Terça-feira, 01 Março 2011 01: 58

Medindo os efeitos das exposições

Classifique este artigo
(0 votos)

A epidemiologia envolve medir a ocorrência de doenças e quantificar associações entre doenças e exposições.

Medidas de Ocorrência da Doença

A ocorrência da doença pode ser medida por frequências (conta) mas é melhor descrito por taxas, que são compostos por três elementos: o número de pessoas afetadas (numerador), o número de pessoas na população de origem ou base (ou seja, a população em risco) de onde vêm as pessoas afetadas e o período de tempo coberto. O denominador da taxa é o total de tempo-pessoa experimentado pela população de origem. As taxas permitem comparações mais informativas entre populações de tamanhos diferentes do que apenas contagens. Risco, a probabilidade de um indivíduo desenvolver uma doença dentro de um período de tempo especificado, é uma proporção, variando de 0 a 1, e não uma taxa per se. Taxa de ataque, a proporção de pessoas em uma população que são afetadas dentro de um período de tempo especificado, é tecnicamente uma medida de risco, não uma taxa.

A morbidade específica da doença inclui incidência, que se refere ao número de pessoas recém-diagnosticadas com a doença de interesse. predomínio refere-se ao número de casos existentes. Mortalidade refere-se ao número de pessoas que morrem.

Incidência é definido como o número de novos casos diagnosticados dentro de um período de tempo especificado, enquanto o taxa de incidência é esse número dividido pelo total de tempo-pessoa experimentado pela população de origem (tabela 1). Para o câncer, as taxas geralmente são expressas como taxas anuais por 100,000 pessoas. As taxas para outras doenças mais comuns podem ser expressas por um número menor de pessoas. Por exemplo, as taxas de defeitos congênitos geralmente são expressas por 1,000 nascidos vivos. Incidência cumulativa, a proporção de pessoas que se tornam casos dentro de um período de tempo especificado, é uma medida de risco médio para uma população. 

Tabela 1. Medidas de ocorrência da doença: População hipotética observada por um período de cinco anos

Casos recém-diagnosticados

10

Casos vivos previamente diagnosticados

12

Mortes, todas as causas*

5

Óbitos, doença de interesse

3

Pessoas na população

100

Anos observados

5

Incidência

Pessoas 10

Taxa de incidência anual

Prevalência pontual (no final do 5º ano)

(10 + 12 - 3) = 19 pessoas

Prevalência do período (período de cinco anos)

(10 + 12) = 22 pessoas

taxa de mortalidade anual

Taxa anual de mortalidade

*Para simplificar os cálculos, este exemplo pressupõe que todas as mortes ocorreram no final do período de cinco anos, de modo que todas as 100 pessoas da população permaneceram vivas durante os cinco anos completos.

predomínio inclui prevalência pontual, o número de casos de doença em um ponto no tempo, e prevalência de período, o número total de casos de uma doença conhecida por ter existido em algum momento durante um período especificado.

Mortalidade, que diz respeito a óbitos e não a casos recém-diagnosticados de doenças, reflete fatores que causam doenças, bem como fatores relacionados à qualidade da assistência médica, como triagem, acesso a assistência médica e disponibilidade de tratamentos eficazes. Consequentemente, os esforços de geração de hipóteses e a pesquisa etiológica podem ser mais informativos e fáceis de interpretar quando baseados na incidência e não nos dados de mortalidade. No entanto, os dados de mortalidade geralmente estão mais prontamente disponíveis em grandes populações do que os dados de incidência.

O termo índice de mortalidade é geralmente aceito para significar a taxa de mortes por todas as causas combinadas, enquanto taxa de mortalidade é a taxa de mortalidade por uma causa específica. Para uma determinada doença, o taxa de letalidade (tecnicamente uma proporção, não uma taxa) é o número de pessoas que morreram da doença durante um período de tempo especificado dividido pelo número de pessoas com a doença. O complemento da taxa de letalidade é o taxa de sobrevivência. A taxa de sobrevivência de cinco anos é uma referência comum para doenças crônicas como o câncer.

A ocorrência de uma doença pode variar entre subgrupos da população ou ao longo do tempo. Uma medida de doença para uma população inteira, sem consideração de quaisquer subgrupos, é chamada de taxa bruta. Por exemplo, uma taxa de incidência para todas as faixas etárias combinadas é uma taxa bruta. As taxas para as faixas etárias individuais são as taxas específicas de idade. Para comparar duas ou mais populações com diferentes distribuições de idade, ajustado por idade (ou, padronizada por idade) as taxas devem ser calculadas para cada população multiplicando cada taxa específica por idade pela porcentagem da população padrão (por exemplo, uma das populações em estudo, a população dos EUA em 1970) nessa faixa etária e, em seguida, somando todas as faixas etárias para produzir uma taxa global ajustada à idade. As taxas podem ser ajustadas para outros fatores além da idade, como raça, sexo ou tabagismo, se as taxas específicas da categoria forem conhecidas.

A vigilância e avaliação de dados descritivos podem fornecer pistas sobre a etiologia da doença, identificar subgrupos de alto risco que podem ser adequados para programas de intervenção ou triagem e fornecer dados sobre a eficácia de tais programas. Fontes de informação que têm sido usadas para atividades de vigilância incluem certidões de óbito, registros médicos, registros de câncer, registros de outras doenças (por exemplo, registros de defeitos congênitos, registros de doenças renais em estágio terminal), registros de exposição ocupacional, registros de seguro de saúde ou invalidez e acidentes de trabalho registros.

Medidas de Associação

A epidemiologia tenta identificar e quantificar os fatores que influenciam a doença. Na abordagem mais simples, a ocorrência da doença entre pessoas expostas a um fator suspeito é comparada à ocorrência entre pessoas não expostas. A magnitude de uma associação entre exposição e doença pode ser expressa tanto em absoluto or relativo termos. (Veja também "Estudo de Caso: Medidas").

Os efeitos absolutos são medidos por diferenças de taxa e diferenças de risco (mesa 2). UMA diferença de taxa é uma taxa menos uma segunda taxa. Por exemplo, se a taxa de incidência de leucemia entre trabalhadores expostos ao benzeno é de 72 por 100,000 pessoas-ano e a taxa entre trabalhadores não expostos é de 12 por 100,000 pessoas-ano, então a diferença de taxa é de 60 por 100,000 pessoas-ano. UMA diferença de risco é uma diferença em riscos ou incidência cumulativa e pode variar de -1 a 1. 

 


Tabela 2. Medidas de associação para um estudo de coorte

 

 

Cases

Pessoa-anos em risco

Taxa por 100,000

exposto

100

20,000

500

Não exposto

200

80,000

250

Total

300

100,000

300

Diferença de taxa (RD) = 500/100,000 - 250/100,000

= 250/100,000 por ano

(146.06/100,000 - 353.94/100,000)*

Razão de taxa (ou risco relativo) (RR) =  

Risco atribuível no exposto (ARe) = 100/20,000 - 200/80,000

= 250/100,000 por ano

Percentagem de risco atribuível nos expostos (ARe%) =

 Risco atribuível da população (PAR) = 300/100,000 - 200/80,000

= 50/100,000 por ano

Percentagem de risco atribuível à população (PAR%) =

 * Entre parênteses, intervalos de confiança de 95% calculados usando as fórmulas nas caixas.


 

efeitos relativos baseiam-se em índices de taxas ou medidas de risco, em vez de diferenças. UMA razão da taxa é a razão de uma taxa em uma população para a taxa em outra. A razão de taxas também tem sido chamada de proporção de risco, risco relativo, taxa relativa e incidência (ou mortalidade) razão da taxa. A medida é adimensional e varia de 0 a infinito. Quando a taxa em dois grupos é semelhante (ou seja, não há efeito da exposição), o razão da taxa é igual à unidade (1). Uma exposição que aumentasse o risco renderia uma razão de taxas maior que a unidade, enquanto um fator de proteção renderia uma razão entre 0 e 1. O excesso de risco relativo é o risco relativo menos 1. Por exemplo, um risco relativo de 1.4 também pode ser expresso como um excesso de risco relativo de 40%.

Nos estudos de caso-controle (também chamados de estudos de caso-referente), são identificadas pessoas com doença (casos) e pessoas sem doença (controles ou referentes). Exposições passadas dos dois grupos são comparadas. As chances de ser um caso exposto são comparadas às chances de ser um controle exposto. Contagens completas das populações de origem de pessoas expostas e não expostas não estão disponíveis, portanto, as taxas de doenças não podem ser calculadas. Em vez disso, os casos expostos podem ser comparados aos controles expostos pelo cálculo de chances relativas, Ou o odds ratio (Tabela 3). 

 


Tabela 3. Medidas de associação para estudos de caso-controle: Exposição ao pó de madeira e adenocarcinoma da cavidade nasal e seios paranasais

 

 

Cases

Controles

exposto

18

55

Não exposto

5

140

Total

23

195

 

Probabilidades relativas (razão de chances) (OR) =

Percentagem de risco atribuível nos expostos () =

Percentagem de risco atribuível à população (PAR%) =

onde = proporção de controles expostos = 55/195 = 0.28

 

* Entre parênteses, intervalos de confiança de 95% calculados usando as fórmulas na caixa no verso.

Fonte: Adaptado de Hayes et al. 1986.


 

Medidas relativas de efeito são usadas com mais frequência do que medidas absolutas para relatar a força de uma associação. Medidas absolutas, no entanto, podem fornecer uma melhor indicação do impacto de uma associação na saúde pública. Um pequeno aumento relativo em uma doença comum, como doença cardíaca, pode afetar mais pessoas (grande diferença de risco) e ter mais impacto na saúde pública do que um grande aumento relativo (mas pequena diferença absoluta) em uma doença rara, como angiossarcoma do fígado.

Teste de significância

O teste de significância estatística geralmente é realizado em medidas de efeito para avaliar a probabilidade de que o efeito observado seja diferente da hipótese nula (ou seja, nenhum efeito). Embora muitos estudos, particularmente em outras áreas da pesquisa biomédica, possam expressar importância por valores p, estudos epidemiológicos geralmente apresentam intervalos de confiança (CI) (também chamado Limites de confiança). Um intervalo de confiança de 95%, por exemplo, é uma faixa de valores para a medida de efeito que inclui a medida estimada obtida a partir dos dados do estudo e aquela que tem 95% de probabilidade de incluir o valor verdadeiro. Valores fora do intervalo são considerados improváveis ​​de incluir a verdadeira medida do efeito. Se o IC para uma razão de taxas incluir a unidade, não haverá diferença estatisticamente significativa entre os grupos que estão sendo comparados.

Os intervalos de confiança são mais informativos do que os valores-p sozinhos. O tamanho de um valor-p é determinado por um ou ambos os dois motivos. Ou a medida de associação (por exemplo, razão de taxa, diferença de risco) é grande ou as populações em estudo são grandes. Por exemplo, uma pequena diferença nas taxas de doença observadas em uma grande população pode produzir um valor-p altamente significativo. As razões para o grande valor-p não podem ser identificadas apenas pelo valor-p. Os intervalos de confiança, no entanto, nos permitem separar os dois fatores. Primeiro, a magnitude do efeito é perceptível pelos valores da medida do efeito e pelos números incluídos no intervalo. Taxas de risco maiores, por exemplo, indicam um efeito mais forte. Em segundo lugar, o tamanho da população afeta a largura do intervalo de confiança. Populações pequenas com estimativas estatisticamente instáveis ​​geram intervalos de confiança mais amplos do que populações maiores.

O nível de confiança escolhido para expressar a variabilidade dos resultados (a “significância estatística”) é arbitrário, mas tradicionalmente tem sido de 95%, o que corresponde a um p-valor de 0.05. Um intervalo de confiança de 95% tem 95% de probabilidade de conter a verdadeira medida do efeito. Outros níveis de confiança, como 90%, são usados ​​ocasionalmente.

As exposições podem ser dicotômicas (por exemplo, expostas e não expostas) ou podem envolver muitos níveis de exposição. As medidas de efeito (ou seja, resposta) podem variar de acordo com o nível de exposição. avaliando resposta à exposição relações é uma parte importante da interpretação dos dados epidemiológicos. O análogo à exposição-resposta em estudos com animais é “dose-resposta”. Se a resposta aumentar com o nível de exposição, é mais provável que uma associação seja causal do que se nenhuma tendência for observada. Os testes estatísticos para avaliar as relações exposição-resposta incluem o teste de extensão de Mantel e o teste de tendência qui-quadrado.

estandardização

Para levar em consideração outros fatores além da exposição primária de interesse e da doença, medidas de associação podem ser padronizado através de técnicas de estratificação ou regressão. Estratificação significa dividir as populações em grupos homogêneos com relação ao fator (por exemplo, grupos de gênero, grupos de idade, grupos de fumantes). As razões de risco ou odds ratio são calculadas para cada estrato e as médias ponderadas gerais das razões de risco ou odds ratio são calculadas. Esses valores globais refletem a associação entre a exposição primária e a doença, ajustada pelo fator de estratificação, ou seja, a associação com os efeitos do fator de estratificação removido.

A taxa de taxa padronizada (SRR) é a razão de duas taxas padronizadas. Em outras palavras, um SRR é uma média ponderada de índices de taxa específicos de estrato, onde os pesos para cada estrato são a distribuição de pessoa-tempo do grupo não exposto ou referente. SRRs para dois ou mais grupos podem ser comparados se os mesmos pesos forem usados. Intervalos de confiança podem ser construídos para SRRs como para razões de taxa.

A taxa de mortalidade padronizada (SMR) é uma média ponderada de razões de taxas específicas por idade onde os pesos (por exemplo, pessoa-tempo em risco) vêm do grupo em estudo e as taxas vêm da população de referência, o oposto da situação em um SRR. A população de referência usual é a população em geral, cujas taxas de mortalidade podem estar prontamente disponíveis e baseadas em grandes números e, portanto, são mais estáveis ​​do que usando taxas de uma coorte não exposta ou subgrupo da população ocupacional em estudo. Usar os pesos da coorte em vez da população de referência é chamado de padronização indireta. O SMR é a razão entre o número observado de mortes na coorte e o número esperado, com base nas taxas da população de referência (a razão geralmente é multiplicada por 100 para apresentação). Se não houver associação, o SMR é igual a 100. Deve-se observar que, como as taxas vêm da população de referência e os pesos vêm do grupo de estudo, dois ou mais SMRs tendem a não ser comparáveis. Essa não comparabilidade é muitas vezes esquecida na interpretação dos dados epidemiológicos, e conclusões errôneas podem ser tiradas.

Efeito Trabalhador Saudável

É muito comum que as coortes ocupacionais tenham mortalidade total menor do que a população em geral, mesmo que os trabalhadores tenham maior risco de causas selecionadas de morte por exposições no local de trabalho. Esse fenômeno, chamado de efeito do trabalhador saudável, reflete o fato de que qualquer grupo de pessoas empregadas provavelmente é mais saudável, em média, do que a população em geral, que inclui trabalhadores e pessoas incapacitadas para o trabalho devido a doenças e deficiências. A taxa de mortalidade geral na população em geral tende a ser maior do que a taxa nos trabalhadores. O efeito varia em intensidade de acordo com a causa da morte. Por exemplo, parece ser menos importante para o câncer em geral do que para a doença pulmonar obstrutiva crônica. Uma razão para isso é que é provável que a maioria dos cânceres não tenha se desenvolvido a partir de qualquer predisposição para o câncer subjacente à seleção de emprego/carreira em uma idade mais jovem. O efeito do trabalhador saudável em um determinado grupo de trabalhadores tende a diminuir com o tempo.

Mortalidade Proporcional

Às vezes, uma tabulação completa de uma coorte (ou seja, tempo de pessoa em risco) não está disponível e há informações apenas sobre as mortes ou algum subconjunto de mortes sofridas pela coorte (por exemplo, mortes entre aposentados e empregados ativos, mas não entre trabalhadores que deixou o emprego antes de se tornar elegível para uma pensão). O cálculo de anos-pessoa requer métodos especiais para lidar com a avaliação de tempo-pessoa, incluindo métodos de tabela de vida. Sem informações totais de pessoa-tempo em todos os membros da coorte, independentemente do estado da doença, SMRs e SRRs não podem ser calculados. Em vez de, taxas de mortalidade proporcional (PMRs) podem ser usados. Um PMR é a razão entre o número de óbitos observados por uma causa específica em comparação com o número esperado, baseado na proporção do total de óbitos por causa específica na população de referência, multiplicado pelo número total de óbitos no estudo grupo, multiplicado por 100.

Como a proporção de mortes por todas as causas combinadas deve ser igual a 1 (PMR = 100), algumas PMRs podem parecer excessivas, mas na verdade são infladas artificialmente devido a déficits reais em outras causas de morte. Da mesma forma, alguns déficits aparentes podem apenas refletir excessos reais de outras causas de morte. Por exemplo, se os aplicadores aéreos de pesticidas tiverem um grande excesso real de mortes devido a acidentes, a exigência matemática de que o PMR para todas as causas combinadas seja igual a 100 pode fazer com que uma ou outra causa de morte pareça deficiente, mesmo que a mortalidade seja excessiva. Para amenizar esse problema potencial, os pesquisadores interessados ​​principalmente no câncer podem calcular taxas de mortalidade por câncer proporcionais (PCMR). Os PCMRs comparam o número observado de mortes por câncer ao número esperado com base na proporção do total de mortes por câncer (em vez de todas as mortes) para o câncer de interesse na população de referência multiplicado pelo número total de mortes por câncer no grupo de estudo, multiplicado por 100. Assim, o PCMR não será afetado por uma aberração (excesso ou déficit) em uma causa de morte não oncológica, como acidentes, doenças cardíacas ou doenças pulmonares não malignas.

Os estudos de PMR podem ser melhor analisados ​​usando taxas de chance de mortalidade (MORs), essencialmente analisando os dados como se fossem de um estudo de caso-controle. Os “controles” são as mortes de um subconjunto de todas as mortes que se acredita não estarem relacionadas à exposição em estudo. Por exemplo, se o principal interesse do estudo fosse o câncer, as taxas de chances de mortalidade poderiam ser calculadas comparando a exposição entre as mortes por câncer com a exposição entre as mortes cardiovasculares. Esta abordagem, como a PCMR, evita os problemas com a PMR que surgem quando uma flutuação em uma causa de morte afeta o risco aparente de outra simplesmente porque a PMR geral deve ser igual a 100. A escolha das causas de morte de controle é crítica, porém . Conforme mencionado acima, eles não devem estar relacionados à exposição, mas a possível relação entre exposição e doença pode não ser conhecida para muitas doenças de controle potenciais.

Risco Atribuível

Existem medidas disponíveis que expressam a quantidade de doença que seria atribuível a uma exposição se a associação observada entre a exposição e a doença fosse causal. o risco atribuível no exposto (A. R.e) é a taxa de doença nos expostos menos a taxa nos não expostos. Como as taxas de doença não podem ser medidas diretamente em estudos de caso-controle, o ARe é calculável apenas para estudos de coorte. Uma medida relacionada, mais intuitiva, o percentual de risco atribuível no exposto (A. R.e%), pode ser obtido a partir de qualquer projeto de estudo. O are% é a proporção de casos que surgem na população exposta que é atribuível à exposição (ver tabela 2 e tabela 3 para a fórmula). O are% é a razão de taxa (ou razão de chances) menos 1, dividido pela razão de taxa (ou razão de chances), multiplicado por 100.

A risco atribuível à população (PAR) e o porcentagem de risco atribuível da população (PAR%) ou fração etiológica, expressam a quantidade de doença na população total, que é composta por expostos e não expostos, devido à exposição se a associação observada for causal. O PAR pode ser obtido a partir de estudos de coorte (tabela 28.3) e o PAR% pode ser calculado em estudos de coorte e de caso-controle (tabela 2 e tabela 3).

Representatividade

Existem várias medidas de risco que foram descritas. Cada um assume métodos subjacentes para a contagem de eventos e nos representantes desses eventos para um grupo definido. Quando os resultados são comparados entre os estudos, uma compreensão dos métodos usados ​​é essencial para explicar quaisquer diferenças observadas.

 

Voltar

Leia 7100 vezes Última modificação na segunda-feira, 07 Novembro 2011 23: 20

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de Epidemiologia e Estatística

Ahlbom, A. 1984. Critérios de associação causal em epidemiologia. Em Saúde, Doença e Explicações Causais em Medicina, editado por L Nordenfelt e BIB Lindahl. Dordrecht: D. Reidel.

Conferência Americana de Higienistas Industriais Governamentais (ACGIH). 1991. Avaliação de Exposição para Epidemiologia e Controle de Perigos, editado por SM Rappaport e TJ Smith. Chelsea, Michigan: Lewis.

Armstrong, BK, E White e R Saracci. 1992. Princípios de Medição de Exposição em Epidemiologia. Oxford: Universidade de Oxford. Imprensa.

Ashford, NA, CI Spadafor, DB Hattis e CC Caldart. 1990. Vigilância do Trabalhador para Exposição e Doença. Baltimore: Johns Hopkins Univ. Imprensa.

Axelson, O. 1978. Aspects on confundindo na epidemiologia da saúde ocupacional. Scand J Work Environ Health 4:85-89.

—. 1994. Alguns desenvolvimentos recentes em epidemiologia ocupacional. Scand J Work Environ Health 20 (edição especial): 9-18.

Ayrton-Paris, JA. 1822. Farmacologia.

Babbie, E. 1992. A Prática da Pesquisa Social. Belmont, Califórnia: Wadsworth.

Beauchamp, TL, RR Cook, WE Fayerweather, GK Raabe, WE Thar, SR Cowles e GH Spivey. 1991. Diretrizes Éticas para Epidemiologistas. J Clin Epidemiol 44 Supl. I:151S-169S.

Bell, B. 1876. Epitelioma de parafina do escroto. Edimburgo Med J 22:135.

Blondin, O e C Viau. 1992. Adutos de proteína de sangue de benzo(a)pireno em marmotas selvagens usadas como sentinelas biológicas de contaminação de hidrocarbonetos aromáticos policíclicos ambientais. Arch Environ Contam Toxicol 23:310-315.

Buck, C. 1975. Filosofia de Popper para epidemiologistas. Int J Epidemiol 4:159-168.

Caixa, RAM e ME Hosker. 1954. Tumor na bexiga urinária como doença ocupacional na indústria da borracha na Inglaterra e no País de Gales. Brit J Prevent Soc Med 8:39-50.

Checkoway, H, NE Pearce e DJ Crawford-Brown. 1989. Métodos de Pesquisa em Epidemiologia Ocupacional. Nova York: Oxford Univ. Imprensa.

Clayson, DB. 1962. Carcinogênese Química. Londres: JA Churchill.

Clayton, D. 1992. Ensino de métodos estatísticos em epidemiologia. Em Epidemiologia. O que você deveria saber e o que poderia fazer, editado por J Olsen e D Trichopoulos. Oxford: Universidade de Oxford. Imprensa.

Clayton, D e M Hills. 1993. Modelos Estatísticos em Epidemiologia. Nova York: Oxford Univ. Imprensa.

Cornfield, J. 1954. Relações estatísticas e provas em medicina. Am Stat 8:19-21.

Conselho para Organizações Internacionais de Ciências Médicas (CIOMS). 1991. Diretrizes Internacionais para Revisão Ética de Estudos Epidemiológicos. Genebra: CIOMS.

Czaja, R e J Blair. 1996. Projetando Pesquisas. Thousand Oaks, Califórnia: Pine Forge Press.

Doll, R. 1952. As causas de morte entre os trabalhadores do gás, com referência especial ao câncer de pulmão. Brit J Ind Med 9:180-185.

—. 1955. Mortalidade por câncer de pulmão em trabalhadores do amianto. Brit J Ind Med 12:81-86.

Droz, PO e MM Wu. 1991. Estratégias de monitoramento biológico. Em Avaliação de Exposição para Epidemiologia e Controle de Riscos, editado por SM Rappaport e TJ Smith. Chelsea, Michigan: Lewis.

Gamble, J e R Spirtas. 1976. Classificação de trabalho e utilização de histórias de trabalho completas em epidemiologia ocupacional. J Med 18:399-404.

Gardner, MJ e DG Altman. 1989. Estatísticas com confiança. Intervalos de confiança e diretrizes estatísticas. Londres: BMJ Publishing House.

Garfinkel, L. 1984. Clássicos em oncologia; E. Cuyler Hammond, ScD. Ca-Cancer Journal for Clinicians. 38(1): 23-27

Giere, RN. 1979. Compreendendo o Raciocínio Científico. Nova York: Holt Rinehart & Winston.

GLICMAN, LT. 1993. Estudos de exposição natural em animais de companhia: Sentinelas para carcinógenos ambientais. Vet Can Soc Newslttr 17:5-7.

Glickman, LT, LM Domanski, TG Maguire, RR Dubielzig e A Churg. 1983. Mesotelioma em cães de estimação associado à exposição de seus donos ao amianto. Pesquisa Ambiental 32:305-313.

Gloyne, SR. 1935. Dois casos de carcinoma escamoso do pulmão ocorrendo na asbestose. Tubérculo 17:5-10.

—. 1951. Pneumoconiose: Pesquisa histológica de material de necropsia em 1,205 casos. Lancet 1:810-814.

Greenland, S. 1987. Métodos quantitativos na revisão da literatura epidemiológica. Epidemiologia Rev 9:1-30.

—. 1990. Randomização, estatística e inferência causal. Epidemiologia 1:421-429.

Harting, FH e W Hesse. 1879. Der Lungenkrebs, die bergkrankheit in den Schneeberger Gruben. Vierteljahrsschr Gerichtl Med Offentl Gesundheitswesen CAPS 30:296-307.

Hayes, RB, JW Raatgever, A de Bruyn e M Gerin. 1986. Câncer da cavidade nasal e seios paranasais e exposição ao formaldeído. Int J Câncer 37:487-492.

Hayes, HM, RE Tarone, HW Casey e DL Huxsoll. 1990. Excesso de seminomas observados em cães militares de serviço militar dos EUA no Vietnã. J Natl Cancer Inst 82:1042-1046.

Hernberg, S. 1992. Introdução à Epidemiologia Ocupacional. Chelsea, Michigan: Lewis.
Colina, AB. 1965. O meio ambiente e a doença: associação ou causalidade? Proc Royal Soc Med 58:295-300.

Hume, D. 1978. Um Tratado da Natureza Humana. Oxford: Clarendon Press.

Hungerford, LL, HL Trammel e JM Clark. 1995. A utilidade potencial dos dados de intoxicação animal para identificar a exposição humana a toxinas ambientais. Vet Hum Toxicol 37:158-162.

Jeyaratnam, J. 1994. Transferência de indústrias perigosas. Em Câncer ocupacional em países em desenvolvimento, editado por NE Pearce, E Matos, H Vainio, P Boffetta e M Kogevinas. Lyon: IARC.

Karhausen, LR. 1995. A pobreza da epidemiologia popperiana. Int J Epidemiol 24:869-874.

Kogevinas, M, P Boffetta e N Pearce. 1994. Exposição ocupacional a carcinógenos em países em desenvolvimento. Em Câncer ocupacional em países em desenvolvimento, editado por NE Pearce, E Matos, H Vainio, P Boffetta e M Kogevinas. Lyon: IARC.

LaDou, J. 1991. Migração mortal. Apocalipse técnico 7:47-53.

Laurell, AC, M Noriega, S Martinez e J Villegas. 1992. Pesquisa participativa em saúde do trabalhador. Soc Sci Med 34:603-613.

Lilienfeld, AM e DE Lilienfeld. 1979. Um século de estudos de caso-controle: progresso? Crônicas Dis 32:5-13.

Loewenson, R e M Biocca. 1995. Abordagens participativas na pesquisa em saúde ocupacional. Med Lavoro 86:263-271.

Lynch, KM e WA Smith. 1935. Asbestose pulmonar. III Carcinoma de pulmão em asbesto-silicose. Am J Câncer 24:56-64.

Maclure, M. 1985. Refutação popperiana em epidemiologia. Am J Epidemiol 121:343-350.

—. 1988. Refutação em epidemiologia: Por que não? Em Causal Inference, editado por KJ Rothman. Chestnut Hill, Mass.: Recursos de Epidemiologia.

Martin, SW, AH Meek e P Willeberg. 1987. Epidemiologia Veterinária. Des Moines: Iowa State Univ. Imprensa.

McMichael, AJ. 1994. Comentário convidado -"Epidemiologia molecular": Novo caminho ou novo companheiro de viagem? Am J Epidemiol 140:1-11.

Merletti, F e P Comba. 1992. Epidemiologia ocupacional. In Ensino de Epidemiologia. O que você deveria saber e o que poderia fazer, editado por J Olsen e D Trichopoulos. Oxford: Universidade de Oxford. Imprensa.

Miettinen, OS. 1985. Epidemiologia Teórica. Princípios da Pesquisa de Ocorrências em Medicina. Nova York: John Wiley & Sons.

Newell, KW, AD Ross e RM Renner. 1984. Herbicidas fenoxi e ácido picolínico e adenocarcinoma do intestino delgado em ovinos. Lancet 2:1301-1305.

Olsen, J, F Merletti, D Snashall e K Vuylsteek. 1991. Pesquisando Causas de Doenças Relacionadas ao Trabalho. Uma Introdução à Epidemiologia no Local de Trabalho. Oxford: Oxford Medical Publications, Oxford Univ. Imprensa.

Pearce, N. 1992. Problemas metodológicos de variáveis ​​relacionadas ao tempo em estudos de coorte ocupacionais. Rev Epidmiol Med Soc Santé Publ 40 Supl: 43-54.

—. 1996. Epidemiologia tradicional, epidemiologia moderna e saúde pública. Am J Public Health 86(5): 678-683.

Pearce, N, E Matos, H Vainio, P Boffetta, and M Kogevinas. 1994. Câncer ocupacional em países em desenvolvimento. Publicações Científicas da IARC, no. 129. Lyon: IARC.

Pearce, N, S De Sanjose, P Boffetta, M Kogevinas, R Saracci e D Savitz. 1995. Limitações de biomarcadores de exposição na epidemiologia do câncer. Epidemiologia 6:190-194.

Poole, C. 1987. Além do intervalo de confiança. Am J Public Health 77:195-199.

Pott, P. 1775. Observações Cirúrgicas. Londres: Hawes, Clarke & Collins.

Anais da Conferência sobre Avaliação Retrospectiva de Exposições Ocupacionais em Epidemiologia, Lyon, 13-15 de abril de 1994. 1995. Lyon: IARC.

Ramazzini, B. 1705. De Morbis Artificum Diatriva. Typis Antonii Capponi. Mutinae, MDCC. Londres: Andrew Bell e outros.

Rappaport, SM, H Kromhout e E Symanski. 1993. Variação da exposição entre trabalhadores em grupos homogêneos de exposição. Am Ind Hyg Assoc J 54(11):654-662.

Reif, JS, KS Lower e GK Ogilvie. 1995. Exposição residencial a campos magnéticos e risco de linfoma canino. Am J Epidemiol 141:3-17.

Reynolds, PM, JS Reif, HS Ramsdell e JD Tessari. 1994. Exposição canina a gramados tratados com herbicida e excreção urinária de ácido 2,4-diclorofenoxiacético. Canc Epidem, Biomark and Prevention 3:233-237.

Robins, JM, D Blevins, G Ritter e M Wulfsohn. 1992. G-estimativa do efeito da terapia profilática para pneumonia por Pneumocystis carinii na sobrevida de pacientes com Aids. Epidemiologia 3:319-336.

Rothman, KJ. 1986. Epidemiologia Moderna. Boston: Little, Brown & Co.

Saracci, R. 1995. Epidemiologia: Ontem, hoje, amanhã. In Palestras e Tópicos Atuais em Epidemiologia. Florença: Programa Educacional Europeu em Epidemiologia.

Schaffner, KF. 1993. Descoberta e Explicação em Biologia e Medicina. Chicago: Univ. da Chicago Press.

Schlesselman, JJ. 1987. “Prova” de causa e efeito em estudos epidemiológicos: Critérios para julgamento. Prevent Med 16:195-210.

Schulte, P. 1989. Interpretação e comunicação dos resultados de investigações médicas de campo. J Occup Med 31:5889-5894.

Schulte, PA, WL Boal, JM Friedland, JT Walker, LB Connally, LF Mazzuckelli e LJ Fine. 1993. Questões metodológicas na comunicação de riscos aos trabalhadores. Am J Ind Med 23:3-9.

Schwabe, CW. 1993. A atual revolução epidemiológica na medicina veterinária. Parte II. Prevenção Veterinária Med 18:3-16.

Seidman, H, IJ Selikoff e EC Hammond. 1979. Exposição de trabalho de curto prazo ao amianto e observação de longo prazo. Ann NY Acad Sci 330:61-89.

Selikoff, IJ, EC Hammond e J Churg. 1968. Exposição ao amianto, tabagismo e neoplasia. JAMA 204:106-112.

—. 1964. Exposição ao amianto e neoplasia. JAMA 188, 22-26.

Siemiatycki, J, L Richardson, M Gérin, M Goldberg, R Dewar, M Désy, S Campbell e S Wacholder. 1986. Associações entre vários locais de câncer e nove poeiras orgânicas: Resultados de um estudo de caso-controle gerador de hipóteses em Montreal, 1979-1983. Am J Epidemiol 123:235-249.

Simonato, L. 1986. Risco de câncer ocupacional em países em desenvolvimento e prioridades para pesquisa epidemiológica. Apresentado no Simpósio Internacional de Saúde e Meio Ambiente em Países em Desenvolvimento, Haicco.

SMITH, TJ. 1987. Avaliação da exposição para epidemiologia ocupacional. Am J Ind Med 12:249-268.

SOSKOLNE, CL. 1985. Pesquisa epidemiológica, grupos de interesse e o processo de revisão. J Public Health Policy 6(2):173-184.

—. 1989. Epidemiologia: Questões de ciência, ética, moralidade e direito. Am J Epidemiol 129(1):1-18.

—. 1993. Introdução à má conduta em ciência e deveres científicos. J Expos Anal Environ Epidemiol 3 Suppl. 1:245-251.

Soskolne, CL, D Lilienfeld e B Black. 1994. Epidemiologia em procedimentos legais nos Estados Unidos. In A Identificação e Controle de Doenças Ambientais e Ocupacionais. Avanços em Toxicologia Ambiental Moderna: Parte 1, editado por MA Mellman e A Upton. Princeton: Princeton Scientific Publishing.

Stellman, SD. 1987. Confundindo. Prevenir Med 16:165-182.

Suarez-Almazor, ME, CL Soskolne, K Fung e GS Jhangri. 1992. Avaliação empírica do efeito de diferentes medidas resumidas de exposição da vida profissional na estimativa de risco em estudos de referência de casos de câncer ocupacional. Scand J Work Environ Health 18:233-241.

Thrusfield, MV. 1986. Epidemiologia Veterinária. Londres: Butterworth Heinemann.

Trichopoulos, D. 1995. Realizações e perspectivas da epidemiologia. In Palestras e Tópicos Atuais em Epidemiologia. Florença: Programa Educacional Europeu em Epidemiologia.

Van Damme, K, L Cateleyn, E Heseltine, A Huici, M Sorsa, N van Larebeke e P Vineis. 1995. Suscetibilidade individual e prevenção de doenças ocupacionais: questões científicas e éticas. J Exp Med 37:91-99.

Vineis, P. 1991. Avaliação de causalidade em epidemiologia. Theor Med 12:171-181.

Vineis, P. 1992. Usos de marcadores bioquímicos e biológicos em epidemiologia ocupacional. Rev Epidmiol Med Soc Santé Publ 40 Supl 1: 63-69.

Vineis, P e T Martone. 1995. Interações genético-ambientais e exposição de baixo nível a carcinógenos. Epidemiologia 6:455-457.

Vineis, P e L Simonato. 1991. Proporção de câncer de pulmão e bexiga em homens resultantes da ocupação: uma abordagem sistemática. Arch Environ Health 46:6-15.

Vineis, P e CL Soskolne. 1993. Avaliação e gerenciamento do risco de câncer: uma perspectiva ética. J Occup Med 35(9):902-908.

Vineis, P, H Bartsch, N Caporaso, AM Harrington, FF Kadlubar, MT Landi, C Malaveille, PG Shields, P Skipper, G Talaska e SR Tannenbaum. 1994. Polimorfismo metabólico da N-acetiltransferase de base genética e exposição ambiental de baixo nível a carcinógenos. Natureza 369:154-156.

Vineis, P, K Cantor, C Gonzales, E Lynge e V Vallyathan. 1995. Câncer ocupacional em países desenvolvidos e em desenvolvimento. Int J Câncer 62:655-660.

Von Volkmann, R. 1874. Ueber Theer-und Russkrebs. Klinische Wochenschrift 11:218.

Walker, AM e M Blettner. 1985. Comparando medidas imperfeitas de exposição. Am J Epidemiol 121:783-790.

Wang, JD. 1991. De conjecturas e refutações à documentação de doenças ocupacionais em Taiwan. Am J Ind Med 20:557-565.

—. 1993. Uso de métodos epidemiológicos no estudo de doenças causadas por produtos químicos tóxicos. J Natl Publ Health Assoc 12:326-334.

Wang, JD, WM Li, FC Hu e KH Fu. 1987. Risco ocupacional e desenvolvimento de lesões cutâneas pré-malignas entre fabricantes de paraquat. Brit J Ind Med 44:196-200.

Erva daninha, DL. 1986. Sobre a lógica da inferência causal. Am J Epidemiol 123:965-979.

—. 1988. Critérios causais e refutação popperiana. Em Causal Inference, editado por KJ Rothman. Chestnut Hill, Mass.: Recursos de Epidemiologia.

Wood, WB e SR Gloyne. 1930. Asbestose pulmonar. Lancet 1:445-448.

Wyers, H. 1949. Asbestose. Postgrad Med J 25:631-638.