土曜日、4月02 2011 18:39

液晶ディスプレイ

このアイテムを評価
(0票)

液晶ディスプレイ (LCD) は、1970 年代から市販されています。 これらは、時計、電卓、ラジオ、およびインジケーターと 1993 文字または XNUMX 文字の英数字を必要とするその他の製品で一般的に使用されています。 液晶材料の最近の改良により、大型ディスプレイの製造が可能になりました。 LCD は半導体産業のごく一部にすぎませんが、その重要性は、ポータブル コンピューター、非常に軽量なラップトップ コンピューター、および専用のワード プロセッサ用のフラット パネル ディスプレイでの使用とともに増大しています。 LCD の重要性は、電子機器で一般的に使用されている最後の真空管である陰極線管 (CRT) に最終的に置き換わるため、成長し続けると予想されます (O'Mara XNUMX)。

LCD の製造は、非常に特殊なプロセスです。 産業衛生モニタリングの結果は、モニタリングされたさまざまな溶媒への曝露について、空気中の汚染物質レベルが非常に低いことを示しています (Wade et al. 1981)。 一般に、有毒、腐食性、可燃性の固体、液体、気体の化学物質、および危険な物理的作用物質の種類と量は、他の種類の半導体製造に比べて制限されています。

液晶材料は、図1に示すシアノビフェニル分子に代表される棒状の分子です。これらの分子は、通過する偏光の方向を回転させる性質を持っています。 分子は可視光に対して透明ですが、液体材料の容器は透明ではなく乳白色または半透明に見えます。 これは、分子の長軸がランダムな角度で整列しているため、光がランダムに散乱するために発生します。 液晶ディスプレイセルは、分子が特定の配列に従うように配置されています。 この配列は、外部電場によって変化する可能性があり、入射光の偏光を変化させることができます。

図 1. 基本的な液晶ポリマー分子

MIC030F1

フラット パネル ディスプレイの製造では、XNUMX 枚のガラス基板が別々に処理されてから接合されます。 前面基板をパターン化して、カラー フィルター アレイを作成します。 背面ガラス基板をパターン化して、薄膜トランジスタおよび金属相互接続ラインを形成する。 これらの XNUMX つのプレートは、組み立てプロセスで合わせられ、必要に応じてスライスされ、個々のディスプレイに分離されます。 液晶材料は、XNUMX枚のガラス板の間の隙間に注入されます。 ディスプレイは検査およびテストされ、各ガラス板に偏光フィルムが貼り付けられます。

フラットパネルディスプレイの製造には、数多くの個々のプロセスが必要です。 特殊な機器、材料、およびプロセスが必要です。 特定の重要なプロセスを以下に概説します。

ガラス基板の準備

ガラス基板は、ディスプレイの必須かつ高価なコンポーネントです。 材料の光学的および機械的特性を非常に厳密に制御することは、プロセスのすべての段階で、特に加熱が必要な場合に必要です。

ガラス加工

非常に正確な寸法と再現可能な機械的特性を備えた非常に薄いガラスを製造するために、1 つのプロセスが使用されます。 コーニングが開発したフュージョン プロセスでは、くさび形のトラフで溶融し、トラフの側面を上って流れるガラス フィード ロッドを使用します。 トラフの両側を流れ落ちる溶融ガラスは、トラフの底でXNUMX枚のシートに合流し、均一なシートとして下方に引き寄せられます。 シートの厚さは、ガラスを引き下げる速度によって制御されます。 ほぼXNUMXmの幅まで取得できます。

LCD 基板に適した寸法のガラスを製造している他のメーカーは、製造にフロート法を使用しています。 この方法では、溶融ガラスを溶融スズのベッド上に流出させる。 ガラスは金属スズに溶けたり反応したりせず、表面に浮いています。 これにより、重力によって表面が滑らかになり、両側が平行になります。 (章を参照 ガラス、セラミックおよび関連材料.)

450 × 550 mm 以上のさまざまな基板サイズが用意されています。 フラット パネル ディスプレイの一般的なガラスの厚さは 1.1 mm です。 より薄いガラスは、ポケットベル、電話、ゲームなどの一部の小型ディスプレイに使用されます。

切断、面取り、研磨

ガラス基板は、フュージョンまたはフロート プロセスの後、通常は 1 辺が約 XNUMX m になるようにトリミングされます。 材料の最終的な用途に応じて、成形プロセスの後にさまざまな機械操作が行われます。

ガラスはもろく、端が欠けたり割れたりしやすいため、通常は面取り、面取り、またはその他の処理を施して、取り扱い中の欠けを減らします。 エッジクラックの熱応力は、基板処理中に蓄積し、破損につながります。 ガラスの破損は、生産中の重大な問題です。 従業員の切り傷や裂傷の可能性に加えて、これは歩留まりの低下を意味し、ガラスの破片が装置に残り、粒子汚染や他の基板の傷の原因となる可能性があります。

基板のサイズが大きくなると、ガラスの研磨が難しくなります。 大きな基板は、ワックスまたは他の接着剤を使用してキャリアに取り付けられ、研磨材のスラリーを使用して研磨されます。 この研磨プロセスの後には、完全な化学洗浄を行って、残っているワックスやその他の有機残留物、および研磨剤または研磨媒体に含まれる金属汚染物質を除去する必要があります。

クリーニング

洗浄工程は、ベアガラス基板や、カラーフィルター、ポリイミド配向膜などの有機膜で覆われた基板に使用されます。 また、半導体、絶縁体、および金属膜を含む基板は、製造プロセス内の特定の時点で洗浄が必要です。 少なくとも、カラー フィルターまたは薄膜トランジスターの製造では、各マスキング ステップの前にクリーニングが必要です。

ほとんどのフラット パネル クリーニングでは、物理的方法と化学的方法を組み合わせて使用​​し、選択的に乾式方法を使用します。 化学エッチングまたは洗浄の後、基板は通常、イソプロピル アルコールを使用して乾燥されます。 (表 1 を参照してください。)

表 1. フラット パネル ディスプレイのクリーニング

物理洗浄

ドライクリーニング

化学洗浄

ブラシでこすり洗い

紫外線オゾン

有機溶剤*

ジェットスプレー

プラズマ(酸化物)

中性洗剤

超音波方式

プラズマ(非酸化物)

 

メガソニック

レーザ

純水

* 化学洗浄に使用される一般的な有機溶剤には、アセトン、メタノール、エタノール、 n-プロパノール、キシレン異性体、トリクロロエチレン、テトラクロロエチレン。

カラーフィルター形成

前面ガラス基板上でのカラー フィルタの形成には、前面パネルと背面パネルの両方に共通のガラス仕上げおよび準備手順の一部が含まれます。これには、面取りおよびラッピング プロセスが含まれます。 基板上で、パターニング、コーティング、硬化などの操作が繰り返されます。 シリコンウェーハ加工との類似点が多い。 ガラス基板は、通常、洗浄とコーティングのためにトラック システムで処理されます。

カラーフィルターパターニング

さまざまな材料と塗布方法を使用して、さまざまなフラット パネル ディスプレイ タイプ用のカラー フィルターを作成します。 染料または顔料のいずれかを使用でき、いずれかをいくつかの方法で堆積およびパターン化することができます。 1つのアプローチでは、プロキシミティ印刷装置および標準的なフォトレジストを使用して、ゼラチンが堆積され、連続するフォトリソグラフィ操作で染色される。 別の方法では、フォトレジストに分散された顔料が使用されます。 カラーフィルタを形成する他の方法には、電着、エッチング、および印刷が含まれる。

ITO蒸着

カラーフィルター形成後の最終工程は、透明電極材料のスパッタ成膜です。 これはインジウム-スズ酸化物 (ITO) で、実際には酸化物 In の混合物です。2O3 およびSnO2. この材料は、LCD の透明導電体アプリケーションに適した唯一の材料です。 ディスプレイの両面に薄い ITO フィルムが必要です。 通常、ITOフィルムは真空蒸着とスパッタリングを使用して作成されます。

ITOの薄膜は塩酸などのウェットケミカルで簡単にエッチングできますが、電極のピッチが狭くなり、微細化が進むにつれて、オーバーエッチングによるラインのアンダーカットを防ぐためにドライエッチングが必要になる場合があります。

薄膜トランジスタ形成

薄膜トランジスタの形成は、集積回路の製造と非常によく似ています。

薄膜堆積

基板は、薄膜アプリケーション ステップで製造プロセスを開始します。 薄膜は、CVD または物理蒸着 (PVD) によって堆積されます。 グロー放電とも呼ばれるプラズマ CVD は、アモルファス シリコン、窒化シリコン、二酸化シリコンに使用されます。

デバイスパターニング

薄膜が堆積されると、フォトレジストが適用され、イメージ化されて、薄膜を適切な寸法にエッチングできるようになります。 集積回路の製造と同様に、一連の薄膜が堆積され、エッチングされます。

配向膜塗布・ラビング

上部基板と下部基板の両方に、ガラス表面での液晶分子の配向のために薄いポリマーフィルムが堆積されます。 この配向フィルムは、おそらく厚さ0.1μmであり、ポリイミドまたは他の「硬質」ポリマー材料であり得る。 堆積と焼き付けの後、布で特定の方向にこすり、表面にほとんど検出できない溝を残します。 ラビングは、一方の側のローラーから供給され、基材に接触するローラーの下を通過し、もう一方の側のローラー上を通過する、ベルト上の 0.1 回の布で行うことができます。 基材は布の下を布と同じ方向に移動します。 他の方法には、基板を横切って移動する移動ブラシが含まれます。 ラビング材の起毛は重要です。 溝は、液晶分子が基板表面に整列し、適切な傾斜角をとるのを助ける働きをします。

配向膜は、スピンコーティングまたは印刷によって堆積させることができる。 印刷方法は、材料の使用においてより効率的です。 ポリイミドの 70 ~ 80% が印刷ロールから基板表面に転写されます。

アセンブリ

基板のラビングステップが完了すると、自動化された組立ラインシーケンスが開始されます。

  • 接着剤の塗布(パネルのシーリングに必要)
  • スペーサー塗布
  • 一方のプレートのもう一方に対する位置と光学的位置合わせ
  • 露光 (熱または UV) して接着剤を硬化させ、XNUMX 枚のガラス板を接着します。

 

上部プレートと下部プレートの両方の自動搬送がラインを通じて行われます。 XNUMX 枚のプレートが接着剤を受け取り、XNUMX 枚目のプレートがスペーサー アプリケーター ステーションに導入されます。

液晶注入

複数のディスプレイが基板上に構築されている場合、ディスプレイはスライスによって分離されます。 このとき、シール材に空いた穴を利用して基板間の隙間に液晶材料を導入することができる。 次に、この入口の穴をふさぎ、最終検査の準備をします。 液晶材料は、多くの場合、注入時に混合される XNUMX つまたは XNUMX つのコンポーネント システムとして提供されます。 注入システムは、セルの混合とパージを提供して、充填プロセス中に気泡がトラップされるのを防ぎます。

検査とテスト

組立・液晶注入後、検査・機能検査を行います。 ほとんどの欠陥は、粒子 (点および線欠陥を含む) およびセル ギャップの問題に関連しています。

偏光子アタッチメント

液晶ディスプレイ自体の最終製造工程は、各ガラス板の外側に偏光子を貼り付けることです。 偏光フィルムは、偏光子をガラスに取り付けるために必要な粘着層を含む複合フィルムです。 それらは、ロールまたはプレカットシートから材料を分配する自動化された機械によって適用されます。 これらのマシンは、他の業界向けに開発されたラベリング マシンのバリエーションです。 偏光フィルムはディスプレイの両面に貼られています。

場合によっては、偏光子の前に補償フィルムが適用されます。 補償フィルムは、一方向に延伸されるポリマーフィルム(例えば、ポリカーボネートおよびポリメチルメタクリレート)である。 この延伸により、フィルムの光学特性が変化します。

完成したディスプレイは、通常、ガラス基板の XNUMX つ、通常は薄膜トランジスタ側に、またはその近くにドライバ集積回路が取り付けられています。

危険

ガラスの破損は、LCD 製造における重大な危険です。 切り傷や裂傷が発生する可能性があります。 洗浄に使用される化学物質への曝露も別の問題です。

 

戻る

読む 7607 <font style="vertical-align: inherit;">回数</font> 最終更新日: 05 年 2011 月 14 日月曜日 54:XNUMX

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

マイクロエレクトロニクスと半導体の参考文献

米国政府産業衛生士会議 (ACGIH)。 1989. 半導体製造におけるハザード評価および制御技術。 ミシガン州チェルシー: ルイス出版社。

—。 1993. 半導体製造におけるハザード評価と制御技術 II. オハイオ州シンシナティ: ACGIH.

—。 1994. レジン酸-コロホニーとしての限界限界値、ロジン コアはんだ熱分解生成物のドキュメント。 オハイオ州シンシナティ: ACGIH.

米国規格協会 (ANSI)。 1986. 産業用ロボットおよび産業用ロボット システムの安全規格。 ANSI/RIA R15.06-1986。 ニューヨーク: ANSI.

アスクマー。 1990. コンピュータ産業: 1990 年代の重要な傾向。 カリフォルニア州サラトガ: 電子トレンド出版物。

Asom、MT、J Mosovsky、RE Leibenguth、JL Zilko、および G Cadet。 1991. 固体ソース MBE チャンバーの開放中の一時的なアルシン生成。 J Cryst Growth 112(2-3):597–599.

電子、電気通信、ビジネス機器産業 (EEA) の協会。 1991. 電子産業におけるコロフォニー (ロジン) はんだフラックスの使用に関するガイドライン。 ロンドン: レチェスター ハウス EEA。

ボールドウィン、DG。 1985. 四塩化炭素プラズマ アルミニウム エッチング装置からの化学物質暴露。 拡張抄録、Electrochem Soc 85(2):449–450。

ボールドウィン、DG、JH スチュワート。 1989 年。半導体製造における化学物質と放射線の危険。 ソリッド ステート テクノロジー 32(8):131–135。

ボールドウィン、DG、ME ウィリアムズ。 1996.産業衛生。 半導体安全ハンドブック、JD ボルメン編。 パークリッジ、ニュージャージー州: いや。

Baldwin、DG、BW King、LP Scarpace。 1988. イオン注入装置: 化学物質および放射線の安全性。 ソリッド ステート テクノロジー 31(1):99–105。

ボールドウィン、DG、JR ルービン、MR ホロウィッツ。 1993. 半導体製造における労働衛生暴露。 SSA ジャーナル 7(1):19–21。

Bauer、S、I Wolff、N Werner、および P Hoffman。 1992a。 半導体産業における健康被害、レビュー。 Pol J Occup Med 5(4):299–314.

Bauer、S、N Werner、I Wolff、B Damme、B Oemus、P Hoffman。 1992b. 半導体産業における毒性調査: II. アルミニウム プラズマ エッチング プロセスからのガス状廃棄物の亜急性吸入毒性および遺伝毒性に関する研究。 Toxicol Ind Health 8(6):431–444.

ブリスインダストリーズ。 1996. はんだドロス粒子捕捉システムの文献。 カリフォルニア州フレモント: ブリス インダストリーズ。

労働統計局 (BLS)。 1993 年。職業上の傷害および疾病の年次調査。 ワシントン DC: BLS、米国労働省。

—。 1995. 雇用と賃金の年間平均、1994. Bulletin。 2467. ワシントン DC: BLS、米国労働省。

クラーク、RH。 1985. プリント回路製造のハンドブック。 ニューヨーク:Van Nostrand Reinhold Company。

Cohen, R. 1986. マイクロエレクトロニクス産業における無線周波数およびマイクロ波放射。 最先端のレビュー - 職業医学: マイクロエレクトロニクス産業、J LaDou 編集。 ペンシルバニア州フィラデルフィア: Hanley & Belfus, Inc.

クームス、CF。 1988. プリント回路ハンドブック、第 3 版。 ニューヨーク:McGraw-Hill Book Company。

コンテンツ、RM. 1989. III-V 材料の気相エピタキシーにおける金属および半金属の制御方法。 半導体製造におけるハザード評価および制御技術、米国政府産業衛生士会議が編集。 ミシガン州チェルシー: ルイス出版社。

コレア A、RH グレイ、R コーエン、N ロスマン、F シャー、H シーキャット、M コーン。 1996. エチレングリコール エーテルと自然流産および生殖能力低下のリスク。 Am J Epidemiol 143(7):707–717.

Crawford、WW、D Green、WR Knolle、HM Marcos、JA Mosovsky、RC Petersen、PA Testagrossa、GH Zeman。 1993. 半導体クリーンルームでの磁場曝露。 半導体製造におけるハザード評価と制御技術 II。 オハイオ州シンシナティ: ACGIH.

エッシャー、G、J ウェザース、B ラボンヴィル。 1993. 深紫外エキシマ レーザー フォトリソグラフィーにおける安全設計の考慮事項。 半導体製造におけるハザード評価と制御技術 II。 シンシナティ、オハイオ州: 政府産業衛生士のアメリカ会議。

Eskenazi B、EB Gold、B Lasley、SJ Samuels、SK Hammond、S Wright、MO Razor、CJ Hines、MB Schenker。 1995. 女性半導体労働者の早期流産と臨床的自然流産の前向きモニタリング。 Am J Indust Med 28(6):833–846.

Flipp、N、H Hunsaker、P Herring。 1992. イオン注入装置のメンテナンス中の水素化物放出の調査。 1992 年 379 月にボストンで開催されたアメリカ産業衛生会議で発表 - 論文 XNUMX (未発表)。

Goh、CL、SK Ng. 1987. はんだ付けフラックス中のコロホニーへの空気感染性接触皮膚炎。 接触性皮膚炎 17(2):89–93.

ハモンド SK、CJ ハインズ MF ハロック、SR ウォスキー、S アブドラザデ、CR アイデン、E アンソン、F ラムジー、MB シェンカー。 1995. Semiconductor Health Study における段階的曝露評価戦略。 Am J Indust Med 28(6):661–680.

ハリソン、RJ. 1986年。ガリウム砒素。 In State of the Art Reviews—Occupational Medicine: The Microelectronics Industry、編集 J LaDou Philadelphia, PA: Hanley & Belfus, Inc.

ハサウェイ、GL、NH プロクター、JP ヒューズ、ML フィッシュマン。 1991. 職場の化学的危険、第 3 版。 ニューヨーク:ヴァン・ノストランド・ラインホールド。

ハウゼン、BM、K クローン、E ブディアント。 1990.コロホニーによる接触アレルギー (VII)。 アビエチン酸および関連酸の酸化生成物を用いた感作研究。 Dermat 23(5):352–358 に連絡してください。

安全衛生委員会。 1992. 承認された実践規範 - 呼吸器感作物質の管理。 ロンドン:健康と安全の責任者。

ヘルブ、GK、RE カフリー、ET エックロス、QT ジャレット、CL フラウスト、JA フルトン。 1983. プラズマ処理: 安全性、健康、工学に関する考慮事項。 ソリッド ステート テクノロジー 24(8):185–194。

ハインズ、CJ、S セルビン、SJ サミュエルズ、SK ハモンド、SR ウォスキー、MF ハロック、MB シェンカー。 1995. 半導体健康研究における労働者のばく露評価のための階層的クラスター分析。 Am J Indust Med 28(6):713–722.

ホロウィッツ、MR. 1992. 半導体の研究開発施設における非電離放射線の問題。 1992 年 122 月にボストンで開催されたアメリカ産業衛生会議で発表 - 論文 XNUMX (未発表)。

ジョーンズ、JH. 1988. 半導体製造のばく露および管理評価。 AIP 会議議事録(太陽光発電の安全性) 166:44–53.

LaDou、J(編)。 1986. 最先端のレビュー - 職業医学: マイクロエレクトロニクス産業。 ペンシルバニア州フィラデルフィア: Hanley and Belfus, Inc.

ラシター、DV. 1996 年。国際ベースでの労働災害および疾病監視。 第 XNUMX 回国際 ESH 会議の議事録、カリフォルニア州モントレー。

リーチ・マーシャル、JM. 1991. クリプトン 85 ファイン リーク テスト システムから露出したプロセス要素から検出された放射線の分析。 SSA ジャーナル 5(2):48–60。

リード産業協会。 1990. はんだ付けの安全性、はんだ付け者およびはんだ付けに関する健康ガイドライン。 ニューヨーク: Lead Industries Association, Inc.

レニハン、KL、JK シーヒー、JH ジョーンズ。 1989 年。ガリウム砒素処理における曝露の評価:事例研究。 半導体製造におけるハザード評価および制御技術、米国政府産業衛生士会議が編集。 ミシガン州チェルシー: ルイス出版社。

マレツコス、CJ、PR ハンリー。 1983. イオン注入システムの放射線防護に関する考慮事項。 IEEE Trans on Nuclear Science NS-30:1592–1596。

マッカーシー、CM. 1985. 半導体産業におけるイオン注入装置のメンテナンス中の労働者の暴露。 修士論文、ユタ大学、ソルトレイクシティ、ユタ州、1984 年。Extended Abstracts、Electrochem Soc 85(2):448 に要約。

McCurdy SA、C Pocekay、KS Hammond、SR Woskie、SJ Samuels、および MB Schenker。 1995. 半導体産業労働者の呼吸器および一般的な健康状態に関する横断的調査。 Am J Indust Med 28(6):847–860.

マッキンタイア、AJ、BJ シェリン。 1989 年。ガリウム砒素:ハザード、評価、および管理。 ソリッド ステート テクノロジー 32(9):119–126。

マイクロエレクトロニクスとコンピューター テクノロジー コーポレーション (MCC)。 1994 年。電子産業環境ロードマップ。 テキサス州オースティン: MCC.

—。 1996. 電子産業環境ロードマップ。 テキサス州オースティン: MCC.

Mosovsky、JA、D Rainer、T Moses、WE Quinn。 1992. III 半導体プロセス中の過渡水素化物生成。 Appl Occup Environ Hyg 7(6):375–384.

ミューラー、MR および RF クネッシュ。 1989 年。ドライ ケミカル エッチング装置の安全性と健康への影響。 半導体製造におけるハザード評価および制御技術、米国政府産業衛生士会議が編集。 ミシガン州チェルシー: ルイス出版社。

オマラ、WC。 1993年。液晶フラットパネルディスプレイ。 ニューヨーク:ヴァン・ノストランド・ラインホールド。

PACE Inc. 1994. ヒューム抽出ハンドブック。 ローレル、MD: PACE Inc.

Pastides、H、EJ Calabrese、DW Hosmer、Jr、およびDR Harris。 1988. 半導体メーカーにおける自然流産と一般的な病気の症状。 J Occup Med 30:543–551.

Pocekay D、SA McCurdy、SJ Samuels、MB Schenker。 1995 年。半導体労働者の筋骨格症状と危険因子に関する横断研究。 Am J Indust Med 28(6):861–871.

Rainer、D、WE Quinn、JA Mosovsky、および MT Asom。 1993. III-V 過渡水素化物生成、Solid State Technology 36(6):35–40。

Rhoades、BJ、DG Sands、VD Mattera。 1989. AT&T-Microelectronics-Reading の化学蒸着 (CVD) リアクターで使用される安全および環境制御システム。 Appl Ind Hyg 4(5):105–109.

ロジャース、JW. 1994. 半導体の放射線安全性。 1994 年 XNUMX 月にアリゾナ州スコッツデールで開催された半導体安全協会会議で発表されました (未発表)。

ルーニー、FP、J リービー。 1989 年。X 線リソグラフィー源の安全と健康に関する考慮事項。 半導体製造におけるハザード評価および制御技術、米国政府産業衛生士会議が編集。 ミシガン州チェルシー: ルイス出版社。

Rosenthal、FS、S Abdollahzadeh。 1991. マイクロエレクトロニクス製造室における超低周波 (ELF) 電界および磁界の評価。 Appl Occup Environ Hyg 6(9):777–784.

Roychowdhury, M. 1991. MOCVD リアクター システムの安全性、産業衛生、および環境に関する考慮事項。 ソリッド ステート テクノロジー 34(1):36–38。

Scarpace、L、M Williams、D Baldwin、J Stewart、D Lassiter。 1989. 半導体製造工程における産業衛生サンプリングの結果。 半導体製造におけるハザード評価および制御技術、米国政府産業衛生士会議が編集。 ミシガン州チェルシー: ルイス出版社。

シェンカー MB、EB ゴールド、JJ ボーモント、B エスケナージ、SK ハモンド、BL ラズリー、SA マッカーディ、SJ サミュエルズ、CL サイキ、SH スワン。 1995 年。自然流産およびその他の生殖への影響と半導体産業の仕事との関連。 Am J Indust Med 28(6):639–659.

シェンカー、M、J ボーモント、B エスケナージ、E ゴールド、K ハモンド、B ラズリー、S マッカーディ、S サミュエルズ、S スワン。 1992. 半導体産業協会への最終報告書 - 半導体の製造に従事する労働者の生殖およびその他の健康への影響に関する疫学研究。 カリフォルニア州デイビス: カリフォルニア大学。

Schmidt、R、H Scheufler、S Bauer、L Wolff、M Pelzing、R Herzschuh。 1995. 半導体産業における毒性調査: III: アルミニウム プラズマ エッチング プロセスからの廃棄物によって引き起こされる出生前毒性に関する研究。 Toxicol Ind Health 11(1):49–61.

セマテック。 1995. Silane Safety Transfer Document、96013067 A-ENG。 テキサス州オースティン: SEMATECH.

—。 1996. SEMI S2-93 および SEMI S8-95 の解釈ガイド。 テキサス州オースティン: SEMATECH.

半導体産業協会 (SIA)。 1995. World Semiconductor Sales Forecast Data。 カリフォルニア州サンノゼ: SIA.

シーヒー、JW、JH ジョーンズ。 1993.ガリウム砒素生産における砒素暴露と制御の評価。 Am Ind Hyg Assoc J 54(2):61–69.

落ち着いて、DJ。 1995. 「使用適合性」基準、表面実装技術 (SMT) を使用したラミネートの選択。 イリノイ州リバティビル: IHS パブリッシング グループ。

Wade、R、M Williams、T Mitchell、J Wong、および B Tusé。 1981. 半導体産業研究。 カリフォルニア州サンフランシスコ: カリフォルニア州労使関係局、労働安全衛生課。