日曜日、13月2011 16:05

地表炭採掘管理

このアイテムを評価
(1の投票)

他の露天採掘と区別される露天炭採掘の地質学的特徴は、地層の性質とその比較的低い値であり、露天炭坑では、広い範囲にわたって大量の表土を移動させる必要があることがよくあります (つまり、剥土率が高い)。 )。 その結果、露天炭鉱は特殊な設備と採掘技術を開発してきました。 例としては、幅 30 から 60 m の細片を採掘する引き綱ストリップ鉱山や、長さ 50 km までの坑内で材料を横流しするなどがあります。 修復は、関連する領域の重大な混乱のため、採掘サイクルの不可欠な部分です。

地表炭鉱は、小規模 (すなわち、年間生産量 1 万トン未満) から大規模 (年間生産量 10 万トン以上) までさまざまです。 必要な労働力は、鉱山の規模と種類、設備の規模と量、石炭と表土の量によって異なります。 労働力の生産性と規模を示すいくつかの典型的な測定値があります。 これらは:

1. 鉱山労働者 5,000 人あたりの産出量は、年間の鉱山労働者 40,000 人あたりのトン数で表されます。 これは、鉱山労働者 XNUMX 人あたり年間 XNUMX トンから、鉱山労働者 XNUMX 人あたり年間 XNUMX トンまでの範囲になります。

2. 鉱山労働者 100,000 人あたりの年間移動量の総トン数。 この生産性指標は、石炭と表土を組み合わせたものです。 年間 400,000 人あたり XNUMX トンの生産性は低く、XNUMX 人あたり XNUMX トンはスケールの非常に生産的な終わりです。

     

    多額の設備投資が必要なため、多くの炭鉱は XNUMX 日間連続シフトで操業しています。 これには XNUMX 人の乗務員が関与します。XNUMX 人はそれぞれ XNUMX 時間の XNUMX 交代制で勤務し、XNUMX 人目の乗務員は名簿上の休暇をカバーします。

    鉱山計画

    地表炭鉱の採掘計画は反復的なプロセスであり、チェックリストにまとめることができます。 このサイクルは、地質学とマーケティングから始まり、経済評価で終わります。 プロジェクトが承認と開発のさまざまな段階を経るにつれて、計画の詳細 (およびコスト) のレベルが上がります。 実現可能性調査は、開発前の作業を対象としています。 生産開始後も同じチェックリストを使用して、年次および XNUMX 年計画、ならびにすべての石炭が抽出されたときに鉱山を閉鎖し、地域を修復するための計画を作成します。

    重要なことに、計画の必要性は継続しており、採掘の進行に伴って学習した市場、技術、法律、および鉱床に関する知識の変化を反映するために、計画を頻繁に更新する必要があります。

    地質学的影響

    地質学的特徴は、特定の露天炭鉱で使用される採掘方法と設備の選択に大きな影響を与えます。

    縫い目の姿勢、通称 ディップ、採掘されているシームと水平面の間の角度を表します。 傾斜が急であるほど採掘が難しくなります。 傾斜は鉱山の安定性にも影響します。 ドラグライン操作の制限傾斜は約 7° です。

      石炭と廃石の量によって、使用できる機器と、材料を爆破する必要があるかどうかが決まります。 東ヨーロッパやドイツで一般的に使用されているバケットホイール式掘削機などの連続採鉱設備は、発破を必要としない非常に強度の低い材料に限定されています。 しかし、典型的には表土は硬すぎて発破せずに掘ることができず、岩を小さな破片に砕き、シャベルや機械装置で掘削することができます。

    として 深さ 炭層の数が増えると、廃棄物と石炭を地表またはダンプに輸送するコストが高くなります。 ある時点で、露天掘りよりも坑内採掘の方が経済的になるでしょう。

    50 mm 程度の薄層も採掘できますが、石炭の回収はより困難になり、費用もかかります。 縫い目の厚さ 減少します。

    水文学 石炭および表土中の水の量を指します。 かなりの量の水が安定性に影響を与え、ポンプの要件がコストに追加されます。

    石炭の大きさ 予約済み 操作の規模は、使用できる機器に影響します。 小規模な鉱山は、より小型で比較的高価な設備を必要としますが、大規模な鉱山は規模の経済と生産単位あたりの低コストを享受します。

    環境特性 採掘後の表土の挙動を指します。 一部の表土は「酸生成」と呼ばれます。これは、空気や水にさらされると、環境に有害で特別な処理が必要な酸を生成することを意味します。

    上記の要因とその他の要因の組み合わせによって、特定の露天炭鉱に適した採掘方法と設備が決まります。

    マイニングサイクル

    露天炭採掘の方法論は、一連のステップに分けることができます。

    表土の除去 そして、それを保管するか、修復されている地域でそれを交換することは、サイクルの重要な部分です。その目的は、土地利用を少なくとも採掘開始前と同じくらい良好な状態に戻すことです. 表土には植物の栄養素が含まれているため、重要な構成要素です。

    地面の準備 大きな岩を砕くために爆発物を使用する場合があります。 場合によっては、機械的な力を使って岩を小さな破片に砕くリッパーを備えたブルドーザーによってこれが行われます。 岩の強度が低い一部の鉱山では、掘削機が岸から直接掘ることができるため、地面の準備は必要ありません。

    廃棄物除去 炭層の上にある岩を採掘し、それをダンプに運ぶプロセスです。 ダンプが隣接するストリップにあるストリップ鉱山では、サイドキャスト操作です。 ただし、一部の鉱山では、継ぎ目の構造と利用可能なダンプ スペースのために、ダンプが数キロ離れている場合があり、トラックまたはコンベヤーによるダンプへの輸送が必要です。

    石炭鉱業 鉱山の露出面から石炭を取り除き、坑外に搬出する工程です。 次に何が起こるかは、石炭市場の場所とその最終用途によって異なります。 オンサイトの発電所に供給される場合は、粉砕されてボイラーに直接送られます。 石炭の品位が低い場合は、準備プラントで石炭を「洗浄」することによってアップグレードできます。 これにより、石炭と表土が分離され、よりグレードの高い製品が得られます。 通常、この石炭は市場に出荷される前に、均一なサイズにするために破砕し、品質のばらつきを抑えるために混合する必要があります。 道路、コンベア、列車、はしけ、または船で輸送できます。

    リハビリテーション 地形を復元し、排水基準を満たすようにダンプを整形し、表土を交換し、植生を植えて元の状態に戻します。 その他の環境管理の考慮事項には、次のものがあります。

      • 水管理:既設水路の分流、鉱山用水の土砂ダムによる管理、汚染水を排出しないための再利用
      • ビジュアルプランニング : 視覚的な影響を最小限に抑える
      • 植物と動物: 樹木や植生を回復させ、固有の野生生物に取って代わる
      • 考古学: 文化的に重要な場所の保存および/または修復
      • 最後のボイド: 採掘が停止した後に穴をどうするか (例: 埋められるか、湖に変わる可能性があります)
      • 送風と振動、建物が近くにある場合、特定の技術によって管理する必要がある発破による
      • 騒音と粉塵、近くの住居やコミュニティに迷惑をかけないように管理する必要があります。

                   

                  地表採炭が環境全体に与える影響は甚大ですが、企業のすべての段階で適切な計画と管理を行うことで、すべての要件を満たすように管理できます。

                  採掘方法と設備

                  露天炭採掘には、トラックとシャベルの XNUMX つの主要な採掘方法が使用されます。 ドラグライン; バケットホイール掘削機やピットクラッシャーなどのコンベアベースのシステム。 多くの鉱山ではこれらを組み合わせて使用​​しており、オーガ採掘や連続ハイウォール採掘などの特殊な技術もあります。 これらは、地上炭鉱の総生産量のほんの一部を占めています。 ドラグラインとバケットホイールのシステムは、露天採炭用に特別に開発されましたが、トラックとショベルの採掘システムは採掘業界全体で使用されています。

                    トラックとシャベル 採掘方法には、電動ロープショベル、油圧ショベル、フロントエンドローダーなどの掘削機を使用して、表土をトラックに積み込みます。 トラックのサイズは、35 トンから 220 トンまでさまざまです。 トラックは表土を採掘面から投棄エリアに運び、そこでブルドーザーが岩を押して積み上げ、リハビリのために投棄場を形成します。 トラックとシャベルの方法は、その柔軟性で知られています。 例は、世界のほとんどの国で見られます。

                  ドラグライン は、表土を採掘するための最も安価な方法の 100 つですが、一般に 100 m の長さのブームの長さによって操作が制限されます。 ドラグラインはその中心点でスイングするため、現在の場所から約 XNUMX m 離れた場所に材料を投棄できます。 この形状では、鉱山を細長い帯状に配置する必要があります。

                  ドラグラインの主な制限は、約 60 m の深さまでしか掘れないことです。 これを超えると、トラックやシャベルのフリートなど、別の形態の補助的な表土除去が必要になります。

                  コンベアベースの採掘システム トラックの代わりにコンベアを使用して表土を輸送します。 表土の強度が低い場合は、バケットホイール掘削機で切羽から直接採掘できます。 表土と石炭を途切れることなく供給するため、「連続」採掘法と呼ばれることがよくあります。 ドラグラインとシャベルは周期的で、各バケットへの積み込みには 30 ~ 60 秒かかります。 より硬い表土は、コンベアに供給するために、ブラストまたはピットクラッシャーとショベルローディングの組み合わせが必要です。 コンベアベースの露天採炭システムは、表土をかなりの距離またはかなりの高さまで輸送する必要がある場合に最適です。

                  まとめ

                  露天炭採掘には、広い地域から大量の廃棄物と石炭を除去できる特殊な設備と採掘技術が含まれます。 リハビリテーションは、プロセスの不可欠かつ重要な部分です。

                   

                  戻る

                  読む 7559 <font style="vertical-align: inherit;">回数</font> 最終更新日: 30 年 2022 月 20 日 (土) 28:XNUMX
                  このカテゴリの詳細: « 露天採掘方法 鉱石の処理 »

                  免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

                  内容

                  鉱業および採石に関する参考文献

                  Agricola, G. 1950. De Re Metallica、HC Hoover と LH Hoover による翻訳。 ニューヨーク:ドーバー出版。

                  ビッケル、KL。 1987. ディーゼル動力鉱山設備の分析。 鉱山局技術移転セミナーの議事録: 地下鉱山のディーゼル。 Information Circular 9141. ワシントン DC: 鉱山局。

                  鉱山局。 1978 年。炭鉱の火災と防爆。 Information Circular 8768. ワシントン DC: 鉱山局。

                  —。 1988. 金属および非金属の防火における最近の発展。 Information Circular 9206. ワシントン DC: 鉱山局。

                  チェンバレン、EAC。 1970 年。自然発熱の早期発見に関連した石炭の周囲温度酸化。 鉱業技術者 (130 月) 121(1):6-XNUMX。

                  エリコット、CW。 1981. ガス混合物の爆発性の評価とサンプル時間の傾向の監視。 着火、爆発、火災に関するシンポジウムの議事録。 Illawara: オーストラリア鉱業冶金研究所。

                  環境保護庁 (オーストラリア)。 1996. 鉱業における環境管理のベスト プラクティス。 キャンベラ: 環境保護庁。

                  Funkemeyer、M および FJ コック。 1989. 自然発火しやすいライダーの縫い目の作業における防火。 グリュッカウフ 9-12。

                  グラハム、JI。 1921. 炭鉱での一酸化炭素の正常な生成。 鉱業技術者協会のトランザクション 60:222-234。

                  Grannes、SG、MA Ackerson、および GR Green。 1990. 地下採掘ベルトコンベヤーの自動消火システムの故障防止。 Information Circular 9264. ワシントン DC: 鉱山局。

                  グレアー、RE. 1974. 不活性ガスを使用した鉱山消火の研究。 USBM コントラクト レポート No. S0231075。 ワシントン DC: 鉱山局。

                  グリフィン、RE。 1979 年。煙探知機の鉱山内評価。 Information Circular 8808. ワシントン DC: 鉱山局。

                  Hartman、HL(ed。)。 1992. SME 鉱業工学ハンドブック、第 2 版。 メリーランド州ボルチモア: 鉱業、冶金、探査協会。

                  Hertzberg, M. 1982. 石炭粉塵とメタン爆発の抑制と消滅。 調査報告書 8708. ワシントン DC: 鉱山局。

                  フック、E、PK カイザー、WF ボーデン。 1995. 地下硬岩鉱山のサポートの設計。 ロッテルダム: AA バルケマ。

                  ヒューズ、AJ、WE レイボールド。 1960. 鉱山の火災ガスの爆発性の迅速な測定。 鉱業技術者 29:37-53。

                  国際金属環境会議 (ICME)。 1996. 採掘および冶金プロセスにおける環境慣行を示すケース スタディ。 オタワ: ICME.

                  国際労働機関 (ILO)。 1994. 炭鉱産業の最近の発展。 ジュネーブ: ILO.

                  ジョーンズ、JE、JC トリケット。 1955. 炭鉱での爆発から生じるガスの検査に関するいくつかの観察。 鉱業技術者協会のトランザクション 114: 768-790。

                  マッケンジー ウッド P と J ストラング。 1990. 火災ガスとその解釈。 鉱業技術者 149(345):470-478.

                  鉱山事故防止協会オンタリオ。 nd 緊急時準備ガイドライン。 技術常任委員会レポート。 ノースベイ: 鉱山事故防止協会オンタリオ。

                  ミッチェル、D および F バーンズ。 1979 年。鉱山火災の状態の解釈。 ワシントン DC: 米国労働省。

                  モリス、RM。 1988. 密閉されたエリアの状況を判断するための新しい火災比率。 鉱業技術者 147(317):369-375.

                  モロー、GS、CD リットン。 1992 年。煙探知機の鉱山内評価。 Information Circular 9311. ワシントン DC: 鉱山局。

                  全米防火協会 (NFPA)。 1992a。 防火コード。 NFPA 1. マサチューセッツ州クインシー: NFPA。

                  —。 1992b. 微粉燃料システムに関する規格。 NFPA 8503。マサチューセッツ州クインシー: NFPA。

                  —。 1994a。 切断・溶接工程における防火基準。 NFPA 51B。 マサチューセッツ州クインシー: NFPA.

                  —。 1994b. 携帯用消火器の規格です。 NFPA 10. マサチューセッツ州クインシー: NFPA。

                  —。 1994c。 中および高膨張フォームシステムの標準。 NFPA 11A。 マサチューセッツ州クンシー: NFPA.

                  —。 1994年d. 粉末消火システムの規格。 NFPA 17. マサチューセッツ州クインシー: NFPA。

                  —。 1994e。 選炭プラントの規格。 NFPA 120. マサチューセッツ州クインシー: NFPA。

                  —。 1995a。 地下の金属および非金属鉱山における防火および防火に関する規格。 NFPA 122. マサチューセッツ州クインシー: NFPA。

                  —。 1995b. 地下瀝青炭鉱における防火管理の基準。 NFPA 123. マサチューセッツ州クインシー: NFPA。

                  —。 1996a。 自走式および移動式地上採鉱設備の防火に関する規格。 NFPA 121. マサチューセッツ州クインシー: NFPA。

                  —。 1996b. 引火性および可燃性液体コード。 NFPA 30. マサチューセッツ州クインシー: NFPA。

                  —。 1996c。 米国電気工事規定。 NFPA 70. マサチューセッツ州クインシー: NFPA.

                  —。 1996年d. 全国火災警報コード。 NFPA 72. マサチューセッツ州クインシー: NFPA。

                  —。 1996e。 スプリンクラーシステムの設置に関する標準。 NFPA 13. マサチューセッツ州クインシー: NFPA。

                  —。 1996f. ウォータースプレーシステムの設置に関する規格。 NFPA 15. マサチューセッツ州クインシー: NFPA。

                  —。 1996g。 クリーン エージェント消火システムの標準。 NFPA 2001. マサチューセッツ州クインシー: NFPA.

                  —。 1996h. 発電所および高電圧 DC コンバーター ステーションにおける防火のための推奨プラクティス。 NFPA 850。マサチューセッツ州クインシー: NFPA。

                  Ng、D、CP ラザラ。 1990 年。模擬鉱山火災におけるコンクリート ブロックとスチール パネルの停止のパフォーマンス。 火災技術 26(1):51-76。

                  ニンテマン、DJ。 1978. 地下鉱山における硫化鉱の自然酸化と燃焼。 Information Circular 8775. ワシントン DC: 鉱山局。

                  ポムロイ、WH、TL マルドゥーン。 1983. 新しい悪臭ガス火災警報システム。 1983 年の MAPAO 年次総会および技術セッションの議事録。 ノースベイ: 鉱山事故防止協会オンタリオ。

                  Ramaswatny、A、および PS カティヤール。 1988. 地下での石炭火災との闘いにおける液体窒素の経験。 Journal of Mines Metals and Fuels 36(9):415-424。

                  スミス、AC および CN トンプソン。 1991 年。瀝青炭の自然発火の可能性を予測する方法の開発と応用。 ロシア連邦のマケエフカにあるマケエフカ国立石炭産業安全研究所の第 24 回鉱山研究所安全国際会議で発表。

                  ティモンズ、ED、RP ビンソン、FN キッセル。 1979年。金属および非金属鉱山におけるメタン災害の予測。 調査報告書 8392. ワシントン DC: 鉱山局。

                  国連 (UN) 開発技術協力局およびドイツ国際開発財団。 1992. 鉱業と環境: ベルリンのガイドライン。 ロンドン:鉱業ジャーナルブック。

                  国連環境計画 (UNEP)。 1991. 鉱石採掘における選択された非鉄金属 (Cu、Ni、Pb、Zn、Au) の環境側面。 パリ: UNEP。