテキスト内で、可視光のすぐ下の上限は赤外線です。 その下には、(降順で) マイクロ波、セルラー ラジオ、テレビ、FM ラジオ、AM ラジオ、誘電体および誘導ヒーターで使用される短波、および電力周波数のフィールドを含む幅広い無線周波数があります。 電磁スペクトルを図 1 に示します。 

図 1. 電磁スペクトル

ELF010F1

可視光や音が私たちの環境、つまり私たちが生活し働く空間に浸透するのと同じように、電磁場のエネルギーも浸透します。 また、私たちがさらされている音エネルギーのほとんどが人間の活動によって生成されているように、電磁エネルギーも同様です。日常の電化製品 (ラジオやテレビを作動させるもの) から放出される弱いレベルから高いレベルまでです。医療従事者が有益な目的で適用するレベル - たとえば、ジアテルミー (熱治療)。 一般に、そのようなエネルギーの強度は、発生源からの距離とともに急速に減少します。 環境におけるこれらのフィールドの自然レベルは低いです。

非電離放射線 (NIR) には、物質の電離を生成するのに十分なエネルギーを持たない電磁スペクトルのすべての放射線と場が組み込まれています。 つまり、NIR は、分子または原子に十分なエネルギーを与えて、100 つまたは複数の電子を除去してその構造を破壊することはできません。 NIR と電離放射線の境界線は、通常、約 XNUMX ナノメートルの波長に設定されています。

あらゆる形態のエネルギーと同様に、NIR エネルギーは生物学的システムと相互作用する可能性があり、その結果は重要でないか、さまざまな程度で有害であるか、または有益である可能性があります。 高周波 (RF) およびマイクロ波放射では、主な相互作用メカニズムは加熱ですが、スペクトルの低周波部分では、高強度の場が体内に電流を誘導し、それによって危険になる場合があります。 ただし、低レベルの電界強度の相互作用メカニズムは不明です。

 

 

 

 

 

 

 

 

数量と単位

約 300 MHz 未満の周波数の電界は、電界強度の観点から定量化されます (E) と磁場強度 (H). E XNUMX メートルあたりのボルト数 (V/m) で表され、 H アンペア/メートル (A/m)。 どちらもベクトル フィールドです。つまり、各点の大きさと方向によって特徴付けられます。 低周波数範囲では、磁場は多くの場合、磁束密度で表されます。 B、SI 単位テスラ (T) を使用します。 私たちの日常環境のフィールドが議論されるとき、サブユニット マイクロテスラ (μT) が通常好まれる単位です。 一部の文献では、磁束密度はガウス (G) で表され、これらの単位間の変換は次のとおりです (空気中のフィールドの場合)。

1T = 104 G または 0.1 μT = 1 mG および 1 A/m = 1.26 μT。

高周波放射線を含む非電離放射線防護の概念、量、単位、および用語のレビューが利用可能です (NCRP 1981; Polk and Postow 1986; WHO 1993)。

用語 放射線 単に波によって伝達されるエネルギーを意味します。 電磁波は電気力と磁力の波であり、波動は物理システム内の擾乱の伝播として定義されます。 電場の変化は磁場の変化を伴い、逆もまた同様です。 これらの現象は、1865 年に JC マクスウェルによって、マクスウェルの方程式として知られるようになった XNUMX つの方程式で記述されました。

電磁波は、周波数 (f)、波長 (λ)、電界強度、磁界強度、電気分極 (P) (の方向 E フィールド)、伝搬速度 (c) およびポインティング ベクトル (S)。 図 2  自由空間における電磁波の伝搬を示します。 周波数は、電場または磁場が特定のポイントで XNUMX 秒間に完全に変化する回数として定義され、ヘルツ (Hz) で表されます。 波長は、波の XNUMX つの連続する山または谷 (最大値または最小値) の間の距離です。 周波数、波長、波速 (v) は次のように相互に関連しています。

v = f λ

図2。 x 方向に光速で伝搬する平面波

ELF010F2

自由空間での電磁波の速度は光の速度と同じですが、物質内での速度は物質の電気的特性、つまり誘電率 (ε) と透磁率 (μ) に依存します。 誘電率は電場との物質の相互作用に関係し、透磁率は磁場との相互作用を表します。 生体物質の誘電率は自由空間の誘電率とは大きく異なり、波長 (特に RF 範囲) と組織の種類に依存します。 しかし、生物学的物質の透過性は、自由空間の透過性と同じです。

平面波では、図 2 に示すように 、電場は磁場に垂直であり、伝搬方向は電場と磁場の両方に垂直です。

 

 

 

平面波の場合、一定である電界強度の値と磁界強度の値の比は、特性インピーダンスとして知られています (Z):

Z = E/H

フリースペースでは、 Z= 120π≒377Ω それ以外の場合 Z 波が通過する材料の誘電率と透磁率に依存します。

エネルギー伝達は、電磁フラックス密度の大きさと方向を表すポインティング ベクトルによって記述されます。

S = E x H

伝播波の場合、積分 S 任意の表面上で、この表面を介して伝達される瞬間的な電力 (電力密度) を表します。 ポインティング ベクトルの大きさは、XNUMX 平方メートルあたりのワット数 (W/m2) (一部の文献では単位 mW/cm2 が使用されます。SI 単位への変換は 1 mW/cm です。2 = 10W/m2) 平面波の場合、電界強度と磁界強度の値に関連しています。

S = E2 / 120π = E2  / 377

&

S =120π H2 = 377 H2

実際に遭遇するすべての曝露条件を平面波で表現できるわけではありません。 無線周波放射源に近い距離では、平面波に特徴的な関係は満たされない。 アンテナから放射される電磁場は、近距離場ゾーンと遠距離場ゾーンの XNUMX つの領域に分けることができます。 これらのゾーン間の境界は、通常、次の場所に配置されます。

r = 2a2

コラボレー a アンテナの最大寸法です。

近接場ゾーンでは、曝露は電場と磁場の両方によって特徴付けられる必要があります。 遠距離場では、これらの XNUMX つで十分です。 E & H. 実際には、近接場の状況は 300 Mhz 未満の周波数で実現されることがよくあります。

RF フィールドへの曝露は、電磁波と物体との相互作用によってさらに複雑になります。 一般に、電磁波が物体に遭遇すると、入射エネルギーの一部が反射され、一部が吸収され、一部が透過されます。 物体によって透過、吸収、または反射されるエネルギーの割合は、電界の周波数と分極、および物体の電気的特性と形状によって異なります。 入射波と反射波の重ね合わせにより、定在波と空間的に不均一な電界分布が生じます。 波は金属の物体で全反射されるため、そのような物体の近くでは定在波が形成されます。

RF 電磁界と生物系との相互作用はさまざまな電磁界特性に依存し、実際に遭遇する電磁界は複雑であるため、RF 電磁界へのばく露を説明する際には次の要素を考慮する必要があります。

  • ばく露が近視野ゾーンまたは遠視野ゾーンのどちらで発生するか
  • ニアフィールドの場合、両方の値 E & H 必要です。 ファーフィールドの場合、どちらか E or H
  • フィールドの大きさの空間変動
  • 電界分極、つまり、波の伝搬方向に対する電界の方向。

 

低周波磁場への曝露については、磁場強度または磁束密度が唯一の重要な考慮事項であるかどうかはまだ明らかではありません. 露出時間やフィールドの変化の速さなど、他の要因も重要であることが判明する場合があります。

用語 電磁界 (EMF) は、ニュース メディアや大衆紙で使用されているように、通常、スペクトルの低周波端にある電場と磁場を指しますが、より広い意味で、全スペクトルを含むように使用することもできます。電磁放射。 低音域では、 E & B 電磁界は、より高い周波数の場合と同じように結合または相互関係していないため、EMF ではなく「電界および磁界」と呼ぶ方が正確です。

 

戻る

読む 13113 <font style="vertical-align: inherit;">回数</font> 最終更新日: 17 年 2011 月 17 日水曜日 44:XNUMX
このカテゴリの詳細: « 電場と磁場と健康状態 紫外線 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

放射線:非電離の参考文献

アレン、SG。 1991. 無線周波数フィールド測定とハザード評価。 J Radiol Protect 11:49-62。

米国政府産業衛生士会議 (ACGIH)。 1992. しきい値限界値のドキュメント。 オハイオ州シンシナティ: ACGIH.

—。 1993年。化学物質および物理的作用物質の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1994a。 ACGIH Physical Agents Threshold Limit Values Committee の年次報告書。 オハイオ州シンシナティ: ACGIH.

—。 1994b. 1994 ~ 1995 年の TLV の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1995. 1995-1996 化学物質および物理的作用物質の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1996. TLVs© および BEIs©。 化学物質および物理的作用物質の限界値; 生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

米国規格協会 (ANSI)。 1993. レーザーの安全な使用。 標準番号 Z-136.1。 ニューヨーク: ANSI.

Aniolczyk, R. 1981. ジアテルミー、溶接機、および誘導加熱器の環境における電磁界の衛生評価の測定。 Medicina Pracy 32:119-128。

バセット、CAL、SN ミッチェル、SR ガストン。 1982年。結合していない骨折および関節節の障害におけるパルス電磁界治療。 J Am Med Assoc 247:623-628。

Bassett、CAL、RJ Pawluk、および AA Pilla。 1974. 誘導結合電磁界による骨修復の増強。 科学 184:575-577。

Berger、D、F Urbach、および RE Davies。 1968. 紫外線によって誘発される紅斑の作用スペクトル。 予備報告 XIII。 Congressus Internationalis Dermatologiae、Munchen、W Jadassohn および CG Schirren が編集。 ニューヨーク:Springer-Verlag。

ベルンハルト、JH. 1988a。 電界および磁界の周波数依存限界の確立と間接効果の評価。 Rad Envir Biophys 27:1。

Bernhardt、JHおよびR Matthes。 1992. ELF および RF 電磁源。 非電離放射線防護、MW Greene 編集。 バンクーバー: UBC プレス。

Bini、M、A Checcucci、A Ignesti、L Millanta、R Olmi、N Rubino、R Vanni。 1986. プラスチック シーラーから漏れる強力な RF 電界に労働者がさらされる。 J マイクロ波パワー 21:33-40.

Buhr、E、E Sutter、およびオランダ保健評議会。 1989年。保護装置用の動的フィルター。 GJ Mueller および DH Sliney によって編集された医学および生物学におけるレーザー放射の線量測定。 ウォッシュ州ベリンガム: SPIE.

放射線保健局。 1981. ビデオ ディスプレイ端末からの放射放出の評価。 メリーランド州ロックビル: 放射線保健局。

Cleuet、A、およびA Mayer。 1980年。Risques liés à l'utilisation industrielle des lasers。 Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, No. 99 Paris: Institut National de Recherche et de Sécurité.

コブレンツ、WR、R ステア、および JM ホーグ。 1931. 紫外線に対する皮膚のスペクトル紅斑関係。 アメリカ合衆国ワシントン DC の国立科学アカデミーの議事録: 国立科学アカデミー。

カリフォルニア州コール、DF フォーブス、PD デイビス。 1986. UV 光発癌の作用スペクトル。 Photochem Photobiol 43(3):275-284。

Commission Internationale de L'Eclairage (CIE)。 1987. 国際照明語彙。 ウィーン: CIE.

Cullen、AP、BR Chou、MG Hall、SE Jany。 1984. 紫外線 B による角膜内皮の損傷。 Am J Optom Phys Opt 61(7):473-478.

Duchene、A、J Lakey、および M Repacholi。 1991. 非電離放射線に対する保護に関する IRPA ガイドライン。 ニューヨーク:ペルガモン。

長老、JA、PA Czerki、K Stuchly、K Hansson Mild、AR Sheppard。 1989. 高周波放射。 MJ Suess と DA Benwell-Morison が編集した非電離放射線防護。 ジュネーブ: WHO.

Eriksen, P. 1985. MIG 溶接アーク点火からの時間分解光スペクトル。 Am Ind Hyg Assoc J 46:101-104。

マサチューセッツ州エベレット、RL オルセン、RM セイヤー。 1965年。紫外線紅斑。 Arch Dermatol 92:713-719。

Fitzpatrick、TB、MA Pathak、LC Harber、M Seiji、および A Kukita。 1974. 日光と人間、正常および異常な光生物学的反応。 東京:大学東京プレスの。

フォーブス、PD、PD デイビス。 1982年。光発癌に影響を与える要因。 チャプ。 JAM Parrish、L Kripke、および WL Morison によって編集された光免疫学の 7。 ニューヨーク:プレナム。

フリーマン、RS、DW オーエンズ、JM ノックス、HT ハドソン。 1966. 太陽スペクトルに存在する紫外線の単色波長に対する皮膚の紅斑応答の相対エネルギー要件。 J Invest Dermatol 47:586-592。

グランドルフォ、M アンド K ハンソン マイルド。 1989 年。世界的な公衆および職業の無線周波数およびマイクロ波保護。 電磁生物相互作用。 G Franceschetti、OP Gandhi、および M Grandolfo が編集したメカニズム、安全基準、保護ガイド。 ニューヨーク:プレナム。

グリーン、MW。 1992年。非電離放射線。 第 2 回国際非電離放射線ワークショップ、10 月 14 ~ XNUMX 日、バンクーバー。

ハム、WTJ。 1989. レーザーやその他の光源によって生成される青色光および近紫外線網膜病変の光病理学と性質。 ML Wolbarsht が編集した、医学および生物学におけるレーザーの応用。 ニューヨーク:プレナム。

ハム、WT、HA ミューラー、JJ ラフォロ、D ゲリー III、RK ゲリー。 1982.無水晶体サルにおける近紫外線による網膜損傷の作用スペクトル。 Am J Ophthalmol 93(3):299-306。

Hansson Mild, K. 1980. 無線周波数電磁界への職業暴露。 議事録 IEEE 68:12-17。

ハウサー、KW。 1928年。放射線生物学における波長の影響。 Strahlentherapie 28:25-44。

電気電子技術者協会 (IEEE)。 1990a。 IEEE COMAR RF およびマイクロ波の位置づけ。 ニューヨーク:IEEE。

—。 1990b. RFシーラーおよび誘電ヒーターからの電場および磁場への曝露の健康面に関するIEEE COMARの見解表明。 ニューヨーク:IEEE。

—。 1991. 無線周波数電磁界への人体曝露に関する安全レベルに関する IEEE 規格 3 KHz ~ 300 GHz。 ニューヨーク:IEEE。

非電離放射線防護に関する国際委員会 (ICNIRP)。 1994年。静磁場への曝露の限界に関するガイドライン。 健康物理 66:100-106。

—。 1995. レーザー放射に対する人間の暴露限界に関するガイドライン。

ICNIRP ステートメント。 1996. 携帯型無線電話と基地局送信機の使用に関連する健康問題。 健康物理学、70:587-593。

国際電気標準会議 (IEC)。 1993. IEC 規格 No. 825-1。 ジュネーブ: IEC.

国際労働局 (ILO)。 1993a。 電力周波数の電界および磁界からの保護。 労働安全衛生シリーズ、第 69 号。ジュネーブ:ILO。

国際放射線防護協会 (IRPA)。 1985. レーザー放射への人体曝露の制限に関するガイドライン。 健康物理 48(2):341-359。

—。 1988a。 変更: レーザー放射への曝露の制限に関する IRPA 1985 ガイドラインのマイナーな更新に関する推奨事項。 健康物理 54(5):573-573。

—。 1988b. 100 kHz から 300 GHz までの周波数範囲の高周波電磁場への曝露の制限に関するガイドライン。 健康物理 54:115-123。

—。 1989 年。IRPA 1985 ガイドラインの紫外線への曝露制限に対する変更案。 健康物理 56(6):971-972。

国際放射線防護協会 (IRPA) および国際非電離放射線委員会。 1990 年。50/60 Hz の電場および磁場への曝露の制限に関する暫定ガイドライン。 健康物理 58(1):113-122。

Kolmodin-Hedman、B、K Hansson Mild、E Jönsson、MC Anderson、A Eriksson。 1988. プラスチック溶接機の操作と無線周波数電磁界への曝露における健康問題。 Int Arch Occup Environ Health 60:243-247.

Krause, N. 1986. 技術、医学、研究、および公共生活における静磁場および時間変動磁場への人々の曝露: 線量測定の側面。 静電界および ELF 磁界の生物学的影響、JH Bernhardt 編集。 ミュンヘン: MMV Medizin Verlag.

Lövsund、PおよびKHマイルド。 1978. いくつかの誘導ヒーター付近の低周波電磁界。 ストックホルム: ストックホルム労働安全衛生委員会。

Lövsund、P、PA Oberg、SEG Nilsson。 1982 年。電気鋼および溶接産業における ELF 磁界。 ラジオ科学 17(5S):355-385.

ラッキーッシュ、ML、L ホラデイ、AH テイラー。 1930年。日焼けしていない人間の皮膚の紫外線に対する反応。 J Optic Soc Am 20:423-432。

マッキンレー、AF、B ディフィー。 1987. ヒトの皮膚における紫外線誘発紅斑の参照作用スペクトル。 紫外線放射への人間の暴露: リスクと規制、WF Passchier と BFM Bosnjakovic によって編集されました。 ニューヨーク: Excerpta medica Division, Elsevier Science Publishers.

マッキンレー、A、JB アンダーセン、JH ベルンハルト、M グランドルフォ、KA ホスマン、FE ヴァン レーウェン、K ハンソン マイルド、AJ スワードロウ、L ヴェルシェーヴ、B ベイレット。 欧州委員会の専門家グループによる研究プログラムの提案。 無線電話の使用に関連する可能性のある健康への影響。 未発表レポート。

Mitbriet、IM および VD Manyachin。 1984年。骨の修復に対する磁場の影響。 モスクワ、ナウカ、292-296。

放射線防護および測定に関する全国評議会 (NCRP)。 1981. 無線周波電磁界。 プロパティ、量と単位、生物物理学的相互作用、および測定。 メリーランド州ベセスダ: NCRP.

—。 1986. 無線周波数電磁界の生物学的影響とばく露基準。 レポート No. 86。メリーランド州ベセスダ: NCRP。

国家放射線防護委員会 (NRPB)。 1992. 電磁界とがんのリスク。 巻。 3(1)。 イギリス、チルトン:NRPB。

—。 1993. 静的および時間変化する電磁場および放射線への人体曝露に関する制限。 イギリス、ディドコット:NRPB。

国立研究評議会 (NRC)。 1996. 住宅の電界および磁界への曝露による健康への影響の可能性。 ワシントン:NASプレス。 314。

オルセン、EG、A Ringvold。 1982年。ヒト角膜内皮と紫外線。 Acta Ophthalmol 60:54-56。

パリッシュ、JA、KF ジェニッケ、RR アンダーソン。 1982. 紅斑とメラニン形成: 正常な人間の皮膚の作用スペクトル。 Photochem Photobiol 36(2):187-191。

Passchier、WF、BFM ボスニャコビッチ。 1987. 紫外線への人間の暴露: リスクと規制。 ニューヨーク:Elsevier Science Publishers の Excerpta Medica Division。

ピッツ、DG. 1974. 人間の紫外線作用スペクトル。 Am J Optom Phys Opt 51(12):946-960.

ピッツ、DG、TJ トレディチ。 1971. 目に及ぼす紫外線の影響。 Am Ind Hyg Assoc J 32(4):235-246。

Pitts、DG、AP Cullen、および PD Hacker。 1977a。 295 から 365nm までの紫外線の眼への影響。 Invest Ophthalmol Vis Sci 16(10):932-939.

—。 1977b. ウサギの目における295~400nmの紫外線効果。 オハイオ州シンシナティ: 国立労働安全衛生研究所 (NIOSH)。

Polk、CおよびE Postow。 1986. 電磁界の生物学的影響に関する CRC ハンドブック。 ボカラトン:CRCプレス。

レパコリ、MH。 1985. ビデオ表示端末 - オペレータは心配する必要がありますか? Austalas Phys Eng Sci Med 8(2):51-61。

—。 1990. 50760 Hz の電界および磁界への曝露による癌: 主要な科学的議論。 Austalas Phys Eng Sci Med 13(1):4-17。

レパコリ、M、A バステン、V ゲブスキー、D ヌーナン、J フィニック、AW ハリス。 1997. パルス 1 MHz 電磁場に曝露された E-Pim900 トランスジェニック マウスのリンパ腫。 放射線研究、147:631-640。

ライリー、MV、S スーザン、MI ピーターズ、CA シュワルツ。 1987. 角膜内皮に対する UVB 照射の影響。 Curr Eye Res 6(8):1021-1033。

Ringvold、A. 1980a。 角膜と紫外線。 Acta Ophthalmol 58:63-68。

—。 1980b. 房水と紫外線。 Acta Ophthalmol 58:69-82。

—。 1983. 紫外線による角膜上皮の損傷。 Acta Ophthalmol 61:898-907。

Ringvold、A および M Davanger。 1985. 紫外線によるウサギの角膜実質の変化。 Acta Ophthalmol 63:601-606。

Ringvold、A、M Davanger、および EG Olsen。 1982. 紫外線照射後の角膜内皮の変化。 Acta Ophthalmol 60:41-53。

ニュージャージー州ロバーツとSMマイケルソン。 1985. 無線周波放射への人体曝露に関する疫学研究: 批判的レビュー。 Int Arch Occup Environ Health 56:169-178。

ロイ、CR、KH ジョイナー、HP ギース、MJ バンゲイ。 1984. ビジュアル ディスプレイ端末 (VDT) から放射される電磁放射の測定。 Rad Prot Austral 2(1):26-30.

スコット、J、TR フィアーズ、GB ゴリ。 1980. 米国における紫外線放射の測定と皮膚がんデータとの比較。 ワシントン DC: 米国政府印刷局。

Sienkiewicz、ZJ、RD Saunder、および CI Kowalczuk。 1991年。非電離電磁場および放射線への曝露の生物学的影響。 11 超低周波電場および磁場。 ディドコット、英国: 国家放射線防護委員会。

Silverman, C. 1990. がんと電磁場の疫学研究。 章で。 17 in 生物学的効果と電磁エネルギーの医療への応用、OP Gandhi 編集。 ニュージャージー州エンゲルウッド クリフ: プレンティス ホール。

スライニー、DH. 1972. 紫外線暴露基準のためのエンベロープ アクション スペクトルのメリット。 Am Ind Hyg Assoc J 33:644-653。

—。 1986.白内障発生における物理的要因:周囲の紫外線と温度。 Invest Ophthalmol Vis Sci 27(5):781-790.

—。 1987 年。眼内レンズ インプラントへの太陽紫外線曝露の推定。 J 白内障屈折手術 13(5):296-301。

—。 1992. 新しい溶接フィルターの安全管理者向けガイド。 溶接 J 71(9):45-47.
スライニー、DH、ML ウォルバーシュト。 1980. レーザーおよびその他の光源の安全性。 ニューヨーク:プレナム。

Stenson, S. 1982. 色素性乾皮症の眼所見: 14 例の報告。 アン眼科 6(580):585-XNUMX。

Sterenborg、HJCM、JC van der Leun。 1987. 紫外線による腫瘍形成の作用スペクトル。 紫外線放射への人間の暴露: リスクと規制、WF Passchier と BFM Bosnjakovic によって編集されました。 ニューヨーク:Elsevier Science Publishers の Excerpta Medica Division。

Stuchly、MA。 1986. 静磁場および時変磁場への人間の曝露。 健康物理 51(2):215-225。

Stuchly、MA と DW Lecuyer。 1985. 電磁場への誘導加熱とオペレーターの曝露。 健康物理 49:693-700。

—。 1989. アーク溶接における電磁場への曝露。 健康物理 56:297-302。

Szmigielski、S、M Bielec、S Lipski、G Sokolska。 1988. 低レベルのマイクロ波および無線周波数場への曝露の免疫学的および癌関連の側面。 現代の生体電気、AA マリオによって編集されました。 ニューヨーク:マルセル・デッカー。

Taylor、HR、SK West、FS Rosenthal、B Munoz、HS Newland、H Abbey、EA Emmett。 1988年。白内障形成に対する紫外線の影響。 New Engl J Med 319:1429-1433。

教えて、RA。 1983. 電磁場の測定のための機器: 機器、校正、および選択されたアプリケーション。 M Grandolfo、SM Michaelson、および A Rindi によって編集された、非電離放射線、高周波およびマイクロ波エネルギーの生物学的効果および線量測定。 ニューヨーク:プレナム。

Urbach, F. 1969. 紫外線の生物学的影響。 ニューヨーク:ペルガモン。

世界保健機関 (WHO)。 1981. 無線周波数とマイクロ波。 環境衛生基準、No.16。 ジュネーブ: WHO.

—。 1982年。レーザーと光放射。 環境衛生基準、第 23 号。ジュネーブ: WHO。

—。 1987年。磁場。 環境衛生基準、No.69。 ジュネーブ: WHO.

—。 1989 年。非電離放射線防護。 コペンハーゲン: WHO ヨーロッパ地域事務所。

—。 1993. 電磁界 300 Hz ~ 300 GHz。 環境衛生基準、No. 137。ジュネーブ: WHO。

—。 1994. 紫外線。 環境衛生基準、No. 160。ジュネーブ: WHO。

世界保健機関 (WHO)、国連環境計画 (UNEP)、および国際放射線防護協会 (IRPA)。 1984. 超低周波 (ELF)。 環境衛生基準、第 35 号。ジュネーブ: WHO。

ザファネッラ、LE、DW デノ。 1978. 超高圧送電線の静電および電磁効果。 カリフォルニア州パロアルト:電力研究所。

Zuclich、JA、およびJS Connolly。 1976年。近紫外レーザー放射による眼の損傷。 Invest Ophthalmol Vis Sci 15(9):760-764.