Imprimir esta página
Domingo, janeiro 16 2011 18: 35

Imunotoxicologia

Classifique este artigo
(2 votos)

As funções do sistema imunológico são proteger o corpo de agentes infecciosos invasores e fornecer vigilância imunológica contra o surgimento de células tumorais. Possui uma primeira linha de defesa inespecífica e que pode iniciar ela própria as reações efetoras, e um ramo específico adquirido, no qual linfócitos e anticorpos carregam a especificidade de reconhecimento e posterior reatividade ao antígeno.

A imunotoxicologia foi definida como “a disciplina preocupada com o estudo dos eventos que podem levar a efeitos indesejados como resultado da interação de xenobióticos com o sistema imunológico. Esses eventos indesejados podem resultar como consequência de (1) um efeito direto e/ou indireto do xenobiótico (e/ou seu produto de biotransformação) no sistema imunológico, ou (2) uma resposta imunológica do hospedeiro ao composto e/ou seu(s) metabólito(s) ou antígenos do hospedeiro modificados pelo composto ou seus metabólitos” (Berlin et al. 1987).

Quando o sistema imunológico atua como um alvo passivo de insultos químicos, o resultado pode ser uma diminuição da resistência a infecções e certas formas de neoplasia, ou desregulação/estimulação imunológica que pode exacerbar alergia ou autoimunidade. No caso de o sistema imunológico responder à especificidade antigênica do xenobiótico ou do antígeno do hospedeiro modificado pelo composto, a toxicidade pode se manifestar como alergias ou doenças autoimunes.

Modelos animais para investigar a supressão imunológica induzida por produtos químicos foram desenvolvidos e vários desses métodos são validados (Burleson, Munson e Dean 1995; IPCS 1996). Para fins de teste, uma abordagem em camadas é seguida para fazer uma seleção adequada do grande número de ensaios disponíveis. Geralmente, o objetivo do primeiro nível é identificar potenciais imunotóxicos. Se for identificada potencial imunotoxicidade, uma segunda fase de testes é realizada para confirmar e caracterizar melhor as alterações observadas. As investigações de terceiro nível incluem estudos especiais sobre o mecanismo de ação do composto. Vários xenobióticos foram identificados como imunotóxicos causando imunossupressão em tais estudos com animais de laboratório.

O banco de dados sobre distúrbios da função imune em humanos por produtos químicos ambientais é limitado (Descotes 1986; NRC Subcommittee on Immunotoxicology 1992). O uso de marcadores de imunotoxicidade tem recebido pouca atenção em estudos clínicos e epidemiológicos para investigar o efeito desses produtos químicos na saúde humana. Esses estudos não têm sido realizados com frequência e sua interpretação muitas vezes não permite conclusões inequívocas, devido, por exemplo, à natureza descontrolada da exposição. Portanto, atualmente, a avaliação da imunotoxicidade em roedores, com posterior extrapolação para o homem, forma a base das decisões sobre perigo e risco.

As reações de hipersensibilidade, principalmente asma alérgica e dermatite de contato, são importantes problemas de saúde ocupacional nos países industrializados (Vos, Younes e Smith, 1995). O fenômeno da sensibilização de contato foi investigado primeiro na cobaia (Andersen e Maibach 1985). Até recentemente, esta tem sido a espécie de escolha para testes preditivos. Muitos métodos de teste de cobaia estão disponíveis, sendo os mais freqüentemente empregados o teste de maximização de cobaia e o teste de remendo ocluído de Buehler. Testes de cobaias e abordagens mais recentes desenvolvidas em camundongos, como testes de inchaço da orelha e o ensaio de linfonodo local, fornecem ao toxicologista as ferramentas para avaliar o risco de sensibilização da pele. A situação com relação à sensibilização do trato respiratório é muito diferente. Ainda não existem métodos bem validados ou amplamente aceitos disponíveis para a identificação de alérgenos respiratórios químicos, embora tenha havido progresso no desenvolvimento de modelos animais para a investigação de alergia respiratória química em cobaias e camundongos.

Dados humanos mostram que agentes químicos, em particular drogas, podem causar doenças autoimunes (Kammüller, Bloksma e Seinen 1989). Existem vários modelos animais experimentais de doenças autoimunes humanas. Tal compreende tanto patologia espontânea (por exemplo lúpus eritematoso sistêmico em camundongos New Zealand Black) quanto fenômenos autoimunes induzidos por imunização experimental com um autoantígeno de reação cruzada (por exemplo, artrite induzida pelo adjuvante H37Ra em ratos da linhagem Lewis). Esses modelos são aplicados na avaliação pré-clínica de drogas imunossupressoras. Muito poucos estudos abordaram o potencial desses modelos para avaliar se um xenobiótico exacerba a autoimunidade induzida ou congênita. Modelos animais adequados para investigar a capacidade de substâncias químicas de induzir doenças autoimunes praticamente não existem. Um modelo que é usado de forma limitada é o ensaio do linfonodo poplíteo em camundongos. Como a situação em humanos, fatores genéticos desempenham um papel crucial no desenvolvimento de doença autoimune (DA) em animais de laboratório, o que limitará o valor preditivo de tais testes.

O sistema imunológico

A principal função do sistema imunológico é a defesa contra bactérias, vírus, parasitas, fungos e células neoplásicas. Isso é alcançado pelas ações de vários tipos de células e seus mediadores solúveis em um concerto afinado. A defesa do hospedeiro pode ser dividida em resistência inespecífica ou inata e imunidade específica ou adquirida mediada por linfócitos (Roitt, Brostoff e Male 1989).

Componentes do sistema imunológico estão presentes em todo o corpo (Jones et al. 1990). O compartimento de linfócitos é encontrado dentro dos órgãos linfóides (figura 1). A medula óssea e o timo são classificados como órgãos linfoides primários ou centrais; os órgãos linfóides secundários ou periféricos incluem linfonodos, baço e tecido linfóide ao longo de superfícies secretoras, como os tratos gastrointestinal e respiratório, o chamado tecido linfóide associado à mucosa (MALT). Cerca de metade dos linfócitos do corpo estão localizados a qualquer momento no MALT. Além disso, a pele é um órgão importante para a indução de respostas imunes aos antígenos presentes na pele. Importantes neste processo são as células de Langerhans epidérmicas que possuem uma função de apresentação de antígenos.

Figura 1. Órgãos e tecidos linfoides primários e secundários

TOX110F1

Células fagocíticas da linhagem de monócitos/macrófagos, denominadas sistema mononuclear fagocitário (MPS), ocorrem em órgãos linfóides e também em locais extranodais; os fagócitos extranodais incluem células de Kupffer no fígado, macrófagos alveolares no pulmão, macrófagos mesangiais no rim e células gliais no cérebro. Os leucócitos polimorfonucleares (PMNs) estão presentes principalmente no sangue e na medula óssea, mas se acumulam nos locais de inflamação.

 

 

 

 

 

 

 

Defesa não específica

Uma primeira linha de defesa aos microrganismos é executada por uma barreira física e química, como a pele, o trato respiratório e o trato alimentar. Essa barreira é auxiliada por mecanismos de proteção não específicos, incluindo células fagocíticas, como macrófagos e leucócitos polimorfonucleares, que são capazes de matar patógenos, e células assassinas naturais, que podem lisar células tumorais e células infectadas por vírus. O sistema complemento e certos inibidores microbianos (por exemplo, lisozima) também participam da resposta inespecífica.

Imunidade específica

Após o contato inicial do hospedeiro com o patógeno, respostas imunes específicas são induzidas. A marca desta segunda linha de defesa é o reconhecimento específico de determinantes, chamados de antígenos ou epítopos, dos patógenos por receptores na superfície celular de linfócitos B e T. Após a interação com o antígeno específico, a célula portadora do receptor é estimulada a sofrer proliferação e diferenciação, produzindo um clone de células descendentes que são específicas para o antígeno desencadeante. As respostas imunes específicas auxiliam na defesa inespecífica apresentada aos patógenos, estimulando a eficácia das respostas inespecíficas. Uma característica fundamental da imunidade específica é que a memória se desenvolve. O contato secundário com o mesmo antígeno provoca uma resposta mais rápida e vigorosa, mas bem regulada.

O genoma não tem a capacidade de carregar os códigos de uma matriz de receptores de antígenos suficiente para reconhecer o número de antígenos que podem ser encontrados. O repertório de especificidade se desenvolve por um processo de rearranjos de genes. Este é um processo aleatório, durante o qual várias especificidades são trazidas. Isso inclui especificidades para autocomponentes, que são indesejáveis. Um processo de seleção que ocorre no timo (células T) ou na medula óssea (células B) opera para eliminar essas especificidades indesejáveis.

A função efetora imune normal e a regulação homeostática da resposta imune dependem de uma variedade de produtos solúveis, conhecidos coletivamente como citocinas, que são sintetizados e secretados por linfócitos e por outros tipos de células. As citocinas têm efeitos pleiotrópicos nas respostas imune e inflamatória. A cooperação entre diferentes populações de células é necessária para a resposta imune – a regulação das respostas de anticorpos, o acúmulo de células e moléculas imunes em locais inflamatórios, o início de respostas de fase aguda, o controle da função citotóxica de macrófagos e muitos outros processos centrais para a resistência do hospedeiro . Estes são influenciados e, em muitos casos, dependem de citocinas agindo individualmente ou em conjunto.

Dois braços de imunidade específica são reconhecidos - imunidade humoral e mediada por células ou imunidade celular:

imunidade humoral. No braço humoral, os linfócitos B são estimulados após o reconhecimento do antígeno pelos receptores da superfície celular. Os receptores de antígenos nos linfócitos B são imunoglobulinas (Ig). Células B maduras (células plasmáticas) iniciam a produção de imunoglobulinas específicas do antígeno que atuam como anticorpos no soro ou ao longo das superfícies mucosas. Existem cinco classes principais de imunoglobulinas: (1) IgM, Ig pentamérica com ótima capacidade aglutinante, que é produzida pela primeira vez após estimulação antigênica; (2) IgG, a principal Ig em circulação, que pode atravessar a placenta; (3) IgA, Ig secretora para proteção de superfícies mucosas; (4) IgE, fixação de Ig a mastócitos ou granulócitos basofílicos envolvidos em reações de hipersensibilidade imediata e (5) IgD, cuja principal função é como receptora em linfócitos B.

Imunidade mediada por células. O braço celular do sistema imunológico específico é mediado por linfócitos T. Essas células também possuem receptores de antígenos em suas membranas. Eles reconhecem antígenos se apresentados por células apresentadoras de antígenos no contexto de antígenos de histocompatibilidade. Portanto, essas células têm uma restrição além da especificidade do antígeno. As células T funcionam como células auxiliares para várias respostas imunes (incluindo humorais), mediam o recrutamento de células inflamatórias e podem, como células T citotóxicas, matar células-alvo após o reconhecimento específico do antígeno.

Mecanismos de Imunotoxicidade

Imunossupressão

A resistência efetiva do hospedeiro depende da integridade funcional do sistema imunológico, que por sua vez requer que as células e moléculas componentes que orquestram as respostas imunes estejam disponíveis em número suficiente e de forma operacional. As imunodeficiências congênitas em humanos são frequentemente caracterizadas por defeitos em certas linhagens de células-tronco, resultando em produção prejudicada ou ausente de células imunes. Por analogia com doenças de imunodeficiência humana congênita e adquirida, a imunossupressão induzida por produtos químicos pode resultar simplesmente de um número reduzido de células funcionais (IPCS 1996). A ausência ou número reduzido de linfócitos pode ter efeitos mais ou menos profundos no estado imunológico. Alguns estados de imunodeficiência e imunossupressão grave, como podem ocorrer em transplantes ou terapia citostática, têm sido associados em particular ao aumento da incidência de infecções oportunistas e de certas doenças neoplásicas. As infecções podem ser bacterianas, virais, fúngicas ou protozoárias, e o tipo de infecção predominante depende da imunodeficiência associada. Pode-se esperar que a exposição a produtos químicos ambientais imunossupressores resulte em formas mais sutis de imunossupressão, que podem ser difíceis de detectar. Estes podem levar, por exemplo, a um aumento da incidência de infecções como gripe ou resfriado comum.

Tendo em vista a complexidade do sistema imunológico, com a grande variedade de células, mediadores e funções que formam uma rede complicada e interativa, os compostos imunotóxicos têm inúmeras oportunidades de exercer um efeito. Embora a natureza das lesões iniciais induzidas por muitos produtos químicos imunotóxicos ainda não tenha sido elucidada, há cada vez mais informações disponíveis, principalmente derivadas de estudos em animais de laboratório, sobre as alterações imunobiológicas que resultam na depressão da função imune (Dean et al. 1994). . Podem ocorrer efeitos tóxicos nas seguintes funções críticas (e são dados alguns exemplos de compostos imunotóxicos que afetam essas funções):

  •  desenvolvimento e expansão de diferentes populações de células-tronco (o benzeno exerce efeitos imunotóxicos no nível das células-tronco, causando linfocitopenia)
  •  proliferação de várias células linfóides e mielóides, bem como tecidos de suporte nos quais essas células amadurecem e funcionam (compostos de organoestanho imunotóxicos suprimem a atividade proliferativa de linfócitos no córtex tímico através de citotoxicidade direta; a ação timotóxica de 2,3,7,8-tetracloro -dibenzo-p-dioxina (TCDD) e compostos relacionados é provavelmente devido a uma função prejudicada das células epiteliais do timo, em vez de toxicidade direta para os timócitos)
  •  captação, processamento e apresentação do antígeno pelos macrófagos e outras células apresentadoras de antígenos (um dos alvos do 7,12-dimetilbenz(a)antraceno (DMBA) e do chumbo é a apresentação do antígeno pelos macrófagos; um alvo da radiação ultravioleta é o antígeno- apresentando células de Langerhans)
  •  função reguladora das células T-helper e T-supressoras (a função das células T-helper é prejudicada por organoestanhos, aldicarb, bifenilos policlorados (PCBs), TCDD e DMBA; a função das células T-supressoras é reduzida pelo tratamento com baixa dose de ciclofosfamida)
  •  produção de várias citocinas ou interleucinas (benzo(a)pireno (BP) suprime a produção de interleucina-1; a radiação ultravioleta altera a produção de citocinas pelos queratinócitos)
  •  a síntese de várias classes de imunoglobulinas IgM e IgG é suprimida após o tratamento com PCB e óxido de tributilestanho (TBT) e aumentada após a exposição ao hexaclorobenzeno (HCB).
  •  regulação e ativação do complemento (afetada pelo TCDD)
  •  função das células T citotóxicas (3-metilcolantreno (3-MC), DMBA e TCDD suprimem a atividade das células T citotóxicas)
  •  função das células assassinas naturais (NK) (a atividade NK pulmonar é suprimida pelo ozônio; a atividade NK esplênica é prejudicada pelo níquel)
  •  quimiotaxia de macrófagos e leucócitos polimorfonucleares e funções citotóxicas (o ozônio e o dióxido de nitrogênio prejudicam a atividade fagocítica dos macrófagos alveolares).

 

Alergia

Alergia pode ser definido como os efeitos adversos à saúde que resultam da indução e eliciação de respostas imunes específicas. Quando ocorrem reações de hipersensibilidade sem envolvimento do sistema imunológico, o termo pseudo-alergia é usado. No contexto da imunotoxicologia, a alergia resulta de uma resposta imune específica a produtos químicos e medicamentos de interesse. A capacidade de um produto químico para sensibilizar os indivíduos está geralmente relacionada com a sua capacidade de se ligar covalentemente às proteínas do corpo. As reações alérgicas podem assumir uma variedade de formas e diferem em relação aos mecanismos imunológicos subjacentes e à velocidade da reação. Quatro tipos principais de reações alérgicas foram reconhecidos: Reações de hipersensibilidade do tipo I, que são efetuadas pelo anticorpo IgE e onde os sintomas se manifestam dentro de minutos após a exposição do indivíduo sensibilizado. As reações de hipersensibilidade do tipo II resultam do dano ou destruição das células hospedeiras por anticorpos. Neste caso, os sintomas tornam-se aparentes dentro de horas. As reações de hipersensibilidade tipo III, ou Arthus, também são mediadas por anticorpos, mas contra antígenos solúveis, e resultam da ação local ou sistêmica de imunocomplexos. Tipo IV, ou hipersensibilidade do tipo retardado, as reações são efetuadas por linfócitos T e normalmente os sintomas se desenvolvem 24 a 48 horas após a exposição do indivíduo sensibilizado.

Os dois tipos de alergia química de maior relevância para a saúde ocupacional são a sensibilidade de contato ou alergia cutânea e a alergia do trato respiratório.

Hipersensibilidade de contato. Um grande número de produtos químicos é capaz de causar sensibilização da pele. Após a exposição tópica de um indivíduo suscetível a um alérgeno químico, uma resposta de linfócitos T é induzida nos gânglios linfáticos de drenagem. Na pele, o alérgeno interage direta ou indiretamente com as células de Langerhans epidérmicas, que transportam o produto químico para os gânglios linfáticos e o apresentam de forma imunogênica aos linfócitos T responsivos. Os linfócitos T ativados por alérgenos proliferam, resultando em expansão clonal. O indivíduo agora está sensibilizado e responderá a uma segunda exposição dérmica ao mesmo produto químico com uma resposta imune mais agressiva, resultando em dermatite alérgica de contato. A reação inflamatória cutânea que caracteriza a dermatite alérgica de contato é secundária ao reconhecimento do alérgeno na pele por linfócitos T específicos. Esses linfócitos tornam-se ativados, liberam citocinas e causam o acúmulo local de outros leucócitos mononucleares. Os sintomas se desenvolvem cerca de 24 a 48 horas após a exposição do indivíduo sensibilizado e, portanto, a dermatite alérgica de contato representa uma forma de hipersensibilidade do tipo retardado. Causas comuns de dermatite alérgica de contato incluem produtos químicos orgânicos (como 2,4-dinitroclorobenzeno), metais (como níquel e cromo) e produtos vegetais (como urushiol da hera venenosa).

Hipersensibilidade respiratória. A hipersensibilidade respiratória é geralmente considerada uma reação de hipersensibilidade do Tipo I. No entanto, as reações de fase tardia e os sintomas mais crônicos associados à asma podem envolver processos imunológicos mediados por células (Tipo IV). Os sintomas agudos associados à alergia respiratória são efetuados pelo anticorpo IgE, cuja produção é provocada após a exposição do indivíduo suscetível ao alérgeno químico indutor. O anticorpo IgE distribui-se sistemicamente e liga-se, via receptores de membrana, a mastócitos que se encontram em tecidos vascularizados, incluindo o trato respiratório. Após a inalação do mesmo produto químico, ocorrerá uma reação de hipersensibilidade respiratória. O alérgeno associa-se à proteína e liga-se e faz ligações cruzadas com o anticorpo IgE ligado aos mastócitos. Isso, por sua vez, causa a degranulação dos mastócitos e a liberação de mediadores inflamatórios, como histamina e leucotrienos. Tais mediadores causam broncoconstrição e vasodilatação, resultando em sintomas de alergia respiratória; asma e/ou rinite. Os produtos químicos conhecidos por causar hipersensibilidade respiratória no homem incluem anidridos ácidos (como anidrido trimelítico), alguns diisocianatos (como diisocianato de tolueno), sais de platina e alguns corantes reativos. Além disso, a exposição crônica ao berílio é conhecida por causar doença pulmonar de hipersensibilidade.

Autoimunidade

Autoimunidade pode ser definida como a estimulação de respostas imunes específicas dirigidas contra antígenos “próprios” endógenos. A autoimunidade induzida pode resultar de alterações no equilíbrio dos linfócitos T reguladores ou da associação de um xenobiótico com componentes normais do tecido, de modo a torná-los imunogênicos (“altered self”). Drogas e produtos químicos conhecidos por induzir ou exacerbar acidentalmente efeitos como os da doença autoimune (AD) em indivíduos suscetíveis são compostos de baixo peso molecular (peso molecular de 100 a 500) que geralmente são considerados não imunogênicos. O mecanismo da DA por exposição química é praticamente desconhecido. A doença pode ser produzida diretamente por meio de anticorpos circulantes, indiretamente por meio da formação de complexos imunes ou como consequência da imunidade mediada por células, mas provavelmente ocorre por meio de uma combinação de mecanismos. A patogênese é mais bem conhecida em distúrbios hemolíticos imunes induzidos por drogas:

  •  A droga pode se ligar à membrana dos glóbulos vermelhos e interagir com um anticorpo específico da droga.
  •  A droga pode alterar a membrana dos glóbulos vermelhos de modo que o sistema imunológico considere a célula estranha.
  •  A droga e seu anticorpo específico formam imunocomplexos que aderem à membrana das hemácias para produzir lesões.
  •  A sensibilização das hemácias ocorre devido à produção de autoanticorpos das hemácias.

 

Verificou-se que uma variedade de substâncias químicas e drogas, em particular as últimas, induzem respostas autoimunes (Kamüller, Bloksma e Seinen 1989). A exposição ocupacional a produtos químicos pode ocasionar incidentalmente síndromes semelhantes à DA. A exposição a cloreto de vinila monomérico, tricloroetileno, percloroetileno, resinas epóxi e pó de sílica pode induzir síndromes semelhantes à esclerodermia. Uma síndrome semelhante ao lúpus eritematoso sistêmico (LES) foi descrita após a exposição à hidrazina. A exposição ao diisocianato de tolueno tem sido associada à indução de púrpura trombocitopênica. Metais pesados, como o mercúrio, têm sido implicados em alguns casos de glomerulonefrite por imunocomplexos.

Avaliação de Risco Humano

A avaliação do estado imunológico humano é realizada principalmente usando sangue periférico para análise de substâncias humorais como imunoglobulinas e complemento, e de leucócitos sanguíneos para composição de subconjuntos e funcionalidade de subpopulações. Esses métodos são geralmente os mesmos usados ​​para investigar a imunidade humoral e mediada por células, bem como a resistência inespecífica de pacientes com suspeita de imunodeficiência congênita. Para estudos epidemiológicos (por exemplo, de populações expostas ocupacionalmente), os parâmetros devem ser selecionados com base em seu valor preditivo em populações humanas, modelos animais validados e a biologia subjacente dos marcadores (ver tabela 1). A estratégia de triagem de efeitos imunotóxicos após exposição (acidental) a poluentes ambientais ou outros tóxicos depende muito das circunstâncias, como tipo de imunodeficiência esperada, tempo entre a exposição e a avaliação do estado imunológico, grau de exposição e número de indivíduos expostos. O processo de avaliação do risco imunotóxico de um determinado xenobiótico em humanos é extremamente difícil e muitas vezes impossível, devido em grande parte à presença de vários fatores de confusão de origem endógena ou exógena que influenciam a resposta dos indivíduos aos danos tóxicos. Isto é particularmente verdadeiro para estudos que investigam o papel da exposição química em doenças autoimunes, onde os fatores genéticos desempenham um papel crucial.

Tabela 1. Classificação dos testes para marcadores imunológicos

Categoria de teste Características Testes específicos
Básico-geral
Deve ser incluído com painéis gerais
Indicadores de estado geral de saúde e sistema de órgãos Nitrogênio ureico no sangue, glicose no sangue, etc.
básico-imune
Deve ser incluído com painéis gerais
Indicadores gerais do estado imunológico
Custo relativamente baixo
Os métodos de ensaio são padronizados entre os laboratórios
Os resultados fora dos intervalos de referência são clinicamente interpretáveis
hemograma completo
Níveis séricos de IgG, IgA, IgM
Fenótipos de marcadores de superfície para os principais subconjuntos de linfócitos
Focado/reflexo
Deve ser incluído quando indicado por achados clínicos, exposições suspeitas ou resultados de testes anteriores
Indicadores de funções/eventos imunológicos específicos
O custo varia
Os métodos de ensaio são padronizados entre os laboratórios
Os resultados fora dos intervalos de referência são clinicamente interpretáveis
Genótipo de histocompatibilidade
Anticorpos contra agentes infecciosos
IgE sérico total
IgE específica para alérgenos
Autoanticorpos
Testes cutâneos para hipersensibilidade
Explosão oxidativa de granulócitos
Histopatologia (biópsia de tecido)
Estudos
Deve ser incluído apenas com populações de controle e desenho de estudo cuidadoso
Indicadores de funções/eventos imunológicos gerais ou específicos
O custo varia; muitas vezes caro
Os métodos de ensaio geralmente não são padronizados entre os laboratórios
Os resultados fora dos intervalos de referência geralmente não são clinicamente interpretáveis
Ensaios de estimulação in vitro
Marcadores de superfície de ativação celular
Concentrações séricas de citocinas
Ensaios de clonalidade (anticorpo, celular, genético)
Testes de citotoxicidade

 

Como dados humanos adequados raramente estão disponíveis, a avaliação do risco de imunossupressão induzida por produtos químicos em humanos é, na maioria dos casos, baseada em estudos em animais. A identificação de potenciais xenobióticos imunotóxicos é realizada principalmente em estudos controlados em roedores. Os estudos de exposição in vivo apresentam, a esse respeito, a abordagem ideal para estimar o potencial imunotóxico de um composto. Isso se deve à natureza multifatorial e complexa do sistema imunológico e das respostas imunes. Estudos in vitro são de valor crescente na elucidação dos mecanismos de imunotoxicidade. Além disso, ao investigar os efeitos do composto usando células de origem animal e humana, podem ser gerados dados para comparação de espécies, que podem ser usados ​​na abordagem do “paralelogramo” para melhorar o processo de avaliação de risco. Se houver dados disponíveis para os três pilares do paralelogramo (in vivo animal e in vitro animal e humano), pode ser mais fácil prever o resultado no restante pilar, ou seja, o risco em humanos.

Quando a avaliação do risco de imunossupressão induzida por produtos químicos depende apenas de dados de estudos em animais, uma abordagem pode ser seguida na extrapolação para o homem pela aplicação de fatores de incerteza ao nível de efeito adverso não observado (NOAEL). Este nível pode ser baseado em parâmetros determinados em modelos relevantes, como ensaios de resistência do hospedeiro e avaliação in vivo de reações de hipersensibilidade e produção de anticorpos. Idealmente, a relevância dessa abordagem para avaliação de risco requer confirmação por estudos em humanos. Esses estudos devem combinar a identificação e medição do tóxico, dados epidemiológicos e avaliações do estado imunológico.

Para prever a hipersensibilidade de contato, modelos de cobaias estão disponíveis e têm sido usados ​​na avaliação de risco desde a década de 1970. Embora sensíveis e reprodutíveis, esses testes apresentam limitações por dependerem de avaliação subjetiva; isso pode ser superado por métodos mais novos e quantitativos desenvolvidos no mouse. Em relação à hipersensibilidade química induzida por inalação ou ingestão de alérgenos, testes devem ser desenvolvidos e avaliados quanto ao seu valor preditivo no homem. Quando se trata de definir níveis seguros de exposição ocupacional de alérgenos potenciais, deve-se levar em consideração a natureza bifásica da alergia: a fase de sensibilização e a fase de elicitação. A concentração necessária para provocar uma reação alérgica em um indivíduo previamente sensibilizado é consideravelmente menor do que a concentração necessária para induzir a sensibilização no indivíduo imunologicamente virgem, mas suscetível.

Como praticamente não existem modelos animais para prever a autoimunidade induzida por produtos químicos, deve-se dar ênfase ao desenvolvimento de tais modelos. Para o desenvolvimento de tais modelos, nosso conhecimento da autoimunidade induzida por produtos químicos em humanos deve ser avançado, incluindo o estudo de marcadores genéticos e do sistema imunológico para identificar indivíduos suscetíveis. Os seres humanos expostos a drogas que induzem a autoimunidade oferecem essa oportunidade.

 

Voltar

Leia 11534 vezes Última modificação na sexta-feira, 15 Novembro 2019 17: 10