日曜日、13月2011 16:15

地下鉱山の地上管制

このアイテムを評価
(23票)

地上統制の主な目的は、岩石や土壌の安全な掘削を維持することです (用語 階層制御 & 斜面管理 また、それぞれ地下鉱山と露天鉱山でも使用されます)。 地上管制は、トンネル、水力発電所、核廃棄物貯蔵所などの土木プロジェクトにも多くの用途があります。 これは、日常の採掘に岩盤の力学を実際に適用するものとして定義されています。 米国岩石力学委員会は、次の定義を提案しています。 それは、物理的環境の力場に対する岩石と岩塊の反応に関係する力学の分野です。」

岩塊は非常に複雑な挙動を示し、1950 年代以来、岩の力学と地上制御は、世界中でかなりの基礎研究と応用研究の対象となってきました。 多くの点で、地上管制は科学というより工芸品です。 地上管理には、構造地質、岩石の特性、地下水と地盤応力体制、およびこれらの要因がどのように相互作用するかを理解する必要があります。 ツールには、現場調査と岩盤試験の方法、発破による岩盤への損傷を最小限に抑えるための対策、設計技術の適用、監視と地上支援が含まれます。 近年、岩石力学と地上制御においていくつかの重要な発展が行われました。これには、鉱山設計のための経験的設計とコンピューター解析技術の開発、さまざまな地上監視機器の導入と幅広い使用、特殊な地上支援ツールの開発が含まれます。そしてテクニック。 多くの採掘事業には、専門のエンジニアや技術者が配置された地上管制部門があります。

地下の開口部は、岩や土の斜面よりも作成および維持が難しいため、一般に、地下の鉱山は地上の鉱山や採石場よりも多くのリソースと設計努力を地上管理に費やす必要があります。 シュリンクやカットアンドフィルなどの従来の坑内採掘方法では、労働者は鉱石地帯の潜在的に不安定な地面に直接さらされます。 発破孔停止などのバルク採掘方法では、労働者は鉱石地帯に立ち入りません。 過去数十年間で、選択的方法からバルク方法へと移行する傾向がありました。

地絡の種類

岩石構造と岩石応力は、鉱山の不安定性の重要な原因です。

特定の岩塊は、無傷の岩石と任意の数の岩石構造または構造的不連続性で構成されています。 岩石構造の主な種類には、層理面(個々の地層を分離する分割面)、褶曲(岩層の屈曲)、断層(動きが発生した割れ目)、堤防(火成岩の板状貫入)および節理(地質の割れ目)が含まれます。目に見える変位がない原点)。 構造的不連続性の次の特性は、岩塊の工学的挙動に影響を与えます: 方向、間隔、持続性、粗さ、開口部、および充填材料の存在。 エンジニアや地質学者による関連する構造情報の収集は、採掘作業における地上管理プログラムの重要な要素です。 構造データや、地表または地下鉱山のくさびの形状と安定性を分析するための高度なコンピューター プログラムが利用できるようになりました。

岩石の応力も鉱山の不安定性を引き起こす可能性があります。 岩塊の応力-ひずみ挙動に関する知識は、健全なエンジニアリング設計に不可欠です。 ドリル コアから採取した岩石の円筒形試験片を実験室で試験すると、無傷の岩石に関する有用な強度と変形性に関する情報が得られます。 岩石の種類が異なれば、塩の塑性挙動から多くの硬い岩の弾性的で脆い挙動まで、異なる挙動を示します。 接合は岩盤全体の強度や変形性に大きく影響します。

露天鉱山や採石場では、いくつかの一般的なタイプの岩盤斜面の破損があります。 スライディング ブロックの破損モードは、XNUMX つまたは複数の岩石構造 (平面せん断、ステップ パス、ウェッジ、ステップ ウェッジ、またはスラブの破損) に沿って移動が発生する場合に発生します。 回転せん断破壊は、土壌または弱い岩盤斜面で発生する可能性があります。 追加の故障モードには、構造物を急に浸すことによって形成されたブロックの転倒やほつれ (たとえば、凍結融解や雨によるブロックの脱落) が含まれます。

斜面の不安定性は運用上の観点から必ずしも斜面崩壊を意味するわけではありませんが、大規模な斜面崩壊は壊滅的なものになる可能性があります。 個々のベンチの安定性は、通常、ほとんど警告なしに故障が発生し、人命の損失や機器の損傷を招く可能性があるため、運用にとってより差し迫った懸念事項です。

地下鉱山では、不安定性は、構造的不安定性の結果としての岩石ブロックの移動と崩壊、高い岩石応力条件の結果としての開口部周辺の岩石の破損、応力による岩石破損と構造的不安定性の組み合わせ、および引き起こされる不安定性に起因する可能性があります。ロックバーストによって。 岩石構造は、安定した掘削スパンを制御し、要求能力と沈下をサポートできるため、地下採掘方法の選択と採掘レイアウトの設計に影響を与える可能性があります。 深部の岩石は、上層の地層の重量と構造起源の応力に起因する応力を受け、水平応力はしばしば垂直応力よりも大きくなります。 採掘を開始する前に、地面の応力レベルを測定するための機器を利用できます。 鉱山の開口部が掘削されると、この開口部の周囲の応力場が変化し、岩盤の強度を超えて不安定になる可能性があります。

地下硬岩鉱山で一般的に観察されるさまざまな種類の破損もあります。 応力レベルが低い場合、破損は大部分が構造的に制御されており、くさびやブロックが屋根から落下したり、開口部の壁から滑り落ちたりします。 これらのくさびまたはブロックは、交差する構造的不連続性によって形成されます。 ゆるいくさびまたはブロックが支えられていない限り、開口部が自然にアーチ状になるまで、破損が続く可能性があります。 層状堆積物では、層理面に沿ってベッドの分離と破損が発生する可能性があります。 応力レベルが高い場合、接合部がほとんどない巨大な岩塊の場合の脆性スポーリングとスラブ化から、接合部の多い岩塊のより延性のタイプの破損まで、破損が発生します。

ロックバーストは、突然または激しい方法で発生し、地震イベントに関連する掘削への損傷として定義できます。 さまざまなロックバースト損傷メカニズムが特定されています。つまり、開口部周辺の破砕による岩の膨張または座屈、地震の揺れによって引き起こされる落石、および遠隔地の地震源からのエネルギー伝達による岩の放出です。 一部の石炭、塩、その他の鉱山では、岩石の高い応力と大量の圧縮メタンまたは二酸化炭素の結果として、岩石とガスの噴出が壊滅的に発生します。 採石場や露天鉱山では、岩床の突然の座屈や隆起も経験されています。 かなりの研究がいくつかの国で行われ、落石の原因と可能な緩和について行われました。 破裂を最小限に抑えるための技術には、抽出の形状、方向、および順序の変更、デストレス ブラストとして知られる技術の使用、固い地雷の埋め戻し、特殊なサポート システムの使用が含まれます。 洗練されたローカルまたは鉱山全体の地震監視システムは、震源メカニズムの特定と分析に役立ちますが、現時点では、岩盤バーストの予測は信頼できないままです。

カナダのオンタリオ州では、高度に機械化された採鉱産業における地下での死亡事故のほぼ 1986 分の 1995 が、落石や落石によるものです。 0.014 年から 200,000 年までの落石と落石による死亡率は、地下作業 XNUMX 時間あたり XNUMX でした。 あまり機械化されていない坑内採掘産業、または地上支援が広く使用されていない場所では、地面の落下や落石による負傷や死亡の頻度がかなり高くなることが予想されます。 地上鉱山および採石場の地上管制関連の安全記録は、一般に地下鉱山よりも優れています。

設計方法

地下掘削の設計は、掘削や岩の柱の位置、サイズ、形状、採掘の順序、サポート システムの適用などに関する工学的決定を下すプロセスです。 露天採掘では、ピットの各セクションに最適な傾斜角を選択する必要があり、その他の設計面や傾斜面のサポートも必要です。 鉱山の設計は動的なプロセスであり、採掘中の観察と監視を通じてより多くの情報が利用可能になるにつれて、更新および改良されます。 経験的、観察的、および分析的な設計手法が一般的に使用されます。

経験的方法 多くの場合、岩塊分類システム (岩塊システムや岩石トンネル品質指数など、いくつかのそのようなスキームが開発されています) を使用し、受け入れられた慣行の知識に基づく設計上の推奨事項によって補完されます。 オープンストップ設計のための安定グラフ法など、いくつかの経験的設計手法がうまく適用されています。

観察方法 測定可能な不安定性を検出するための掘削中の地面の動きの実際の監視と、地面とサポートの相互作用の分析に依存しています。 このアプローチの例としては、新オーストリア トンネル法や収束閉じ込め法などがあります。

分析手順 開口部周辺の応力と変形の解析を利用します。 初期の応力解析技術のいくつかは、閉じた形式の数学的解法または光弾性モデルを利用していましたが、ほとんどの地下掘削は複雑な XNUMX 次元形状のため、その適用は制限されていました。 最近では、コンピュータベースの数値計算法が数多く開発されています。 これらの方法は、鉱山の開口部を取り囲む岩石の応力、変位、および破損の問題に対する近似解を得るための手段を提供します。

最近の改良には、XNUMX 次元モデルの導入、構造の不連続性と岩盤と支持体の相互作用をモデル化する機能、およびユーザー フレンドリーなグラフィカル インターフェイスの可用性が含まれています。 数値モデルには限界がありますが、複雑な岩石の挙動について真の洞察を得ることができます。

上記の XNUMX つの方法論は、独立した技術ではなく、地下掘削の設計に対する統一されたアプローチの重要な部分と見なされるべきです。 設計エンジニアは、さまざまなツールを使用し、利用可能な情報の量と質によって必要に応じて設計戦略を再評価する準備ができている必要があります。

掘削および発破制御

ロックブラストで特に懸念されるのは、掘削のすぐ近くにある岩への影響です。 不適切な爆破設計または掘削手順によって、近接場の岩石で激しい局所的な破砕と、連動して接合されたアセンブリの完全性の破壊が生じる可能性があります。 発破エネルギーが遠方界に伝達されることにより、より広範な損傷が引き起こされる可能性があり、鉱山構造の不安定性を引き起こす可能性があります。

爆破結果は、岩石の種類、応力状態、構造地質、および水の存在の影響を受けます。 爆風による損傷を最小限に抑えるための対策には、爆薬の適切な選択、事前分割爆破 (掘削の周囲を定義する平行で狭い間隔の穴) などの周囲爆破技術の使用、デカップリング装薬 (爆薬の直径がブラストホールのそれ)、遅延タイミングおよびバッファー ホール。 掘削された穴の形状は、壁制御爆破の成功に影響します。 穴のパターンと位置合わせは慎重に制御する必要があります。

発破振動の監視は、発破パターンを最適化し、岩盤への損傷を回避するためによく実行されます。 経験的損傷爆風損傷基準が開発されました。 爆破監視装置は、表面実装型またはダウン ザ ホール トランスデューサ、増幅システムにつながるケーブル、およびデジタル レコーダーで構成されます。 爆破設計は、破砕、泥のプロファイル、爆破孔の背後の亀裂貫通など、爆破性能を予測するためのコンピューター モデルの開発によって改善されました。 これらのモデルの入力データには、掘削の形状、掘削および装填されたパターン、爆薬の爆発特性、岩石の動的特性が含まれます。

掘削の屋根と壁のスケーリング

スケーリングとは、掘削の屋根や壁から緩い岩のスラブを取り除くことです。 これは、スチール製またはアルミニウム製のスケーリング バーを使用して手動で行うか、機械式スケーリング マシンを使用して行うことができます。 手動でスケーリングする場合、鉱山労働者は屋根を叩いて岩の健全性をチェックします。 ドラムのような音は、通常、地面が緩んでいて、禁止する必要があることを示しています。 鉱山労働者は、スケーリング中に怪我をしないように、厳格な規則に従わなければなりません (たとえば、適切な地面からチェックされていない地面にスケーリングする、適切な足場と後退するための明確な領域を維持する、スケーリングされた岩が落下する適切な場所を確保するなど)。 手動スケーリングにはかなりの肉体的労力が必要であり、リスクの高いアクティビティになる可能性があります。 たとえば、カナダのオンタリオ州では、落石による怪我の XNUMX 分の XNUMX がスケーリング中に発生しています。

鉱山労働者がハイバックを手動でスケーリングできるように拡張可能なブームにバスケットを使用すると、落下する岩によってスケーリングプラットフォームがひっくり返る可能性など、追加の安全上の危険が生じます。 機械式スケーリング リグは、現在、多くの大規模な採掘作業で一般的になっています。 スケーリングユニットは、可動シャーシに取り付けられたピボットアームに取り付けられた重い油圧ブレーカ、スクレーパー、またはインパクトハンマーで構成されています。

地上支援

地上支持の主な目的は、岩盤自体の支持を助けることです。 岩盤補強では、岩盤内にロックボルトを設置します。 鋼または木材セットによって提供されるような岩盤支持では、外部支持が岩盤に提供されます。 地上支援技術は、一部には最終的なピットの形状が不確実であり、一部には腐食の懸念があるため、露天採掘や採石に広く適用されていません。 多種多様なロックボルトシステムが世界中で利用可能です。 特定のシステムを選択する際に考慮すべき要因には、地盤条件、掘削の計画耐用年数、設置の容易さ、入手可能性、およびコストが含まれます。

機械的に固定されたロックボルトは、拡張シェル (さまざまな岩の種類に合わせてさまざまなデザインが用意されています)、スチール ボルト (ねじ付きまたは鍛造ヘッド付き)、およびフェース プレートで構成されています。 拡張シェルは一般に、可鍛鋳鉄の歯付きブレードで構成され、ボルトの一端に円錐形のくさびがねじ込まれています。 ボルトが穴の中で回転すると、コーンがブレードに押し込まれ、ドリル穴の壁に押し付けられます。 拡張シェルは、ボルトの張力が増加するにつれて、岩へのグリップを増加させます。 さまざまな長さのボルトとさまざまなアクセサリが用意されています。 機械的に固定されたロックボルトは比較的安価であるため、地下鉱山での短期間のサポートに最も広く使用されています。

グラウト付きダボは、掘削孔に挿入され、その全長にわたって岩石に結合されたリブ付きの補強バーで構成され、岩盤に長期的な補強を提供します。 数種類のセメントとポリエステル樹脂グラウトが使用されています。 グラウトは、ポンピングまたはカートリッジを使用して掘削孔に配置でき、迅速かつ便利です。 さまざまな直径のスチール製およびファイバーグラス製のダボが利用可能で、ボルトは引っ張られていない場合と引っ張られている場合があります。

摩擦安定装置は通常、全長に沿ってスロットが設けられたスチール チューブで構成されており、わずかに小さめのドリル穴に打ち込むと、スチール チューブと岩石の間に摩擦が発生して圧縮されます。 このボルトを有効にするには、ドリル穴の直径を厳密な許容範囲内で制御する必要があります。

Swellex ロックボルトは、ドリル穴に挿入され、ポータブル ポンプを使用して油圧によって拡張されるインボリュート スチール チューブで構成されます。 さまざまなタイプと長さの Swellex チューブが利用可能です。

グラウト ケーブル ボルトは、ケービングを制御し、地下の屋根や壁を安定させるために頻繁に設置されます。 通常、ポートランド セメント ベースのグラウトが使用されますが、ケーブルの形状と設置手順はさまざまです。 大容量の鉄筋やロック アンカーも、管状のグラウト可能な機械的に固定されたボルトなど、他の種類のボルトと共に鉱山で使用されています。

スチール ストラップまたはメッシュは、織られたワイヤーまたは溶接されたワイヤーでできており、多くの場合、開口部の屋根または壁に取り付けられ、ボルト間の岩を支えます。

採掘作業は、地上支援が効果的であることを確認するために、さまざまなフィールド テストを含むことができる品質管理プログラムを開発する必要があります。 不十分な地上支持の設置は、不適切な設計 (地上の状態に適した地上支持のタイプ、長さ、またはパターンを選択しないこと)、標準以下の地上支持材料 (メーカーから供給されたもの、または取り扱い中または保管条件による損傷) の結果である可能性があります。設置の不備(機器の欠陥、設置のタイミングの悪さ、岩盤表面の不適切な準備、乗組員の不十分な訓練、または指定された手順に従わないこと)、設計段階では予測できなかった採掘による影響(応力の変化、応力または爆風による破砕/剥離、接合部の緩和またはロックバースティング) または鉱山の設計変更 (掘削形状の変更または当初の予想よりも長い耐用年数)。

強化または支持された岩塊の挙動は、完全には理解されていません。 経験則、岩盤分類システムおよびコンピュータ プログラムに基づく経験的設計ガイドラインが開発されました。 ただし、特定の設計の成功は、地上管制エンジニアの知識と経験に大きく依存します。 構造上の不連続性がほとんどなく、耐用年数が限られている小さな開口部を備えた高品質の岩塊は、サポートをほとんど、またはまったく必要としません。 ただし、この場合、潜在的に不安定であると特定されたブロックを安定させるために、選択した場所にロックボルトが必要になる場合があります。 多くの鉱山では、屋根や壁を安定させるために規則的なグリッドにロックボルトを体系的に設置するパターン ボルトが、すべての掘削に指定されることがよくあります。 いずれの場合も、採掘者と監督者は、追加のサポートが必要な領域を認識できる十分な経験を持っている必要があります。

最も古く、最も単純なサポートは木材ポストです。 不安定な地面を採掘する際に、木材の支柱やベビーベッドが設置されることがあります。 鋼製アーチと鋼製セットは、トンネルや道路を支えるために使用される耐荷重性の高い要素です。 地下鉱山では、追加の重要な地盤サポートが鉱山の埋め戻しによって提供されます。これは、廃岩、砂、または製粉所の尾鉱とセメント剤で構成される場合があります。 バックフィルは、地下採掘によって生じた隙間を埋めるために使用されます。 その多くの機能の中で、埋め戻しは大規模な破損を防ぎ、閉じ込めて岩柱に残留強度を与え、岩石応力の伝達を可能にし、表面沈下を減らし、最大の鉱石回収を可能にし、一部の採掘方法で作業プラットフォームを提供します。

多くの鉱山での比較的最近の革新は、 ショットクリート、岩肌に吹き付けられたコンクリートです。 他のサポートなしで岩石に直接塗布することも、メッシュやロックボルトの上にスプレーして統合サポート システムの一部を形成することもできます。 特定の特性を付与するために、鋼繊維を他の混和剤や混合設計とともに追加することができます。 乾式混合と湿式混合と呼ばれる XNUMX つの異なるショットクリート プロセスが存在します。 吹き付けコンクリートは、鉱山で多くの用途が見出されています。これには、他の方法では接合部が密集しているためにほつれてしまう岩肌を安定させることが含まれます。 露天採掘では、進行性のほつれ破壊を安定させるために吹付けコンクリートも使用されています。 その他の最近の技術革新には、地下鉱山でのポリウレタン スプレー式ライナーの使用が含まれます。

落石時に効果的に機能するために、支持システムは、変形やエネルギー吸収など、特定の重要な特性を備えている必要があります。 ロックバースト条件下でのサポートの選択は、いくつかの国で進行中の研究の対象であり、新しい設計の推奨事項が開発されています。

地下の小さな開口部では、通常、ストッパー ドリルを使用して手動で地上サポートを設置します。 大規模な掘削では、半機械化された機器 (機械化された掘削とロックボルト取り付け用の手動機器) と完全に機械化された機器 (機械化された掘削と、ボルトで固定された屋根の下にある操作パネルから制御されるロックボルト取り付け) が利用可能です。 手作業による地上サポートの設置は、リスクの高い作業です。 たとえば、カナダのオンタリオ州では、1986 年から 1995 年の間に落石による負傷の 8 分の XNUMX がロックボルトの設置中に発生し、地下での負傷の XNUMX% が​​ロックボルトの設置中に発生しました。

その他の危険には、セメント グラウトや樹脂の飛び散りが目に入ったり、化学物質のこぼれによるアレルギー反応や疲労が含まれる可能性があります。 機械化されたボルト締め機を使用することで、多数のロックボルトの取り付けがより安全かつ効率的になります。

地盤状況のモニタリング

鉱山の地盤条件の監視は、岩盤の変形能や岩石の応力など、鉱山の設計に必要なデータを取得するなど、さまざまな理由で実行される場合があります。 設計データと仮定を検証することで、コンピュータ モデルのキャリブレーションとマイニング方法の調整を可能にし、安定性を向上させます。 既存の地上サポートの有効性を評価し、場合によっては追加のサポートの設置を指示する。 地絡の可能性を警告します。

地面の状態の監視は、視覚的に、または専用の機器を使用して行うことができます。 地表および地下の検査は、必要に応じて高輝度の検査ライトを使用して慎重に行う必要があります。 鉱山労働者、監督者、エンジニア、地質学者はすべて、定期的な検査を実施する上で重要な役割を担っています。

鉱山の地盤条件の変化の視覚的または聴覚的な兆候には、ダイヤモンド ドリル コアの状態、岩種間の接触、ドラム状の地盤、構造的特徴の存在、地盤サポートの明らかな荷重、床の隆起、新しい亀裂が含まれますが、これらに限定されません。壁や屋根、地下水、柱の故障。 鉱山労働者は、屋根の動きが発生したことを視覚的に警告するために、単純な器具 (亀裂内の木製のくさびなど) に頼ることがよくあります。

監視システムの計画と実装には、プログラムの目的と監視対象の変数の定義、必要な測定精度の決定、機器の選択と設置、観測の頻度とデータ表示の手段の確立が含まれます。 監視装置は、経験豊富な担当者が設置する必要があります。 機器のシンプルさ、冗長性、信頼性は重要な考慮事項です。 設計者は、何が安全性または安定性に対する脅威となるかを判断する必要があります。 これには、これらの警告レベルを超えた場合の緊急時対応計画の準備が含まれる必要があります。

監視システムのコンポーネントには、監視対象の変数の変化に応答するセンサーが含まれます。 ロッド、電気ケーブル、油圧ライン、または無線テレメトリーラインを使用して、センサー出力を読み取り位置に送信する送信システム。 読み取りユニット(例えば、ダイヤルゲージ、圧力計、マルチメーターまたはデジタルディスプレイ); 記録・処理装置(例:テープレコーダ、データロガー、マイクロコンピュータ)。

装置の操作にはさまざまなモードがあります。

    • 機械的: 多くの場合、検出、送信、および読み出しの最も簡単で安価で信頼性の高い方法を提供します。 機械式運動検出器は、一方の端を岩に固定し、もう一方の端をダイヤル ゲージまたは電気システムに接触させたスチール ロッドまたはテープを使用します。 機械式システムの主な欠点は、遠隔読み取りや連続記録に適していないことです。
    • 光学: 掘削プロファイルを確立し、掘削境界の動きを測定し、表面沈下を監視する従来の正確な写真測量法で使用されます。
    • 油圧および空圧: 水圧、支持荷重などの測定に使用されるダイアフラム トランスデューサ。 測定される量は、金属、ゴム、またはプラスチック製の柔軟なダイアフラムの片側に作用する流体圧力です。
    • 電気: 鉱山で使用される最も一般的な計器モードですが、機械システムは依然として変位監視で広く使用されています。 電気システムは、電気抵抗ひずみゲージ、振動ワイヤ、自己インダクタンスの XNUMX つの原理のいずれかで動作します。

           

          最も一般的に監視される変数には、動きが含まれます (調査方法、クラック ゲージやテープ伸び計などの地表デバイス、ロッド伸び計や傾斜計などのボアホール デバイスを使用)。 岩石応力 (絶対応力またはボアホール デバイスからの応力変化); 地上支持装置(ロードセルなど)の圧力、荷重、ひずみ。 地震イベントと爆風振動。

           

          戻る

          読む 26331 <font style="vertical-align: inherit;">回数</font> 最終更新日: 30 年 2022 月 20 日 (土) 31:XNUMX
          このカテゴリの詳細: « 石炭の準備 地下鉱山の換気と冷却 »

          免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

          内容

          鉱業および採石に関する参考文献

          Agricola, G. 1950. De Re Metallica、HC Hoover と LH Hoover による翻訳。 ニューヨーク:ドーバー出版。

          ビッケル、KL。 1987. ディーゼル動力鉱山設備の分析。 鉱山局技術移転セミナーの議事録: 地下鉱山のディーゼル。 Information Circular 9141. ワシントン DC: 鉱山局。

          鉱山局。 1978 年。炭鉱の火災と防爆。 Information Circular 8768. ワシントン DC: 鉱山局。

          —。 1988. 金属および非金属の防火における最近の発展。 Information Circular 9206. ワシントン DC: 鉱山局。

          チェンバレン、EAC。 1970 年。自然発熱の早期発見に関連した石炭の周囲温度酸化。 鉱業技術者 (130 月) 121(1):6-XNUMX。

          エリコット、CW。 1981. ガス混合物の爆発性の評価とサンプル時間の傾向の監視。 着火、爆発、火災に関するシンポジウムの議事録。 Illawara: オーストラリア鉱業冶金研究所。

          環境保護庁 (オーストラリア)。 1996. 鉱業における環境管理のベスト プラクティス。 キャンベラ: 環境保護庁。

          Funkemeyer、M および FJ コック。 1989. 自然発火しやすいライダーの縫い目の作業における防火。 グリュッカウフ 9-12。

          グラハム、JI。 1921. 炭鉱での一酸化炭素の正常な生成。 鉱業技術者協会のトランザクション 60:222-234。

          Grannes、SG、MA Ackerson、および GR Green。 1990. 地下採掘ベルトコンベヤーの自動消火システムの故障防止。 Information Circular 9264. ワシントン DC: 鉱山局。

          グレアー、RE. 1974. 不活性ガスを使用した鉱山消火の研究。 USBM コントラクト レポート No. S0231075。 ワシントン DC: 鉱山局。

          グリフィン、RE。 1979 年。煙探知機の鉱山内評価。 Information Circular 8808. ワシントン DC: 鉱山局。

          Hartman、HL(ed。)。 1992. SME 鉱業工学ハンドブック、第 2 版。 メリーランド州ボルチモア: 鉱業、冶金、探査協会。

          Hertzberg, M. 1982. 石炭粉塵とメタン爆発の抑制と消滅。 調査報告書 8708. ワシントン DC: 鉱山局。

          フック、E、PK カイザー、WF ボーデン。 1995. 地下硬岩鉱山のサポートの設計。 ロッテルダム: AA バルケマ。

          ヒューズ、AJ、WE レイボールド。 1960. 鉱山の火災ガスの爆発性の迅速な測定。 鉱業技術者 29:37-53。

          国際金属環境会議 (ICME)。 1996. 採掘および冶金プロセスにおける環境慣行を示すケース スタディ。 オタワ: ICME.

          国際労働機関 (ILO)。 1994. 炭鉱産業の最近の発展。 ジュネーブ: ILO.

          ジョーンズ、JE、JC トリケット。 1955. 炭鉱での爆発から生じるガスの検査に関するいくつかの観察。 鉱業技術者協会のトランザクション 114: 768-790。

          マッケンジー ウッド P と J ストラング。 1990. 火災ガスとその解釈。 鉱業技術者 149(345):470-478.

          鉱山事故防止協会オンタリオ。 nd 緊急時準備ガイドライン。 技術常任委員会レポート。 ノースベイ: 鉱山事故防止協会オンタリオ。

          ミッチェル、D および F バーンズ。 1979 年。鉱山火災の状態の解釈。 ワシントン DC: 米国労働省。

          モリス、RM。 1988. 密閉されたエリアの状況を判断するための新しい火災比率。 鉱業技術者 147(317):369-375.

          モロー、GS、CD リットン。 1992 年。煙探知機の鉱山内評価。 Information Circular 9311. ワシントン DC: 鉱山局。

          全米防火協会 (NFPA)。 1992a。 防火コード。 NFPA 1. マサチューセッツ州クインシー: NFPA。

          —。 1992b. 微粉燃料システムに関する規格。 NFPA 8503。マサチューセッツ州クインシー: NFPA。

          —。 1994a。 切断・溶接工程における防火基準。 NFPA 51B。 マサチューセッツ州クインシー: NFPA.

          —。 1994b. 携帯用消火器の規格です。 NFPA 10. マサチューセッツ州クインシー: NFPA。

          —。 1994c。 中および高膨張フォームシステムの標準。 NFPA 11A。 マサチューセッツ州クンシー: NFPA.

          —。 1994年d. 粉末消火システムの規格。 NFPA 17. マサチューセッツ州クインシー: NFPA。

          —。 1994e。 選炭プラントの規格。 NFPA 120. マサチューセッツ州クインシー: NFPA。

          —。 1995a。 地下の金属および非金属鉱山における防火および防火に関する規格。 NFPA 122. マサチューセッツ州クインシー: NFPA。

          —。 1995b. 地下瀝青炭鉱における防火管理の基準。 NFPA 123. マサチューセッツ州クインシー: NFPA。

          —。 1996a。 自走式および移動式地上採鉱設備の防火に関する規格。 NFPA 121. マサチューセッツ州クインシー: NFPA。

          —。 1996b. 引火性および可燃性液体コード。 NFPA 30. マサチューセッツ州クインシー: NFPA。

          —。 1996c。 米国電気工事規定。 NFPA 70. マサチューセッツ州クインシー: NFPA.

          —。 1996年d. 全国火災警報コード。 NFPA 72. マサチューセッツ州クインシー: NFPA。

          —。 1996e。 スプリンクラーシステムの設置に関する標準。 NFPA 13. マサチューセッツ州クインシー: NFPA。

          —。 1996f. ウォータースプレーシステムの設置に関する規格。 NFPA 15. マサチューセッツ州クインシー: NFPA。

          —。 1996g。 クリーン エージェント消火システムの標準。 NFPA 2001. マサチューセッツ州クインシー: NFPA.

          —。 1996h. 発電所および高電圧 DC コンバーター ステーションにおける防火のための推奨プラクティス。 NFPA 850。マサチューセッツ州クインシー: NFPA。

          Ng、D、CP ラザラ。 1990 年。模擬鉱山火災におけるコンクリート ブロックとスチール パネルの停止のパフォーマンス。 火災技術 26(1):51-76。

          ニンテマン、DJ。 1978. 地下鉱山における硫化鉱の自然酸化と燃焼。 Information Circular 8775. ワシントン DC: 鉱山局。

          ポムロイ、WH、TL マルドゥーン。 1983. 新しい悪臭ガス火災警報システム。 1983 年の MAPAO 年次総会および技術セッションの議事録。 ノースベイ: 鉱山事故防止協会オンタリオ。

          Ramaswatny、A、および PS カティヤール。 1988. 地下での石炭火災との闘いにおける液体窒素の経験。 Journal of Mines Metals and Fuels 36(9):415-424。

          スミス、AC および CN トンプソン。 1991 年。瀝青炭の自然発火の可能性を予測する方法の開発と応用。 ロシア連邦のマケエフカにあるマケエフカ国立石炭産業安全研究所の第 24 回鉱山研究所安全国際会議で発表。

          ティモンズ、ED、RP ビンソン、FN キッセル。 1979年。金属および非金属鉱山におけるメタン災害の予測。 調査報告書 8392. ワシントン DC: 鉱山局。

          国連 (UN) 開発技術協力局およびドイツ国際開発財団。 1992. 鉱業と環境: ベルリンのガイドライン。 ロンドン:鉱業ジャーナルブック。

          国連環境計画 (UNEP)。 1991. 鉱石採掘における選択された非鉄金属 (Cu、Ni、Pb、Zn、Au) の環境側面。 パリ: UNEP。