木曜日、31月2011 17:44

航空宇宙医学: 航空宇宙環境における重力、加速度、微小重力の影響

このアイテムを評価
(0票)

1903 年にノースカロライナ州キティ ホーク (米国) で動力飛行機の最初の連続飛行が行われて以来、航空は主要な国際活動になりました。 1960 年から 1989 年にかけて、定期便の年間旅客数は 20 万人から 900 億人以上に増加したと推定されています (Poitrast and deTreville 1994)。 軍用機は、多くの国の軍隊にとって不可欠な兵器システムになっています。 航空技術、特に生命維持システムの設計の進歩は、人間の乗組員による宇宙計画の急速な発展に貢献してきました。 軌道宇宙飛行は比較的頻繁に行われ、宇宙飛行士や宇宙飛行士は宇宙船や宇宙ステーションで長期間働きます。

航空宇宙環境では、乗務員、乗客、宇宙飛行士の健康にある程度影響を与える可能性のある物理的ストレッサーには、空気中の酸素濃度の低下、気圧の低下、熱ストレス、加速、無重力、およびその他のさまざまな潜在的な危険が含まれます (DeHart 1992 )。 この記事では、大気中の飛行中の重力と加速度への曝露の航空医学的意味と、宇宙で経験する微小重力の影響について説明します。

重力と加速度

大気中の飛行中に遭遇する重力と加速度の組み合わせは、乗務員と乗客が経験するさまざまな生理学的効果を生み出します。 地球の表面では、重力は事実上すべての形態の人間の身体活動に影響を与えます。 人の体重は、地球の重力場によって人体の質量に加えられる力に対応します。 物体を地表近くに落下させたときの自由落下時の加速度の大きさを表す記号を、 g, これは約 9.8 m/s の加速度に相当します。2 (Glaister 1988a; Leverett と Whinnery 1985)。

加速 動いている物体の速度が上がるたびに発生します。 速度 物体の動きの速さ(速さ)と方向を表します。 減速 確立された速度の減少を伴う加速を指します。 加速 (および減速) はベクトル量です (大きさと方向があります)。 加速には XNUMX つのタイプがあります。線形加速、方向を変えない速度の変化。 ラジアル加速度、速度の変化を伴わない方向の変化。 角加速度、速度と方向の変化。 飛行中、航空機は XNUMX 方向すべてに操縦することができ、乗務員と乗客は直線、半径方向、および角加速度を経験する可能性があります。 航空では、適用される加速度は通常、重力による加速度の倍数として表されます。 慣例により、 G は、適用された加速度と重力定数の比率を表す単位です (Glaister 1988a; Leverett and Whinnery 1985)。

バイオダイナミック農法

バイオダイナミクスは、生物の力またはエネルギーを扱う科学であり、航空宇宙医学の分野における主要な関心分野です。 現代の航空機は非常に機動性が高く、非常に高速で飛行できるため、乗員に加速力がかかります。 加速度が人体に与える影響は、加速度の強さ、発生率、および方向によって異なります。 加速度の方向は、一般に XNUMX 軸座標系 (x、y、z) 垂直 (z) 軸は体の長軸に平行で、 x 軸は前から後ろに向いており、 y 軸を左右に向ける (Glaister 1988a)。 これらの加速は、持続性と一時性の XNUMX つの一般的なタイプに分類できます。

持続的な加速

航空機 (および打ち上げと再突入時に重力の影響下で大気中で動作する宇宙船) の乗員は、通常、飛行の空気力に応じて加速を経験します。 2 秒以上続く加速度を含む速度の長時間の変化は、航空機の速度または飛行方向の変化が原因である可能性があります。 持続的な加速の生理学的影響は、体の組織や臓器の持続的な歪み、および血流と体液の分布の変化に起因します (Glaister 1988a)。

に沿った正または前方の加速度 z 軸 (+Gz)は、主要な生理学的懸念を表しています。 民間航空輸送では、 Gz 加速はめったにありませんが、離陸時や着陸時、乱気流の状態での飛行中に時折軽度に発生することがあります. 乗客は、突然の落下にさらされると、短時間の無重力感覚を経験することがあります (負の Gz 加速)、座席で拘束されていない場合。 予期せぬ急激な加速により、拘束されていない乗務員や乗客が機内の内面にぶつかり、負傷する可能性があります。

民間輸送航空とは対照的に、高性能の軍用機、スタントおよび空中散布機の操作は、非常に高い線形、半径方向、および角加速度を生成する可能性があります。 高性能の航空機が旋回中または急降下からの引き上げ操作中に飛行経路を変更すると、かなりの正の加速度が生成される可能性があります。 +Gz 現在の戦闘機の性能特性により、乗員は 5 ~ 7 の正の加速度にさらされる可能性があります。 G 10 ~ 40 秒間 (Glaister 1988a)。 乗組員は、わずか+2の比較的低い加速度レベルで、組織および四肢の重量の増加を経験する可能性があります Gz. 例として、+70 を生成する航空機操縦を行った体重 2 kg のパイロット Gz 体重が 70kg から 140kg に増加します。

心血管系は、+に対する全体的な耐性と反応を決定するための最も重要な器官系ですGz ストレス (Glaister 1988a)。 視力と精神的能力に対する正の加速の影響は、血流の減少と目と脳への酸素の供給によるものです。 目と脳に血液を送り出す心臓の能力は、循環系に沿った任意の点で血液の静水圧を超える心臓の能力と、陽圧によって生成される慣性力に依存しています。 Gz 加速度。 この状況は、部分的に水で満たされた風船を上向きに引っ張り、水の塊に作用する合成慣性力による風船の下方への膨張を観察する状況に例えることができます。 正の加速度にさらされると、周辺視野が一時的に失われたり、意識が完全に失われたりすることがあります。 高性能航空機の軍用パイロットは、 G-急速な発症または長時間の正の加速にさらされたときに引き起こされる停電Gz 軸。 良性心不整脈は、高レベルの持続的な +Gz 加速しますが、既存の疾患が存在しない限り、通常は臨床的意義は最小限です。 –Gz 航空機の設計と性能の制限により、加速はめったに発生しませんが、反転飛行、外側のループとスピン、およびその他の同様の操作中に発生する可能性があります。 への暴露に関連する生理学的影響 –Gz 加速は、主に上半身、頭、首の血管圧の上昇を伴います (Glaister 1988a)。

体の長軸に対して直角に作用する持続時間の加速度は、 横加速度 空母からのカタパルト、ジェットまたはロケット支援の離陸、およびスペースシャトルなどのロケットシステムの打ち上げ中を除いて、ほとんどの航空状況では比較的まれです。 このような軍事作戦で遭遇する加速度は比較的小さく、慣性力は体の長軸に対して直角に作用するため、通常、体に大きな影響を与えることはありません。 一般に、効果は Gz 加速度。 ±の横加速度Gy 実験的な航空機を除いて、軸は一般的ではありません。

一時的な加速

短時間の一時的な加速に対する個人の生理学的反応は、航空機事故防止および乗務員と乗客の保護の科学において主要な考慮事項です。 一時的な加速は非常に短い時間 (1 秒未満) であるため、身体は定常状態に達することができません。 航空機事故における負傷の最も一般的な原因は、航空機が地面または水に衝突したときに発生する急激な減速に起因します (Anton 1988)。

航空機が地面に衝突すると、膨大な量の運動エネルギーが航空機とその乗員に損傷力を加えます。 人体は、加速度と歪みの組み合わせによって、これらの加えられた力に反応します。 損傷は、航空機のコックピットおよび/またはキャビンの構造部品との衝突によって引き起こされる、組織および臓器の変形、および解剖学的部分への外傷に起因します。

急激な減速に対する人間の許容範囲はさまざまです。 損傷の性質は、加えられた力の性質によって異なります (それが主に貫通または鈍い衝撃を伴うかどうか)。 衝突時に発生する力は、一般に乗員に加えられる縦方向および横方向の減速度に依存します。 急激な減速力は、多くの場合、許容できるもの、有害なもの、致命的なものに分類されます。 許容できる 力は、擦り傷やあざなどの外傷を引き起こします。 有害 力は中等度から重度の外傷を引き起こしますが、それは無力ではありません。 約 25 の加速パルスが推定されます。 G 0.1 秒間維持されるのは、+ に沿った許容範囲の限界です。Gz 軸、そして約15 G 0.1 秒が限界です –Gz 軸 (アントン 1988)。

複数の要因が、短期間の加速に対する人間の耐性に影響を与えます。 これらの要因には、加えられた力の大きさと持続時間、加えられた力の開始速度、その方向、および適用部位が含まれます。 人々は、体の長軸に垂直なはるかに大きな力に耐えることができることに注意してください。

保護対策

航空宇宙環境で乗組員を危険にさらす可能性のある深刻な既往症を特定するための乗組員の身体検査は、航空医療プログラムの重要な機能です。 さらに、高性能航空機の乗組員は、飛行中の極端な加速の悪影響から保護するための対策を講じることができます。 乗組員は、複数の生理学的要因が耐性を低下させる可能性があることを認識するように訓練する必要があります。 G ストレス。 これらの危険因子には、疲労、脱水、熱ストレス、低血糖、低酸素症が含まれます (Glaister 1988b)。

高性能航空機の乗務員が飛行中の持続的な加速の悪影響を最小限に抑えるために採用する 1988 種類の操作は、筋肉の緊張、閉じたまたは部分的に閉じた声門 (舌の後ろ) に対する強制呼気、および陽圧呼吸です (Glaister 1992b; DeHart XNUMX)。 強制的な筋肉収縮は、血管への圧力を増加させて、静脈貯留を減少させ、静脈還流と心拍出量を増加させ、その結果、心臓と上半身への血流が増加します。 この手順は効果的ですが、極度の積極的な努力が必要であり、すぐに疲労を感じる可能性があります。 閉じた声門に対する呼気。 バルサルバ法 (または M-1 手続き)上半身の圧力を高め、胸腔内圧(胸の内側)を上げることができます。 ただし、結果は短命であり、静脈血の戻りと心拍出量が減少するため、長引くと有害になる可能性があります。 部分的に閉じた声門に対して強制的に息を吐き出すことは、より効果的なアンチG 緊張の作戦。 陽圧下での呼吸は、胸腔内圧を上昇させる別の方法です。 陽圧が小動脈系に伝達され、目と脳への血流が増加します。 陽圧呼吸は、抗呼吸器の使用と組み合わせる必要があります。G 下半身と手足の過度のプールを防ぐスーツ。

軍用機の乗組員は、強化するためにさまざまな訓練方法を実践しています G 許容範囲。 乗組員は、回転して生成する回転アームに取り付けられたゴンドラからなる遠心分離機で頻繁に訓練します +Gz 加速度。 乗組員は、発生する可能性のあるさまざまな生理学的症状に精通し、それらを制御するための適切な手順を学びます。 体力トレーニング、特に全身の筋力トレーニングも効果的であることがわかっています。 +の影響を軽減するための保護具として使用される最も一般的な機械装置のXNUMXつG 露出は、空気圧で膨張した抗G スーツ (Glaister 1988b)。 典型的なズボンのような衣服は、腹部、太もも、およびふくらはぎを覆っているブラダーで構成されており、これらはアンチ フォームによって自動的に膨らみます。G 航空機のバルブ。 アンチG バルブは、航空機に加えられた加速度に反応して膨張します。 インフレ時には、反G スーツは下肢の組織圧を上昇させます。 これにより、末梢血管抵抗が維持され、腹部と下肢の血液の貯留が減少し、横隔膜の下方への変位が最小限に抑えられ、正の加速度によって引き起こされる心臓と脳の間の垂直距離の増加が防止されます (Glaister 1988b)。

航空機の墜落に伴う一時的な加速に耐えられるかどうかは、効果的な拘束システムと、損傷した航空機部品の居住空間への侵入を最小限に抑えるためのコックピット/キャビンの完全性の維持にかかっています (Anton 1988)。 ラップベルト、ハーネス、およびその他のタイプの拘束システムの機能は、搭乗員または乗客の動きを制限し、衝突時の急激な減速の影響を軽減することです。 拘束システムの有効性は、身体とシートまたは車両構造との間で荷重をどれだけうまく伝達するかに依存します。 エネルギー減衰座席と後ろ向きの座席は、航空機設計のその他の機能であり、怪我を制限します。 その他の事故保護技術には、エネルギーを吸収する機体コンポーネントの設計と、機械的故障を減らすためのシート構造の改良が含まれます (DeHart 1992; DeHart and Beers 1985)。

微小重力

1960 年代以来、宇宙飛行士と宇宙飛行士は、アメリカ人による 6 回の月面着陸を含む、数多くのミッションを宇宙に飛ばしてきました。 ミッションの期間は数日から数か月で、数人のロシアの宇宙飛行士が約 1 年間の飛行を記録しています。 これらの宇宙飛行に続いて、飛行中および飛行後の生理学的異常を説明する多数の文献が医師や科学者によって書かれました。 ほとんどの場合、これらの異常は無重力または微小重力への曝露に起因しています。 これらの変化は一時的なものであり、地球に戻ってから数日から数か月以内に完全に回復しますが、火星への往復旅行が想定されているように、2〜3年続くミッションの後、宇宙飛行士がそれほど幸運であるかどうかを完全に確信できる人は誰もいません. 主な生理学的異常 (および対策) は、心血管、筋骨格、神経前庭、血液および内分泌に分類できます (Nicogossian、Huntoon および Pool 1994)。

心血管障害

これまでのところ、心臓発作や心不全などの深刻な心臓の問題は宇宙で発生していませんが、何人かの宇宙飛行士は、特に船外活動 (EVA) 中に一時的な性質の異常な心拍リズムを発症しています。 あるケースでは、ロシアの宇宙飛行士が予防措置として予定より早く地球に帰還しなければなりませんでした。

一方、微小重力は血圧や脈拍の不安定性を誘発するようです。 これは飛行中の健康や乗組員のパフォーマンスを損なうことはありませんが、飛行直後の宇宙飛行士の約半数は、失神 (失神) または失神寸前 (失神前) を経験するなど、非常にめまいやめまいを起こします。 垂直になることに対するこの不寛容の原因は、地球の重力場に再び入る際の血圧の低下と、体の代償メカニズムの機能不全との組み合わせであると考えられています。 したがって、このような生理学的異常に対する身体の正常な反応によって妨害されない低血圧および脈拍の減少は、これらの症状をもたらす。

これらの失神前および失神のエピソードは一過性であり、後遺症はありませんが、いくつかの理由で大きな懸念が残っています. まず、帰還した宇宙船が着陸時に火災などの緊急事態が発生した場合、宇宙飛行士が迅速に脱出することは非常に困難です。 第二に、月の重力場が地球の XNUMX 分の XNUMX であるにもかかわらず、宇宙飛行士が一定期間宇宙空間で月に着陸した後、ある程度気絶する前に失神する傾向があります。 そして最後に、これらの心血管症状は、非常に長いミッションの後、はるかに悪化するか、致命的になる可能性さえあります.

これらの理由から、心血管系に対する微小重力の影響を防止または少なくとも改善するための対策が積極的に模索されてきました。 現在、いくつかの有望な対策が研究されていますが、真に有効であると証明されたものはまだありません。 研究は、トレッドミル、自転車エルゴメーター、ローイング マシンを利用した飛行中の運動に焦点を当てています。 さらに、下半身陰圧(LBNP)についても研究が行われています。 下半身周囲の圧力を下げると(コンパクトな特殊器具を使用して)、体の代償能力が高まるという証拠がいくつかあります(つまり、血圧が下がりすぎると血圧が上がり、脈拍が上がります)。 LBNP 対策は、宇宙飛行士が特別に構成された塩水を適量同時に飲むと、さらに効果的となる可能性があります。

心血管の問題を解決するには、これらの対策にさらに取り組む必要があるだけでなく、新しい対策も見つけなければなりません。

筋骨格系の危険

宇宙から帰還したすべての宇宙飛行士は、ミッション期間に関係なく、ある程度の筋肉の消耗または萎縮を起こします。 特にリスクが高いのは腕と脚の筋肉で、サイズの減少、筋力、持久力、作業能力の低下をもたらします。 これらの筋肉の変化のメカニズムはまだよくわかっていませんが、部分的に説明できるのは長期にわたる不使用です。 重力がないため、微小重力下での作業、活動、移動はほとんど楽です。 これは、宇宙で働く宇宙飛行士にとっては恩恵かもしれませんが、月や地球の重力場に戻るときは明らかに不利です. 衰弱した状態は、飛行後の活動(月面での作業を含む)を妨げるだけでなく、着陸時に必要な場合、迅速な地上緊急脱出を危険にさらす可能性があります. もう XNUMX つの要因は、非常に骨の折れる可能性がある宇宙船の修理を EVA 中に行う可能性があることです。 研究中の対策には、機内での運動、電気刺激、同化薬(テストステロンまたはテストステロン様ステロイド)が含まれます。 残念ながら、これらのモダリティはせいぜい筋肉の機能不全を遅らせるだけです。

筋肉の消耗に加えて、すべての宇宙飛行士が経験する、ゆっくりではあるが容赦のない骨の損失 (300 日あたり約 0.5 mg、または XNUMX か月あたりの総骨カルシウムの XNUMX%) もあります。 これは、飛行後の骨、特に体重を支える骨 (すなわち、軸骨格) の X 線によって記録されています。 これは、尿や糞便へのカルシウムのゆっくりとした絶え間ない損失によるものです。 非常に懸念されるのは、飛行時間に関係なく継続的にカルシウムが失われることです。 その結果、効果的な対策が見つからない限り、このカルシウムの損失と骨の浸食が飛行の制限要因になる可能性があります。 この非常に重大な生理学的異常の正確なメカニズムは完全には理解されていませんが、筋肉の消耗と同様に、骨への重力の欠如と不使用が原因の一部であることは間違いありません. 特に長時間のミッションで骨の損失が無期限に続くと、骨が非常に脆くなり、最終的には低レベルの応力でも骨折のリスクが生じる. さらに、腎臓を介した尿へのカルシウムの絶え間ない流れにより、激しい痛み、出血および感染を伴う腎結石形成の可能性が存在する. 明らかに、これらの合併症が宇宙で発生した場合、非常に深刻な問題になるでしょう.

残念ながら、宇宙飛行中のカルシウム損失を効果的に防ぐ既知の対策はありません. 運動(トレッドミル、自転車エルゴメーター、ローイングマシン)を含む多くのモダリティがテストされており、そのような自発的な物理的ストレスが骨代謝を正常化し、それによって骨量減少を予防または少なくとも改善するという理論があります. 調査中のその他の対策は、カルシウム サプリメント、ビタミン、およびさまざまな薬剤 (骨粗鬆症患者の骨量減少を防ぐことが示されている薬剤のクラスであるジホスホネートなど) です。 これらのより単純な対策のいずれも有効であることが証明されない場合、解決策は宇宙船の連続的または断続的な回転によって生成される人工重力にある可能性があります。 このような運動は、地球と同様の重力を発生させる可能性がありますが、主要なアドオン コストに加えて、エンジニアリングの「悪夢」となるでしょう。

神経前庭障害

宇宙飛行士と宇宙飛行士の半数以上が宇宙酔い (SMS) に苦しんでいます。 症状は個人差がありますが、ほとんどの人が胃の不快感、吐き気、嘔吐、頭痛、眠気を感じます。 多くの場合、急速な頭の動きで症状が悪化します。 宇宙飛行士が SMS を発症した場合、通常は打ち上げ後数分から数時間以内に発生し、72 時間以内に完全に寛解します。 興味深いことに、地球に戻った後に症状が再発することがあります。

SMS、特に嘔吐は、乗組員を当惑させるだけでなく、病気の宇宙飛行士のパフォーマンスを低下させる可能性もあります。 さらに、嘔吐物が生命維持システムの誤動作を引き起こす可能性があるため、EVA を行う圧迫服の中で嘔吐するリスクを無視することはできません。 これらの理由により、宇宙ミッションの最初の 3 日間に EVA 活動がスケジュールされることはありません。 たとえば宇宙船の緊急修理を行うために EVA が必要になった場合、乗組員はそのリスクを負わなければなりません。

多くの神経前庭研究は、SMS を予防および治療する方法を見つけることに向けられてきました。 乗り物酔い防止用の錠剤やパッチを含むさまざまな方法や、回転椅子などの飛行前の適応訓練を使用して宇宙飛行士を慣れさせる試みが試みられてきましたが、成功は非常に限られています。 しかし、近年、注射によって投与される抗ヒスタミン薬フェネルガンが非常に効果的な治療法であることが発見されました. そのため、すべてのフライトに搭載され、必要に応じて提供されます。 予防としての有効性はまだ証明されていません。

宇宙飛行士によって報告されたその他の神経前庭症状には、めまい、めまい、平衡障害、自己運動や周囲環境の運動の錯覚が含まれ、飛行後の短時間の歩行が困難になることがあります。 これらの現象のメカニズムは非常に複雑で、完全には理解されていません。 特に数日または数週間の宇宙での月面着陸の後は、問題になる可能性があります。 現在のところ、有効な対策は知られていません。

神経前庭現象は、微小重力による内耳 (三半規管および卵形嚢) の機能不全によって引き起こされる可能性が最も高いです。 誤った信号が中枢神経系に送られるか、信号が誤って解釈されます。 いずれにせよ、結果は前述の症状です。 メカニズムが理解できれば、効果的な対策を特定できます。

血液学的危険性

微小重力は、体の赤血球と白血球に影響を与えます。 前者は組織への酸素の運搬として機能し、後者は侵入生物から身体を保護する免疫システムとして機能します。 したがって、機能不全は有害な影響を引き起こす可能性があります。 理由は不明ですが、宇宙飛行士は飛行の早い段階で赤血球量の約 7 ~ 17% を失います。 この損失は数ヶ月以内に横ばいになり、飛行後 4 ~ 8 週間で正常に戻ります。

これまでのところ、この現象は臨床的に重要ではなく、興味深い実験結果です。 しかし、この赤血球量の減少が非常に深刻な異常である可能性は明らかです。 懸念されるのは、XNUMX 世紀に予定されている非常に長期にわたるミッションで、赤血球が加速度的に大量に失われる可能性があることです。 これが発生した場合、宇宙飛行士が深刻な病気になる可能性がある点まで貧血が発生する可能性があります。 これが当てはまらず、ミッション期間に関係なく、赤血球の損失が非常に小さいままであることが望まれます。

さらに、白血球系のいくつかの成分は微小重力の影響を受けます。 たとえば、白血球、主に好中球が全体的に増加しますが、リンパ球は減少します。 一部の白血球が正常に機能しないという証拠もあります。

現在のところ、これらの変化にもかかわらず、これらの白血球の変化に起因する病気はありません. 長い任務がさらなる数の減少とさらなる機能不全を引き起こすかどうかは不明です. これが発生すると、体の免疫システムが損なわれ、宇宙飛行士は感染症に非常にかかりやすくなり、正常に機能している免疫システムによって簡単に防げる軽微な病気でさえ、宇宙飛行士が無力化される可能性があります。

赤血球の変化と同様に、白血球の変化は、少なくとも約 XNUMX 年間のミッションでは臨床的に重要ではありません。 飛行中または飛行後に深刻な病気にかかる潜在的なリスクがあるため、血液系に対する微小重力の影響に関する研究を継続することが重要です。

内分泌学的危険

宇宙飛行中、一部には内分泌系の変化が原因で、体内に多くの体液とミネラルの変化があることが指摘されています。 一般に、全身の体液だけでなく、カルシウム、カリウム、カルシウムも失われます。 これらの現象の正確なメカニズムは定義を避けてきましたが、さまざまなホルモンレベルの変化が部分的な説明を提供しています. さらに事態を混乱させるために、研究された宇宙飛行士の間で実験室での発見が一貫していないことが多く、これらの生理学的異常の原因に関する単一の仮説を識別することを不可能にしています. この混乱にもかかわらず、これらの変更によって宇宙飛行士の健康が損なわれることは知られておらず、飛行中のパフォーマンスが低下することもありません。 これらの内分泌の変化が非常に長い飛行にとってどのような意味を持つか、またそれらが非常に深刻な後遺症の前兆である可能性は不明です.

謝辞: 著者は、この分野における航空宇宙医学協会の功績を認めたいと考えています。

 

戻る

読む 9807 <font style="vertical-align: inherit;">回数</font> 最終更新日: 30 年 2022 月 22 日 (土) 50:XNUMX
このカテゴリの詳細: « 航空機の運航 ヘリコプター »

免責事項: ILO は、この Web ポータルに掲載されているコンテンツが英語以外の言語で提示されていることについて責任を負いません。英語は、オリジナル コンテンツの最初の制作およびピア レビューに使用される言語です。その後、特定の統計が更新されていません。百科事典の第 4 版 (1998 年) の作成。

内容

運輸業と倉庫業の参考資料

米国規格協会 (ANSI)。 1967年。イルミネーション。 ANSI A11.1-1967。 ニューヨーク: ANSI.

アントン、DJ。 1988. クラッシュ ダイナミクスと拘束システム。 In Aviation Medicine、第 2 版、J Ernsting と PF King が編集。 ロンドン: バターワース。

バイラー、H および U トレンクル。 1993. Fahrearbeit als Lebensarbeitsperpektive ヨーロッパでは Forschungsansätze zur Gestaltung der Fahrtätigkeit im ÖPNV (S. 94-98) Bundesanstat für Arbeitsschutz. Bremerhaven: Wirtschaftsverlag NW.

労働統計局 (BLS)。 1996 年。安全衛生統計。 ワシントンDC:BLS。

カナダ都市交通協会。 1992. 都市バスのドライバーズ ワークステーションの人間工学的研究。 トロント: カナダ都市交通協会。

デッカー、JA。 1994. 健康被害評価: Southwest Airlines、ヒューストン ホビー空港、テキサス州ヒューストン。 HETA-93-0816-2371。 オハイオ州シンシナティ: NIOSH.

デハート RL. 1992. 航空宇宙医学。 ML Last と RB Wallace が編集した公衆衛生と予防医学、第 13 版。 コネチカット州ノーウォーク: アップルトンとランゲ。

デハート、RL、KN ビール。 1985年。航空機事故、サバイバル、レスキュー。 航空宇宙医学の基礎、RL DeHart 編集。 ペンシルバニア州フィラデルフィア: リーとフェビガー。

アイゼンハルト、D および E オルムステッド。 1996. ジョン F. ケネディ (JFK) 空港の誘導路にある建物へのジェット排気の浸透の調査。 ニューヨーク: 米国保健社会福祉省、公衆衛生局、連邦労働衛生局、ニューヨーク現地事務所。

Firth, R. 1995. 倉庫管理システムのインストールを成功させるための手順。 インダストリアル エンジニアリング 27(2):34–36。

フリードバーグ、W、L スナイダー、DN フォークナー、EB ダーデン、ジュニア、および K オブライエン。 1992年。空母乗組員の放射線被ばく II。 DOT/FAA/AM-92-2.19。 オクラホマシティ、オクラホマ州: Civil Aeromedical Institute; ワシントン DC: 連邦航空局。

ジェントリー、JJ、J セマイン、DB ベレンガ。 1995. 新しい欧州連合における道路運送の未来 — 1995 年以降。 ロジスティクスと輸送のレビュー 31(2):149。

Giesser-Weigt、M および G Schmidt。 1989. Verbesserung des Arbeitssituation von Fahrern im öffentlichen Personennahverkehr. Bremerhaven: Wirtschaftsverlag NW.

グリスター、DH. 1988a。 長時間加速の効果。 In Aviation Medicine、第 2 版、J Ernsting と PF King が編集。 ロンドン: バターワース。

—。 1988b. 長時間の加速に対する保護。 In Aviation Medicine、第 2 版、J Ernsting と PF King が編集。 ロンドン: バターワース。

ハース、J、H ペトリ、W シューライン。 1989 年。 ブレーマーハーフェン; Wirtschaftsverlag 北西。

国際海運商工会議所。 1978 年。石油タンカーおよびターミナルの国際安全ガイド。 ロンドン: ウィザビー。

国際労働機関 (ILO)。 1992. 内陸輸送の最近の発展。 レポート I、セクター別活動プログラム、第 XNUMX セッション。 ジュネーブ: ILO.

—。 1996. 海上および港での船上での事故防止。 ILO 行動規範。 第2版​​。 ジュネーブ: ILO.

ジョイナー、KH、MJ バンゲイ。 1986年。オーストラリアの民間空港レーダー作業員の被ばく調査。 Journal of Microwave Power and Electromagnetic Energy 21(4):209–219。

ペンシルベニア州ランズベルギス、D スタイン、D イアコペリ、J フルセラ。 1994年 航空管制官の労働環境調査と労働安全衛生教育プログラムの開発。 1 月 XNUMX 日にワシントン DC で開催された米国公衆衛生協会で発表されました。

レベレット、SD、JE ウィナリー。 1985. バイオダイナミクス: 持続的な加速。 航空宇宙医学の基礎、RL DeHart 編集。 ペンシルバニア州フィラデルフィア: リーとフェビガー。

Magnier, M. 1996. 専門家: 日本にはインターモダリズムの構造はありますが、意思はありません。 Journal of Commerce and Commercial 407:15。

マーティン、RL。 1987. AS/RS: 倉庫から工場フロアまで。 製造工学 99:49–56.

Meifort、J、H Reiners、および J Schuh。 1983. Arbeitshedingungen von Linienbus- und Strassenbahnfahrern des Dortmunder Staatwerke Aktiengesellschaft. ブレーメン - ヘイブン: Wirtschaftsverlag.

Miyamoto, Y. 1986. ジェット エンジンの排気ガス中の目と呼吸器への刺激物。 航空、宇宙および環境医学 57(11):1104–1108。

全米防火協会 (NFPA)。 1976 年。防火ハンドブック、第 14 版。 マサチューセッツ州クインシー: NFPA.

国立労働安全衛生研究所 (NIOSH)。 1976年。空港手荷物検査システムからの文書化された人員暴露。 DHHS (NIOSH) 出版物 77-105。 オハイオ州シンシナティ: NIOSH.

—。 1993a。 健康被害評価:Big Bear Grocery Warehouse。 HETA 91-405-2340。 オハイオ州シンシナティ: NIOSH.

—。 1993b. 警告: 職場での殺人の防止。 DHHS (NIOSH) 出版物 93-108。 オハイオ州シンシナティ: NIOSH.

—。 1995. 健康被害評価: Kroger Grocery Warehouse。 HETA 93-0920-2548。 オハイオ州シンシナティ: NIOSH.

国家安全評議会。 1988. 航空地上運用安全ハンドブック、第 4 版。 イリノイ州シカゴ: 国家安全評議会。

Nicogossian、AE、CL Huntoon および SL Pool (eds.)。 1994. 宇宙生理学および医学、第 3 版。 ペンシルバニア州フィラデルフィア: リーとフェビガー。

Peters、Gustavsson、Morén、Nilsson、Wenäll。 1992. Forarplats I Buss、Etapp 3; クラフ仕様。 リンシェーピング、スウェーデン: Väg och Trafikinstitutet.

ポワトラスト、BJ、ドトレヴィル。 1994. 航空産業における職業医学的考察。 In Occupational Medicine、第 3 版、C Zenz、OB Dickerson、および EP Hovarth によって編集されました。 ミズーリ州セントルイス: モスビー。

Register, O. 1994. Auto-ID をあなたの世界で働かせてください。 輸送と流通 35(10):102–112.

Reimann, J. 1981. Beanspruchung von Linienbusfahrern。 Untersuchungen zur Beanspruchung von Linienbusfahrern im innerstädtischen Verkehr. Bremerhaven: Wirtschafts-verlag NW.

ロジャース、JW. 1980. 1978 年と 1979 年の民間航空機における FAA 客室オゾン監視プログラムの結果。FAA-EE-80-10。 ワシントン DC: 連邦航空局、環境エネルギー局。

ローズ、RM、CD ジェンキンス、MW ハースト。 1978年。航空管制官の健康変化調査。 マサチューセッツ州ボストン: ボストン大学医学部。

サンプソン、RJ、MT ファリス、DL シュロック。 1990. 国内輸送: 実​​践、理論、およびポリシー、第 6 版。 マサチューセッツ州ボストン: ホートン ミフリン カンパニー。

Streekvervoer オランダ。 1991年。Chaufferscabine [運転席]。 アムステルダム、オランダ: Streekvervoer Nederland。

米国上院。 1970. 航空管制官 (コーソン レポート)。 上院レポート 91-1012。 第 91 回議会、第 2 セッション、9 月 XNUMX 日。 ワシントン DC: GPO。

米国運輸省 (DOT)。 1995 年上院報告書 103–310、1995 年 XNUMX 月。ワシントン DC: GPO。

Verband Deutscher Verkehrsunternehmen. 1996. Fahrerarbeitsplatz im Linienbus [バス内のドライバーのワークステーション]。 VDV Schrift 234 (Entwurf)。 ケルン、ドイツ: Verband Deutscher Verkehrsunternehmen.

Violland, M. 1996. どこの鉄道? OECD オブザーバー No. 198、33。

Wallentowitz H、M Marx、F Luczak、J Scherff。 1996. Forschungsprojekt. Fahrerarbeitsplatz im Linienbus — Abschlußbericht [研究プロジェクト。 バス内のドライバーのワークステーション—最終レポート]。 アーヘン、ドイツ: RWTH。

Wu、YX、XL Liu、BG Wang、XY Wang。 1989年。航空機騒音による一時的な閾値シフト。 航空宇宙と医学 60(3):268–270.