このページを印刷
火曜日、15 March 2011 14:46

電磁スペクトル: 基本的な物理的特性

このアイテムを評価
(4票)

電磁エネルギーの最もよく知られている形態は太陽光です。 太陽光 (可視光) の周波数は、より強力な高周波数の電離放射線 (X 線、宇宙線) と低周波数の良性の非電離放射線との境界線です。 非電離放射線のスペクトルがあります。 この章のコンテキスト内で、可視光のすぐ下の上限は赤外線です。 その下には、(降順で) マイクロ波、セルラー ラジオ、テレビ、FM ラジオ、AM ラジオ、誘電体および誘導ヒーターで使用される短波、および電力周波数のフィールドを含む幅広い無線周波数があります。 電磁スペクトルを図 1 に示します。 

図 1. 電磁スペクトル

ELF010F1

可視光や音が私たちの環境、つまり私たちが生活し働く空間に浸透するのと同じように、電磁場のエネルギーも浸透します。 また、私たちがさらされている音エネルギーのほとんどが人間の活動によって生成されているように、電磁エネルギーも同様です。日常の電化製品 (ラジオやテレビを作動させるもの) から放出される弱いレベルから高いレベルまでです。医療従事者が有益な目的で適用するレベル - たとえば、ジアテルミー (熱治療)。 一般に、そのようなエネルギーの強度は、発生源からの距離とともに急速に減少します。 環境におけるこれらのフィールドの自然レベルは低いです。

非電離放射線 (NIR) には、物質の電離を生成するのに十分なエネルギーを持たない電磁スペクトルのすべての放射線と場が組み込まれています。 つまり、NIR は、分子または原子に十分なエネルギーを与えて、100 つまたは複数の電子を除去してその構造を破壊することはできません。 NIR と電離放射線の境界線は、通常、約 XNUMX ナノメートルの波長に設定されています。

あらゆる形態のエネルギーと同様に、NIR エネルギーは生物学的システムと相互作用する可能性があり、その結果は重要でないか、さまざまな程度で有害であるか、または有益である可能性があります。 高周波 (RF) およびマイクロ波放射では、主な相互作用メカニズムは加熱ですが、スペクトルの低周波部分では、高強度の場が体内に電流を誘導し、それによって危険になる場合があります。 ただし、低レベルの電界強度の相互作用メカニズムは不明です。

 

 

 

 

 

 

 

 

数量と単位

約 300 MHz 未満の周波数の電界は、電界強度の観点から定量化されます (E) と磁場強度 (H). E XNUMX メートルあたりのボルト数 (V/m) で表され、 H アンペア/メートル (A/m)。 どちらもベクトル フィールドです。つまり、各点の大きさと方向によって特徴付けられます。 低周波数範囲では、磁場は多くの場合、磁束密度で表されます。 B、SI 単位テスラ (T) を使用します。 私たちの日常環境のフィールドが議論されるとき、サブユニット マイクロテスラ (μT) が通常好まれる単位です。 一部の文献では、磁束密度はガウス (G) で表され、これらの単位間の変換は次のとおりです (空気中のフィールドの場合)。

1T = 104 G または 0.1 μT = 1 mG および 1 A/m = 1.26 μT。

高周波放射線を含む非電離放射線防護の概念、量、単位、および用語のレビューが利用可能です (NCRP 1981; Polk and Postow 1986; WHO 1993)。

用語 放射線 単に波によって伝達されるエネルギーを意味します。 電磁波は電気力と磁力の波であり、波動は物理システム内の擾乱の伝播として定義されます。 電場の変化は磁場の変化を伴い、逆もまた同様です。 これらの現象は、1865 年に JC マクスウェルによって、マクスウェルの方程式として知られるようになった XNUMX つの方程式で記述されました。

電磁波は、周波数 (f)、波長 (λ)、電界強度、磁界強度、電気分極 (P) (の方向 E フィールド)、伝搬速度 (c) およびポインティング ベクトル (S)。 図 2  自由空間における電磁波の伝搬を示します。 周波数は、電場または磁場が特定のポイントで XNUMX 秒間に完全に変化する回数として定義され、ヘルツ (Hz) で表されます。 波長は、波の XNUMX つの連続する山または谷 (最大値または最小値) の間の距離です。 周波数、波長、波速 (v) は次のように相互に関連しています。

v = f λ

図2。 x 方向に光速で伝搬する平面波

ELF010F2

自由空間での電磁波の速度は光の速度と同じですが、物質内での速度は物質の電気的特性、つまり誘電率 (ε) と透磁率 (μ) に依存します。 誘電率は電場との物質の相互作用に関係し、透磁率は磁場との相互作用を表します。 生体物質の誘電率は自由空間の誘電率とは大きく異なり、波長 (特に RF 範囲) と組織の種類に依存します。 しかし、生物学的物質の透過性は、自由空間の透過性と同じです。

平面波では、図 2 に示すように 、電場は磁場に垂直であり、伝搬方向は電場と磁場の両方に垂直です。

 

 

 

平面波の場合、一定である電界強度の値と磁界強度の値の比は、特性インピーダンスとして知られています (Z):

Z = E/H

フリースペースでは、 Z= 120π≒377Ω それ以外の場合 Z 波が通過する材料の誘電率と透磁率に依存します。

エネルギー伝達は、電磁フラックス密度の大きさと方向を表すポインティング ベクトルによって記述されます。

S = E x H

伝播波の場合、積分 S 任意の表面上で、この表面を介して伝達される瞬間的な電力 (電力密度) を表します。 ポインティング ベクトルの大きさは、XNUMX 平方メートルあたりのワット数 (W/m2) (一部の文献では単位 mW/cm2 が使用されます。SI 単位への変換は 1 mW/cm です。2 = 10W/m2) 平面波の場合、電界強度と磁界強度の値に関連しています。

S = E2 / 120π = E2  / 377

&

S =120π H2 = 377 H2

実際に遭遇するすべての曝露条件を平面波で表現できるわけではありません。 無線周波放射源に近い距離では、平面波に特徴的な関係は満たされない。 アンテナから放射される電磁場は、近距離場ゾーンと遠距離場ゾーンの XNUMX つの領域に分けることができます。 これらのゾーン間の境界は、通常、次の場所に配置されます。

r = 2a2

コラボレー a アンテナの最大寸法です。

近接場ゾーンでは、曝露は電場と磁場の両方によって特徴付けられる必要があります。 遠距離場では、これらの XNUMX つで十分です。 E & H. 実際には、近接場の状況は 300 Mhz 未満の周波数で実現されることがよくあります。

RF フィールドへの曝露は、電磁波と物体との相互作用によってさらに複雑になります。 一般に、電磁波が物体に遭遇すると、入射エネルギーの一部が反射され、一部が吸収され、一部が透過されます。 物体によって透過、吸収、または反射されるエネルギーの割合は、電界の周波数と分極、および物体の電気的特性と形状によって異なります。 入射波と反射波の重ね合わせにより、定在波と空間的に不均一な電界分布が生じます。 波は金属の物体で全反射されるため、そのような物体の近くでは定在波が形成されます。

RF 電磁界と生物系との相互作用はさまざまな電磁界特性に依存し、実際に遭遇する電磁界は複雑であるため、RF 電磁界へのばく露を説明する際には次の要素を考慮する必要があります。

  • ばく露が近視野ゾーンまたは遠視野ゾーンのどちらで発生するか
  • ニアフィールドの場合、両方の値 E & H 必要です。 ファーフィールドの場合、どちらか E or H
  • フィールドの大きさの空間変動
  • 電界分極、つまり、波の伝搬方向に対する電界の方向。

 

低周波磁場への曝露については、磁場強度または磁束密度が唯一の重要な考慮事項であるかどうかはまだ明らかではありません. 露出時間やフィールドの変化の速さなど、他の要因も重要であることが判明する場合があります。

用語 電磁界 (EMF) は、ニュース メディアや大衆紙で使用されているように、通常、スペクトルの低周波端にある電場と磁場を指しますが、より広い意味で、全スペクトルを含むように使用することもできます。電磁放射。 低音域では、 E & B 電磁界は、より高い周波数の場合と同じように結合または相互関係していないため、EMF ではなく「電界および磁界」と呼ぶ方が正確です。

 

戻る

読む 13172 <font style="vertical-align: inherit;">回数</font> 最終更新日: 17 年 2011 月 17 日水曜日 44:XNUMX