火曜日、15 March 2011 15:26

高周波電磁界とマイクロ波

このアイテムを評価
(1の投票)

無線周波数 (RF) 電磁エネルギーとマイクロ波放射は、産業、商業、医療、研究、および家庭でさまざまな用途に使用されています。 3 ~ 3 x 10 の周波数範囲で8 kHz (つまり 300 GHz) は、ラジオやテレビの放送、通信 (長距離電話、携帯電話、無線通信)、レーダー、誘電体ヒーター、誘導ヒーター、スイッチ付き電源、コンピューター モニターなどの用途を容易に認識します。

高出力 RF 放射は熱エネルギー源であり、火傷、一時的および永続的な生殖の変化、白内障、死など、生体系に対する加熱の既知の影響をすべてもたらします。 広い範囲の無線周波数では、熱受容体が皮膚にあり、これらの電磁界によって引き起こされる身体の深部加熱を容易に感知できないため、熱と熱痛の皮膚知覚は検出に信頼性がありません。 高周波電磁界への曝露によるこれらの健康への悪影響から保護するには、曝露制限が必要です。

職業暴露

誘導加熱

強力な交流磁場を適用することにより、導電性材料は誘導によって加熱することができます 渦電流. このような加熱は、鍛造、焼きなまし、ろう付け、およびはんだ付けに使用されます。 動作周波数範囲は 50/60 から数百万 Hz です。 磁場を生成するコイルの寸法は小さいことが多いため、高レベルの全身ばく露のリスクは小さいです。 ただし、手への暴露は高くなる可能性があります。

誘電加熱

3 ~ 50 MHz の無線周波数エネルギー (主に 13.56、27.12、および 40.68 MHz の周波数) は、さまざまな加熱プロセスのために業界で使用されています。 用途には、プラスチックのシーリングとエンボス加工、接着剤の乾燥、布地と織物の加工、木工、防水シート、プール、ウォーターベッド ライナー、靴、トラベル チェック フォルダーなどの多様な製品の製造が含まれます。

文献 (Hansson Mild 1980; IEEE COMAR 1990a、1990b、1991) で報告された測定値は、多くの場合、電気的および磁気的 漏れ場 これらの RF デバイスの近くでは非常に高くなります。 多くの場合、オペレーターは出産可能年齢 (つまり、18 歳から 40 歳) の女性です。 職業上の状況によっては、漏洩電磁界が広範囲に及ぶことが多く、その結果、オペレーターは全身にばく露します。 多くのデバイスでは、電界および磁界への暴露レベルが既存のすべての RF 安全ガイドラインを超えています。

これらのデバイスは RF エネルギーを非常に多く吸収する可能性があるため、デバイスから発生する漏れ電界を制御することが重要です。 したがって、曝露の問題が存在するかどうかを判断するには、定期的な RF 監視が不可欠になります。

通信システム

通信およびレーダーの分野の作業者は、ほとんどの状況で低レベルの電界強度にのみさらされます。 ただし、FM/TV タワーに登らなければならない作業員の曝露は激しい可能性があり、安全対策が必要です。 ばく露は、インターロックが解除され、ドアが開いている送信機キャビネットの近くでもかなりの量になる可能性があります。

医療被ばく

RF エネルギーの最も初期のアプリケーションの XNUMX つは、短波ジアテルミーでした。 これには通常、シールドされていない電極が使用され、漂遊電界が高くなる可能性があります。

最近では、RF フィールドが静磁場と組み合わせて使用​​されています。 磁気共鳴画像 (MRI)。 使用される RF エネルギーは低く、フィールドは患者のエンクロージャ内にほぼ完全に含まれているため、オペレーターへの曝露はごくわずかです。

生物学的効果

比吸収率 (SAR、キログラムあたりのワット数で測定) は、線量測定量として広く使用されており、SAR から曝露限界を導き出すことができます。 生体の SAR は、放射線の周波数、強度、偏光、放射線源と身体の構成、反射面と身体のサイズ、形状、および電気特性などの曝露パラメータに依存します。 さらに、体内の SAR 空間分布は非常に不均一です。 不均一なエネルギー蓄積は、不均一な深部本体の加熱をもたらし、内部温度勾配を生成する可能性があります。 10 GHz を超える周波数では、エネルギーは体表面近くに蓄積されます。 最大の SAR は、標準的な被験者では約 70 MHz で発生し、人が RF 接地に接触して立っている場合は約 30 MHz で発生します。 温度と湿度の極端な条件では、1 MHz で 4 ~ 70 W/kg の全身 SAR により、健康な人間の深部体温が 2 時間で約 XNUMX °C 上昇すると予想されます。

RF 加熱は、広く研究されている相互作用メカニズムです。 熱影響は 1 W/kg 未満で観察されていますが、これらの影響に対する温度閾値は一般的に決定されていません。 生物学的影響を評価する際には、時間-温度プロファイルを考慮する必要があります。

生物学的影響は、RF 加熱が適切なメカニズムでも可能性のあるメカニズムでもない場合にも発生します。 これらの影響には、多くの場合、変調された RF フィールドとミリ波が含まれます。 さまざまな仮説が提案されていますが、人間の曝露限界を導き出すのに役立つ情報はまだ得られていません。 相互作用の基本的なメカニズムを理解する必要があります。それぞれの RF フィールドの特徴的な生物物理学的および生物学的相互作用を調査することは現実的ではないためです。

人間と動物の研究では、内部組織が過度に加熱されるため、RF フィールドが有害な生物学的影響を引き起こす可能性があることが示されています。 体の熱センサーは皮膚にあり、体の奥深くで熱を感知することは容易ではありません。 したがって、作業者は、漏れ電磁界の存在にすぐに気付かずに、かなりの量の RF エネルギーを吸収する可能性があります。 レーダー装置、RF ヒーターとシーラー、およびラジオ TV 塔からの RF フィールドにさらされた職員は、さらされた後、しばらくして温かみを感じたという報告があります。

RF 放射が人間に癌を引き起こす可能性があるという証拠はほとんどありません。 それにもかかわらず、ある研究は、それが動物の癌プロモーターとして作用する可能性があることを示唆しています (Szmigielski et al. 1988)。 RF 電磁界に曝露された人員の疫学的研究は数が少なく、一般的に範囲が限られています (Silverman 1990; NCRP 1986; WHO 1981)。 職業被ばく労働者の調査が、旧ソ連と東欧諸国で実施された(Roberts and Michaelson 1985)。 しかし、これらの研究は健康への影響に関して決定的なものではありません。

ヨーロッパの RF シーラー オペレーターに関する人間の評価と疫学的研究 (Kolmodin-Hedman et al. 1988; Bini et al. 1986) は、次の特定の問題が発生する可能性があることを報告しています。

  • RF火傷または熱的に高温の表面との接触による火傷
  • 手や指のしびれ(感覚異常); 触覚感度の乱れまたは変化
  • 眼への刺激(おそらくビニル含有物質からの煙によるもの)
  • オペレーターの足の著しい温度上昇と不快感 (おそらく足から地面への電流の流れによる)。

 

携帯電話

個人用無線電話の使用が急速に増加しており、これが基地局の数の増加につながっています。 これらは、多くの場合、公共エリアに設置されています。 しかし、これらのステーションからの公衆への曝露は低いです。 システムは通常、アナログまたはデジタル技術を使用して、900 MHz または 1.8 GHz 付近の周波数で動作します。 ハンドセットは小型で低電力の無線送信機で、使用時に頭の近くに保持されます。 アンテナから放射される電力の一部は頭部で吸収されます。 ファントムヘッドでの数値計算と測定は、SAR 値が数 W/kg のオーダーである可能性があることを示しています (詳細は ICNIRP 声明、1996 を参照)。 電磁場の健康被害に対する一般の関心が高まっており、いくつかの研究プログラムがこの問題に取り組んでいます (McKinley et al.、未発表のレポート)。 携帯電話の使用と脳腫瘍に関して、いくつかの疫学研究が進行中です。 これまでのところ、トランスジェニック マウスを 1997 日 1 時間、18 か月間、デジタル移動通信で使用されるのと同様の信号にさらした動物研究 (Repacholi et al. 43) のみが発表されています。 実験終了時までに、101 匹中 22 匹の動物にリンパ腫がみられたのに対し、偽暴露群では 100 匹中 XNUMX 匹でした。 増加は統計的に有意でした (p > 0.001)。 これらの結果は、人間の健康に関連して簡単に解釈することはできず、これに関するさらなる研究が必要です.

基準とガイドライン

いくつかの組織や政府は、RF フィールドへの過度の曝露から保護するための基準とガイドラインを発行しています。 Grandolfo と Hansson Mild (1989) は、世界的な安全基準の見直しを行いました。 ここでの議論は、IRPA (1988) および IEEE 標準 C 95.1 1991 によって発行されたガイドラインにのみ関係します。

RF 曝露制限の完全な根拠は、IRPA (1988) に示されています。 要約すると、IRPA ガイドラインは 4 W/kg の基本的な限界 SAR 値を採用しており、それを超えると、RF エネルギー吸収の結果として健康への悪影響が発生する可能性が高まると考えられています。 このレベル未満の急性曝露による健康への悪影響は観察されていません。 長期暴露の可能性のある結果を考慮して 0.4 の安全係数を組み込むと、XNUMX W/kg が職業暴露の暴露限界を導き出すための基本限界として使用されます。 一般市民向けの制限を導き出すために、さらに XNUMX の安全係数が組み込まれています。

電界強度の導出された曝露限界 (E)、磁場強度 (H) および V/m、A/m、および W/m で指定された電力密度2 それぞれ、図 1 に示されています。 E & H 電磁界は 100 分間にわたって平均化され、瞬間暴露が時間平均値を 200 倍以上超えないようにすることが推奨されます。

図 1. IRPA (1988 年) 電界強度 E、磁界強度 H および電力密度のばく露限界

ELF060F1

IEEE によって 95.1 年に設定された標準 C 1991 は、人の全身の平均 SAR で 0.4 W/kg、任意の 8 グラムに伝達されるピーク SAR で 6 W/kg の職業被ばく (管理された環境) の制限値を示しています。組織の 0.08 分以上。 一般公衆 (管理されていない環境) へのばく露に相当する値は、全身 SAR で 1.6 W/kg、ピーク SAR で 100 W/kg です。 身体対接地電流は、管理された環境では 45 mA、管理されていない環境では 1991 mA を超えてはなりません。 (詳細については、IEEE 2 を参照してください。) 導出された制限を図 XNUMX に示します。

図 2. 電界強度 E、磁界強度 H、および電力密度に関する IEEE (1991) の曝露限界

ELF060F2

高周波電磁界とマイクロ波の詳細については、たとえば、Elder et al. を参照してください。 1989 年、Greene 1992 年、および Polk と Postow 1986 年。

 

戻る

読む 7562 <font style="vertical-align: inherit;">回数</font> 最終更新日: 17 年 2011 月 18 日水曜日 36:XNUMX
このカテゴリの詳細: « レーザー VLF と ELF の電場と磁場 »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

放射線:非電離の参考文献

アレン、SG。 1991. 無線周波数フィールド測定とハザード評価。 J Radiol Protect 11:49-62。

米国政府産業衛生士会議 (ACGIH)。 1992. しきい値限界値のドキュメント。 オハイオ州シンシナティ: ACGIH.

—。 1993年。化学物質および物理的作用物質の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1994a。 ACGIH Physical Agents Threshold Limit Values Committee の年次報告書。 オハイオ州シンシナティ: ACGIH.

—。 1994b. 1994 ~ 1995 年の TLV の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1995. 1995-1996 化学物質および物理的作用物質の限界値と生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

—。 1996. TLVs© および BEIs©。 化学物質および物理的作用物質の限界値; 生物学的暴露指数。 オハイオ州シンシナティ: ACGIH.

米国規格協会 (ANSI)。 1993. レーザーの安全な使用。 標準番号 Z-136.1。 ニューヨーク: ANSI.

Aniolczyk, R. 1981. ジアテルミー、溶接機、および誘導加熱器の環境における電磁界の衛生評価の測定。 Medicina Pracy 32:119-128。

バセット、CAL、SN ミッチェル、SR ガストン。 1982年。結合していない骨折および関節節の障害におけるパルス電磁界治療。 J Am Med Assoc 247:623-628。

Bassett、CAL、RJ Pawluk、および AA Pilla。 1974. 誘導結合電磁界による骨修復の増強。 科学 184:575-577。

Berger、D、F Urbach、および RE Davies。 1968. 紫外線によって誘発される紅斑の作用スペクトル。 予備報告 XIII。 Congressus Internationalis Dermatologiae、Munchen、W Jadassohn および CG Schirren が編集。 ニューヨーク:Springer-Verlag。

ベルンハルト、JH. 1988a。 電界および磁界の周波数依存限界の確立と間接効果の評価。 Rad Envir Biophys 27:1。

Bernhardt、JHおよびR Matthes。 1992. ELF および RF 電磁源。 非電離放射線防護、MW Greene 編集。 バンクーバー: UBC プレス。

Bini、M、A Checcucci、A Ignesti、L Millanta、R Olmi、N Rubino、R Vanni。 1986. プラスチック シーラーから漏れる強力な RF 電界に労働者がさらされる。 J マイクロ波パワー 21:33-40.

Buhr、E、E Sutter、およびオランダ保健評議会。 1989年。保護装置用の動的フィルター。 GJ Mueller および DH Sliney によって編集された医学および生物学におけるレーザー放射の線量測定。 ウォッシュ州ベリンガム: SPIE.

放射線保健局。 1981. ビデオ ディスプレイ端末からの放射放出の評価。 メリーランド州ロックビル: 放射線保健局。

Cleuet、A、およびA Mayer。 1980年。Risques liés à l'utilisation industrielle des lasers。 Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, No. 99 Paris: Institut National de Recherche et de Sécurité.

コブレンツ、WR、R ステア、および JM ホーグ。 1931. 紫外線に対する皮膚のスペクトル紅斑関係。 アメリカ合衆国ワシントン DC の国立科学アカデミーの議事録: 国立科学アカデミー。

カリフォルニア州コール、DF フォーブス、PD デイビス。 1986. UV 光発癌の作用スペクトル。 Photochem Photobiol 43(3):275-284。

Commission Internationale de L'Eclairage (CIE)。 1987. 国際照明語彙。 ウィーン: CIE.

Cullen、AP、BR Chou、MG Hall、SE Jany。 1984. 紫外線 B による角膜内皮の損傷。 Am J Optom Phys Opt 61(7):473-478.

Duchene、A、J Lakey、および M Repacholi。 1991. 非電離放射線に対する保護に関する IRPA ガイドライン。 ニューヨーク:ペルガモン。

長老、JA、PA Czerki、K Stuchly、K Hansson Mild、AR Sheppard。 1989. 高周波放射。 MJ Suess と DA Benwell-Morison が編集した非電離放射線防護。 ジュネーブ: WHO.

Eriksen, P. 1985. MIG 溶接アーク点火からの時間分解光スペクトル。 Am Ind Hyg Assoc J 46:101-104。

マサチューセッツ州エベレット、RL オルセン、RM セイヤー。 1965年。紫外線紅斑。 Arch Dermatol 92:713-719。

Fitzpatrick、TB、MA Pathak、LC Harber、M Seiji、および A Kukita。 1974. 日光と人間、正常および異常な光生物学的反応。 東京:大学東京プレスの。

フォーブス、PD、PD デイビス。 1982年。光発癌に影響を与える要因。 チャプ。 JAM Parrish、L Kripke、および WL Morison によって編集された光免疫学の 7。 ニューヨーク:プレナム。

フリーマン、RS、DW オーエンズ、JM ノックス、HT ハドソン。 1966. 太陽スペクトルに存在する紫外線の単色波長に対する皮膚の紅斑応答の相対エネルギー要件。 J Invest Dermatol 47:586-592。

グランドルフォ、M アンド K ハンソン マイルド。 1989 年。世界的な公衆および職業の無線周波数およびマイクロ波保護。 電磁生物相互作用。 G Franceschetti、OP Gandhi、および M Grandolfo が編集したメカニズム、安全基準、保護ガイド。 ニューヨーク:プレナム。

グリーン、MW。 1992年。非電離放射線。 第 2 回国際非電離放射線ワークショップ、10 月 14 ~ XNUMX 日、バンクーバー。

ハム、WTJ。 1989. レーザーやその他の光源によって生成される青色光および近紫外線網膜病変の光病理学と性質。 ML Wolbarsht が編集した、医学および生物学におけるレーザーの応用。 ニューヨーク:プレナム。

ハム、WT、HA ミューラー、JJ ラフォロ、D ゲリー III、RK ゲリー。 1982.無水晶体サルにおける近紫外線による網膜損傷の作用スペクトル。 Am J Ophthalmol 93(3):299-306。

Hansson Mild, K. 1980. 無線周波数電磁界への職業暴露。 議事録 IEEE 68:12-17。

ハウサー、KW。 1928年。放射線生物学における波長の影響。 Strahlentherapie 28:25-44。

電気電子技術者協会 (IEEE)。 1990a。 IEEE COMAR RF およびマイクロ波の位置づけ。 ニューヨーク:IEEE。

—。 1990b. RFシーラーおよび誘電ヒーターからの電場および磁場への曝露の健康面に関するIEEE COMARの見解表明。 ニューヨーク:IEEE。

—。 1991. 無線周波数電磁界への人体曝露に関する安全レベルに関する IEEE 規格 3 KHz ~ 300 GHz。 ニューヨーク:IEEE。

非電離放射線防護に関する国際委員会 (ICNIRP)。 1994年。静磁場への曝露の限界に関するガイドライン。 健康物理 66:100-106。

—。 1995. レーザー放射に対する人間の暴露限界に関するガイドライン。

ICNIRP ステートメント。 1996. 携帯型無線電話と基地局送信機の使用に関連する健康問題。 健康物理学、70:587-593。

国際電気標準会議 (IEC)。 1993. IEC 規格 No. 825-1。 ジュネーブ: IEC.

国際労働局 (ILO)。 1993a。 電力周波数の電界および磁界からの保護。 労働安全衛生シリーズ、第 69 号。ジュネーブ:ILO。

国際放射線防護協会 (IRPA)。 1985. レーザー放射への人体曝露の制限に関するガイドライン。 健康物理 48(2):341-359。

—。 1988a。 変更: レーザー放射への曝露の制限に関する IRPA 1985 ガイドラインのマイナーな更新に関する推奨事項。 健康物理 54(5):573-573。

—。 1988b. 100 kHz から 300 GHz までの周波数範囲の高周波電磁場への曝露の制限に関するガイドライン。 健康物理 54:115-123。

—。 1989 年。IRPA 1985 ガイドラインの紫外線への曝露制限に対する変更案。 健康物理 56(6):971-972。

国際放射線防護協会 (IRPA) および国際非電離放射線委員会。 1990 年。50/60 Hz の電場および磁場への曝露の制限に関する暫定ガイドライン。 健康物理 58(1):113-122。

Kolmodin-Hedman、B、K Hansson Mild、E Jönsson、MC Anderson、A Eriksson。 1988. プラスチック溶接機の操作と無線周波数電磁界への曝露における健康問題。 Int Arch Occup Environ Health 60:243-247.

Krause, N. 1986. 技術、医学、研究、および公共生活における静磁場および時間変動磁場への人々の曝露: 線量測定の側面。 静電界および ELF 磁界の生物学的影響、JH Bernhardt 編集。 ミュンヘン: MMV Medizin Verlag.

Lövsund、PおよびKHマイルド。 1978. いくつかの誘導ヒーター付近の低周波電磁界。 ストックホルム: ストックホルム労働安全衛生委員会。

Lövsund、P、PA Oberg、SEG Nilsson。 1982 年。電気鋼および溶接産業における ELF 磁界。 ラジオ科学 17(5S):355-385.

ラッキーッシュ、ML、L ホラデイ、AH テイラー。 1930年。日焼けしていない人間の皮膚の紫外線に対する反応。 J Optic Soc Am 20:423-432。

マッキンレー、AF、B ディフィー。 1987. ヒトの皮膚における紫外線誘発紅斑の参照作用スペクトル。 紫外線放射への人間の暴露: リスクと規制、WF Passchier と BFM Bosnjakovic によって編集されました。 ニューヨーク: Excerpta medica Division, Elsevier Science Publishers.

マッキンレー、A、JB アンダーセン、JH ベルンハルト、M グランドルフォ、KA ホスマン、FE ヴァン レーウェン、K ハンソン マイルド、AJ スワードロウ、L ヴェルシェーヴ、B ベイレット。 欧州委員会の専門家グループによる研究プログラムの提案。 無線電話の使用に関連する可能性のある健康への影響。 未発表レポート。

Mitbriet、IM および VD Manyachin。 1984年。骨の修復に対する磁場の影響。 モスクワ、ナウカ、292-296。

放射線防護および測定に関する全国評議会 (NCRP)。 1981. 無線周波電磁界。 プロパティ、量と単位、生物物理学的相互作用、および測定。 メリーランド州ベセスダ: NCRP.

—。 1986. 無線周波数電磁界の生物学的影響とばく露基準。 レポート No. 86。メリーランド州ベセスダ: NCRP。

国家放射線防護委員会 (NRPB)。 1992. 電磁界とがんのリスク。 巻。 3(1)。 イギリス、チルトン:NRPB。

—。 1993. 静的および時間変化する電磁場および放射線への人体曝露に関する制限。 イギリス、ディドコット:NRPB。

国立研究評議会 (NRC)。 1996. 住宅の電界および磁界への曝露による健康への影響の可能性。 ワシントン:NASプレス。 314。

オルセン、EG、A Ringvold。 1982年。ヒト角膜内皮と紫外線。 Acta Ophthalmol 60:54-56。

パリッシュ、JA、KF ジェニッケ、RR アンダーソン。 1982. 紅斑とメラニン形成: 正常な人間の皮膚の作用スペクトル。 Photochem Photobiol 36(2):187-191。

Passchier、WF、BFM ボスニャコビッチ。 1987. 紫外線への人間の暴露: リスクと規制。 ニューヨーク:Elsevier Science Publishers の Excerpta Medica Division。

ピッツ、DG. 1974. 人間の紫外線作用スペクトル。 Am J Optom Phys Opt 51(12):946-960.

ピッツ、DG、TJ トレディチ。 1971. 目に及ぼす紫外線の影響。 Am Ind Hyg Assoc J 32(4):235-246。

Pitts、DG、AP Cullen、および PD Hacker。 1977a。 295 から 365nm までの紫外線の眼への影響。 Invest Ophthalmol Vis Sci 16(10):932-939.

—。 1977b. ウサギの目における295~400nmの紫外線効果。 オハイオ州シンシナティ: 国立労働安全衛生研究所 (NIOSH)。

Polk、CおよびE Postow。 1986. 電磁界の生物学的影響に関する CRC ハンドブック。 ボカラトン:CRCプレス。

レパコリ、MH。 1985. ビデオ表示端末 - オペレータは心配する必要がありますか? Austalas Phys Eng Sci Med 8(2):51-61。

—。 1990. 50760 Hz の電界および磁界への曝露による癌: 主要な科学的議論。 Austalas Phys Eng Sci Med 13(1):4-17。

レパコリ、M、A バステン、V ゲブスキー、D ヌーナン、J フィニック、AW ハリス。 1997. パルス 1 MHz 電磁場に曝露された E-Pim900 トランスジェニック マウスのリンパ腫。 放射線研究、147:631-640。

ライリー、MV、S スーザン、MI ピーターズ、CA シュワルツ。 1987. 角膜内皮に対する UVB 照射の影響。 Curr Eye Res 6(8):1021-1033。

Ringvold、A. 1980a。 角膜と紫外線。 Acta Ophthalmol 58:63-68。

—。 1980b. 房水と紫外線。 Acta Ophthalmol 58:69-82。

—。 1983. 紫外線による角膜上皮の損傷。 Acta Ophthalmol 61:898-907。

Ringvold、A および M Davanger。 1985. 紫外線によるウサギの角膜実質の変化。 Acta Ophthalmol 63:601-606。

Ringvold、A、M Davanger、および EG Olsen。 1982. 紫外線照射後の角膜内皮の変化。 Acta Ophthalmol 60:41-53。

ニュージャージー州ロバーツとSMマイケルソン。 1985. 無線周波放射への人体曝露に関する疫学研究: 批判的レビュー。 Int Arch Occup Environ Health 56:169-178。

ロイ、CR、KH ジョイナー、HP ギース、MJ バンゲイ。 1984. ビジュアル ディスプレイ端末 (VDT) から放射される電磁放射の測定。 Rad Prot Austral 2(1):26-30.

スコット、J、TR フィアーズ、GB ゴリ。 1980. 米国における紫外線放射の測定と皮膚がんデータとの比較。 ワシントン DC: 米国政府印刷局。

Sienkiewicz、ZJ、RD Saunder、および CI Kowalczuk。 1991年。非電離電磁場および放射線への曝露の生物学的影響。 11 超低周波電場および磁場。 ディドコット、英国: 国家放射線防護委員会。

Silverman, C. 1990. がんと電磁場の疫学研究。 章で。 17 in 生物学的効果と電磁エネルギーの医療への応用、OP Gandhi 編集。 ニュージャージー州エンゲルウッド クリフ: プレンティス ホール。

スライニー、DH. 1972. 紫外線暴露基準のためのエンベロープ アクション スペクトルのメリット。 Am Ind Hyg Assoc J 33:644-653。

—。 1986.白内障発生における物理的要因:周囲の紫外線と温度。 Invest Ophthalmol Vis Sci 27(5):781-790.

—。 1987 年。眼内レンズ インプラントへの太陽紫外線曝露の推定。 J 白内障屈折手術 13(5):296-301。

—。 1992. 新しい溶接フィルターの安全管理者向けガイド。 溶接 J 71(9):45-47.
スライニー、DH、ML ウォルバーシュト。 1980. レーザーおよびその他の光源の安全性。 ニューヨーク:プレナム。

Stenson, S. 1982. 色素性乾皮症の眼所見: 14 例の報告。 アン眼科 6(580):585-XNUMX。

Sterenborg、HJCM、JC van der Leun。 1987. 紫外線による腫瘍形成の作用スペクトル。 紫外線放射への人間の暴露: リスクと規制、WF Passchier と BFM Bosnjakovic によって編集されました。 ニューヨーク:Elsevier Science Publishers の Excerpta Medica Division。

Stuchly、MA。 1986. 静磁場および時変磁場への人間の曝露。 健康物理 51(2):215-225。

Stuchly、MA と DW Lecuyer。 1985. 電磁場への誘導加熱とオペレーターの曝露。 健康物理 49:693-700。

—。 1989. アーク溶接における電磁場への曝露。 健康物理 56:297-302。

Szmigielski、S、M Bielec、S Lipski、G Sokolska。 1988. 低レベルのマイクロ波および無線周波数場への曝露の免疫学的および癌関連の側面。 現代の生体電気、AA マリオによって編集されました。 ニューヨーク:マルセル・デッカー。

Taylor、HR、SK West、FS Rosenthal、B Munoz、HS Newland、H Abbey、EA Emmett。 1988年。白内障形成に対する紫外線の影響。 New Engl J Med 319:1429-1433。

教えて、RA。 1983. 電磁場の測定のための機器: 機器、校正、および選択されたアプリケーション。 M Grandolfo、SM Michaelson、および A Rindi によって編集された、非電離放射線、高周波およびマイクロ波エネルギーの生物学的効果および線量測定。 ニューヨーク:プレナム。

Urbach, F. 1969. 紫外線の生物学的影響。 ニューヨーク:ペルガモン。

世界保健機関 (WHO)。 1981. 無線周波数とマイクロ波。 環境衛生基準、No.16。 ジュネーブ: WHO.

—。 1982年。レーザーと光放射。 環境衛生基準、第 23 号。ジュネーブ: WHO。

—。 1987年。磁場。 環境衛生基準、No.69。 ジュネーブ: WHO.

—。 1989 年。非電離放射線防護。 コペンハーゲン: WHO ヨーロッパ地域事務所。

—。 1993. 電磁界 300 Hz ~ 300 GHz。 環境衛生基準、No. 137。ジュネーブ: WHO。

—。 1994. 紫外線。 環境衛生基準、No. 160。ジュネーブ: WHO。

世界保健機関 (WHO)、国連環境計画 (UNEP)、および国際放射線防護協会 (IRPA)。 1984. 超低周波 (ELF)。 環境衛生基準、第 35 号。ジュネーブ: WHO。

ザファネッラ、LE、DW デノ。 1978. 超高圧送電線の静電および電磁効果。 カリフォルニア州パロアルト:電力研究所。

Zuclich、JA、およびJS Connolly。 1976年。近紫外レーザー放射による眼の損傷。 Invest Ophthalmol Vis Sci 15(9):760-764.