Sexta-feira, fevereiro 25 2011 16: 57

Avalanches: Perigos e Medidas de Proteção

Classifique este artigo
(2 votos)

Desde que as pessoas começaram a se estabelecer em regiões montanhosas, elas foram expostas aos perigos específicos associados à vida nas montanhas. Entre os perigos mais traiçoeiros estão as avalanches e os deslizamentos de terra, que fazem vítimas até hoje.

Quando as montanhas estão cobertas por vários metros de neve no inverno, sob certas condições, uma massa de neve que se estende como um cobertor espesso nas encostas íngremes ou no topo das montanhas pode se desprender do solo e deslizar para baixo sob seu próprio peso. Isso pode resultar em grandes quantidades de neve caindo pela rota mais direta e se depositando nos vales abaixo. A energia cinética assim liberada produz avalanches perigosas, que varrem, esmagam ou enterram tudo em seu caminho.

As avalanches podem ser divididas em duas categorias de acordo com o tipo e condição da neve envolvida: avalanches de neve seca ou “poeira” e neve molhada ou avalanches de “solo”. Os primeiros são perigosos por causa das ondas de choque que desencadeiam, e os segundos por causa de seu volume absoluto, devido à umidade adicionada na neve molhada, achatando tudo enquanto a avalanche rola ladeira abaixo, muitas vezes em alta velocidade, e às vezes levando embora trechos do subsolo.

Situações particularmente perigosas podem surgir quando a neve em grandes encostas expostas no lado de barlavento da montanha é compactada pelo vento. Em seguida, muitas vezes forma uma cobertura, mantida unida apenas na superfície, como uma cortina suspensa por cima e apoiada em uma base que pode produzir o efeito de rolamentos de esferas. Se um “corte” for feito em tal cobertura (por exemplo, se um esquiador deixar uma pista ao longo da encosta), ou se por qualquer motivo, esta cobertura muito fina for rasgada (por exemplo, por seu próprio peso), então todo o uma extensão de neve pode deslizar morro abaixo como uma prancha, geralmente se transformando em uma avalanche à medida que avança.

No interior da avalanche, pode formar-se uma enorme pressão, que pode arrancar, esmagar ou esmagar locomotivas ou edifícios inteiros como se fossem brinquedos. Que os seres humanos têm muito poucas chances de sobreviver em tal inferno é óbvio, tendo em mente que qualquer um que não seja esmagado até a morte provavelmente morrerá por asfixia ou exposição. Não é de estranhar, portanto, nos casos em que pessoas foram enterradas em avalanches, que, mesmo que sejam encontradas imediatamente, cerca de 20% delas já estejam mortas.

A topografia e a vegetação da área farão com que as massas de neve sigam rotas definidas à medida que descem para o vale. As pessoas que vivem na região sabem disso por observação e tradição e, portanto, evitam essas zonas de perigo no inverno.

Antigamente, a única maneira de escapar de tais perigos era evitar expor-se a eles. Casas de fazenda e assentamentos foram construídos em locais onde as condições topográficas eram tais que não podiam ocorrer avalanches, ou onde anos de experiência mostraram estar muito distantes de qualquer caminho conhecido de avalanche. As pessoas até evitavam as áreas montanhosas durante o período de perigo.

As florestas nas encostas superiores também oferecem uma proteção considerável contra esses desastres naturais, pois suportam as massas de neve nas áreas ameaçadas e podem conter, parar ou desviar avalanches que já começaram, desde que não tenham acumulado muito impulso.

No entanto, a história dos países montanhosos é pontuada por repetidos desastres causados ​​por avalanches, que causaram, e ainda cobram, um grande número de vidas e propriedades. Por um lado, a velocidade e o momento da avalanche são frequentemente subestimados. Por outro lado, as avalanches às vezes seguirão caminhos que, com base em séculos de experiência, não foram anteriormente considerados caminhos de avalanche. Certas condições climáticas desfavoráveis, em conjunto com uma determinada qualidade da neve e o estado do solo (por exemplo, vegetação danificada ou erosão ou afrouxamento do solo como resultado de fortes chuvas) produzem circunstâncias que podem levar a um desses “desastres”. do século”.

Se uma área está particularmente exposta à ameaça de uma avalanche depende não apenas das condições meteorológicas predominantes, mas ainda mais da estabilidade da cobertura de neve e se a área em questão está situada em um dos caminhos usuais de avalanche ou tomadas. Existem mapas especiais que mostram áreas onde avalanches ocorreram ou provavelmente ocorrerão como resultado de características topográficas, especialmente os caminhos e saídas de avalanches frequentes. É proibido construir em áreas de alto risco.

No entanto, estas medidas de precaução já não são suficientes, pois, apesar da proibição de construção em determinadas áreas e de todas as informações disponíveis sobre os perigos, um número crescente de pessoas ainda é atraído para as pitorescas regiões montanhosas, causando cada vez mais construções, mesmo em áreas reconhecidamente perigosas. Além desse desrespeito ou contorno das proibições de construção, uma das manifestações da moderna sociedade do lazer é que milhares de turistas vão para as montanhas para praticar esportes e recreação no inverno e para as próprias áreas onde as avalanches são virtualmente pré-programadas. A pista de esqui ideal é íngreme, livre de obstáculos e deve ter um tapete de neve suficientemente espesso - condições ideais para o esquiador, mas também para que a neve desça para o vale.

Se, no entanto, os riscos não podem ser evitados ou são até certo ponto conscientemente aceitos como um “efeito colateral” indesejado do prazer obtido com o esporte, torna-se necessário desenvolver maneiras e meios de lidar com esses perigos de outra maneira.

Para melhorar as chances de sobrevivência das pessoas soterradas em avalanches, é essencial fornecer serviços de resgate bem organizados, telefones de emergência próximos aos locais de risco e informações atualizadas para as autoridades e para os turistas sobre a situação em áreas perigosas . Sistemas de alerta precoce e excelente organização de serviços de resgate com o melhor equipamento possível podem aumentar consideravelmente as chances de sobrevivência de pessoas soterradas em avalanches, além de reduzir a extensão dos danos.

Medidas protetoras

Vários métodos de proteção contra avalanches foram desenvolvidos e testados em todo o mundo, como serviços de alerta transfronteiriço, barreiras e até mesmo o desencadeamento artificial de avalanches por meio de explosões ou disparos de armas sobre os campos de neve.

A estabilidade da cobertura de neve é ​​basicamente determinada pela relação entre tensão mecânica e densidade. Essa estabilidade pode variar consideravelmente de acordo com o tipo de estresse (por exemplo, pressão, tensão, tensão de cisalhamento) dentro de uma região geográfica (por exemplo, aquela parte do campo de neve onde uma avalanche pode começar). Contornos, sol, ventos, temperatura e distúrbios locais na estrutura da cobertura de neve – resultantes de rochas, esquiadores, limpa-neves ou outros veículos – também podem afetar a estabilidade. A estabilidade pode, portanto, ser reduzida por intervenção local deliberada, como detonação, ou aumentada pela instalação de suportes ou barreiras adicionais. Essas medidas, que podem ser de caráter permanente ou temporário, são os dois principais métodos utilizados para proteção contra avalanches.

Medidas permanentes incluem estruturas eficazes e duráveis, barreiras de apoio nas áreas onde a avalanche pode começar, barreiras de desvio ou de frenagem no caminho da avalanche e barreiras de bloqueio na área de saída da avalanche. O objetivo das medidas de proteção temporárias é proteger e estabilizar as áreas onde uma avalanche pode começar, desencadeando deliberadamente avalanches menores e limitadas para remover as quantidades perigosas de neve em seções.

As barreiras de suporte aumentam artificialmente a estabilidade da cobertura de neve em áreas com potencial de avalanche. Barreiras de deriva, que impedem que neve adicional seja carregada pelo vento para a área de avalanche, podem reforçar o efeito das barreiras de suporte. Barreiras de desvio e de frenagem no caminho da avalanche e barreiras de bloqueio na área de saída da avalanche podem desviar ou retardar a queda da massa de neve e encurtar a distância de escoamento na frente da área a ser protegida. Barreiras de suporte são estruturas fixadas no solo, mais ou menos perpendiculares ao talude, que oferecem resistência suficiente à massa de neve que desce. Eles devem formar suportes chegando até a superfície da neve. As barreiras de apoio são geralmente dispostas em várias fileiras e devem cobrir todas as partes do terreno de onde as avalanches possam, sob várias condições climáticas possíveis, ameaçar a localidade a ser protegida. Anos de observação e medição de neve na área são necessários para estabelecer o posicionamento, estrutura e dimensões corretos.

As barreiras devem ter uma certa permeabilidade para permitir que pequenas avalanches e deslizamentos de terra fluam através de várias fileiras de barreiras sem aumentar ou causar danos. Se a permeabilidade não for suficiente, existe o perigo de que a neve se acumule atrás das barreiras e as avalanches subseqüentes deslizem sobre elas sem impedimentos, levando consigo mais massas de neve.

As medidas temporárias, ao contrário das barreiras, também podem permitir reduzir o perigo por um determinado período de tempo. Estas medidas baseiam-se na ideia de desencadear avalanches por meios artificiais. As massas ameaçadoras de neve são removidas da área potencial de avalanche por uma série de pequenas avalanches deliberadamente desencadeadas sob supervisão em horários selecionados e predeterminados. Isso aumenta consideravelmente a estabilidade da cobertura de neve remanescente no local da avalanche, pelo menos reduzindo o risco de novas e mais perigosas avalanches por um período limitado de tempo quando a ameaça de avalanches é aguda.

No entanto, o tamanho dessas avalanches produzidas artificialmente não pode ser determinado antecipadamente com grande precisão. Assim, para reduzir ao máximo o risco de acidentes, enquanto decorrem estas medidas temporárias, toda a área a ser afectada pela avalanche artificial, desde o seu ponto de partida até à sua paragem final, deve ser evacuado, fechado e verificado previamente.

As possíveis aplicações dos dois métodos de redução de riscos são fundamentalmente diferentes. Em geral, é melhor usar métodos permanentes para proteger áreas impossíveis ou difíceis de evacuar ou fechar, ou onde assentamentos ou florestas possam ser ameaçados mesmo por avalanches controladas. Por outro lado, estradas, pistas de esqui e pistas de esqui, que são fáceis de fechar por curtos períodos, são exemplos típicos de áreas nas quais medidas temporárias de proteção podem ser aplicadas.

Os vários métodos de desencadeamento artificial de avalanches envolvem uma série de operações que também envolvem certos riscos e, acima de tudo, exigem medidas de proteção adicionais para as pessoas designadas para realizar esses trabalhos. O essencial é provocar rupturas iniciais desencadeando tremores artificiais (explosões). Isso reduzirá suficientemente a estabilidade da cobertura de neve para produzir um deslizamento de neve.

A detonação é especialmente adequada para liberar avalanches em encostas íngremes. Geralmente é possível desprender pequenos trechos de neve em intervalos e assim evitar grandes avalanches, que demoram muito para percorrer seu curso e podem ser extremamente destrutivas. No entanto, é essencial que as operações de detonação sejam realizadas a qualquer hora do dia e em todos os tipos de clima, o que nem sempre é possível. Os métodos de produção artificial de avalanches por explosão diferem consideravelmente de acordo com os meios utilizados para atingir a área onde a explosão deve ocorrer.

As áreas onde as avalanches provavelmente começarão podem ser bombardeadas com granadas ou foguetes de posições seguras, mas isso é bem-sucedido (ou seja, produz a avalanche) em apenas 20 a 30% dos casos, pois é praticamente impossível determinar e atingir o máximo ponto-alvo efetivo com alguma precisão à distância, e também porque a cobertura de neve absorve o choque da explosão. Além disso, os projéteis podem não explodir.

Detonar com explosivos comerciais diretamente na área onde as avalanches provavelmente começarão é geralmente mais bem-sucedido. Os métodos mais bem-sucedidos são aqueles em que o explosivo é carregado em estacas ou cabos sobre a parte do campo de neve onde a avalanche deve começar e detonado a uma altura de 1.5 a 3 m acima da cobertura de neve.

Além do bombardeio das encostas, três métodos diferentes foram desenvolvidos para levar o explosivo para a produção artificial de avalanches ao local real onde a avalanche deve começar:

  • teleféricos de dinamite
  • explodindo à mão
  • jogando ou baixando a carga explosiva de helicópteros.

 

O teleférico é o método mais seguro e ao mesmo tempo o mais seguro. Com a ajuda de um pequeno teleférico especial, o teleférico de dinamite, a carga explosiva é transportada em uma corda sinuosa sobre o local da explosão na área de cobertura de neve em que a avalanche deve começar. Com o controle adequado da corda e com a ajuda de sinais e marcações, é possível dirigir com precisão para o que é conhecido por experiência como os locais mais eficazes e fazer com que a carga exploda diretamente acima deles. Os melhores resultados em relação ao desencadeamento de avalanches são alcançados quando a carga é detonada na altura correta acima da cobertura de neve. Como o teleférico corre a uma altura maior acima do solo, isso requer o uso de dispositivos de abaixamento. A carga explosiva está pendurada em um barbante enrolado no dispositivo de descida. A carga é baixada até a altura correta acima do local escolhido para a explosão com a ajuda de um motor que desenrola a corda. A utilização de teleféricos de dinamite permite realizar a detonação a partir de um local seguro, mesmo com pouca visibilidade, de dia ou de noite.

Devido aos bons resultados obtidos e aos custos de produção relativamente baixos, este método de desencadear avalanches é amplamente utilizado em toda a região alpina, sendo necessária uma licença para operar teleféricos de dinamite na maioria dos países alpinos. Em 1988, ocorreu uma intensa troca de experiências neste campo entre fabricantes, usuários e representantes do governo das regiões austríaca, bávara e alpina suíça. As informações obtidas com esta troca de experiências foram resumidas em folhetos e regulamentos juridicamente vinculativos. Esses documentos contêm basicamente as normas técnicas de segurança para equipamentos e instalações e instruções para realizar essas operações com segurança. Ao preparar a carga explosiva e operar o equipamento, a equipe de detonação deve ser capaz de se mover o mais livremente possível em torno dos vários controles e aparelhos do teleférico. Deve haver caminhos seguros e de fácil acesso para permitir que a tripulação saia do local rapidamente em caso de emergência. Deve haver vias de acesso seguras até os suportes e estações do teleférico. Para evitar falhas de explosão, dois fusíveis e dois detonadores devem ser usados ​​para cada carga.

No caso da explosão manual, um segundo método para produzir avalanches artificialmente, o que era feito com frequência em épocas anteriores, o dinamiter deve subir até a parte da cobertura de neve onde a avalanche será detonada. A carga explosiva pode ser colocada em estacas fincadas na neve, mas geralmente lançada encosta abaixo em direção a um ponto alvo conhecido por experiência como particularmente eficaz. Geralmente é imperativo que os ajudantes prendam o dinamiter com uma corda durante toda a operação. No entanto, por mais cuidadosa que seja a atuação da equipe de detonação, não é possível eliminar o perigo de queda ou de ocorrência de avalanches no trajeto até o local da detonação, pois essas atividades muitas vezes envolvem longas subidas, às vezes em condições climáticas desfavoráveis. Devido a esses perigos, esse método, que também está sujeito a normas de segurança, raramente é usado atualmente.

O uso de helicópteros, um terceiro método, é praticado há muitos anos nos Alpes e em outras regiões para operações de detonação de avalanches. Tendo em vista os riscos perigosos para as pessoas a bordo, este procedimento é usado na maioria dos países alpinos e outros países montanhosos apenas quando é necessário evitar um perigo agudo, quando outros procedimentos não podem ser usados ​​ou envolveriam riscos ainda maiores. Tendo em conta a situação jurídica especial decorrente da utilização de aeronaves para tais fins e os riscos envolvidos, foram elaboradas nos países alpinos orientações específicas sobre o desencadeamento de avalanches por helicópteros, com a colaboração das autoridades aeronáuticas, das instituições e autoridades responsáveis ​​pela saúde e segurança ocupacional e especialistas na área. Essas diretrizes tratam não apenas de questões relativas às leis e regulamentos sobre explosivos e disposições de segurança, mas também dizem respeito às qualificações físicas e técnicas exigidas das pessoas encarregadas de tais operações.

As avalanches são desencadeadas de helicópteros baixando a carga em uma corda e detonando-a acima da cobertura de neve ou deixando cair uma carga com seu pavio já aceso. Os helicópteros utilizados devem ser especialmente adaptados e licenciados para tais operações. No que diz respeito à realização segura das operações a bordo, deve haver uma estrita divisão de responsabilidades entre o piloto e o técnico de jateamento. A carga deve ser preparada corretamente e o comprimento do fusível selecionado de acordo com o fato de ser baixado ou descartado. Por motivos de segurança, devem ser usados ​​dois detonadores e dois fusíveis, como no caso dos outros métodos. Em regra, as cargas individuais contêm entre 5 e 10 kg de explosivo. Várias cargas podem ser baixadas ou descartadas uma após a outra durante um voo operacional. As detonações devem ser observadas visualmente para verificar se nenhuma falhou.

Todos esses processos de detonação requerem o uso de explosivos especiais, eficazes em condições de frio e insensíveis a influências mecânicas. As pessoas designadas para realizar essas operações devem ser especialmente qualificadas e ter experiência relevante.

As medidas de proteção temporárias e permanentes contra avalanches foram originalmente projetadas para áreas de aplicação distintas. As dispendiosas barreiras permanentes foram construídas principalmente para proteger aldeias e edifícios, especialmente contra grandes avalanches. As medidas de proteção temporárias foram originalmente limitadas quase exclusivamente à proteção de estradas, estações de esqui e instalações que poderiam ser facilmente fechadas. Atualmente, a tendência é aplicar uma combinação dos dois métodos. Para elaborar o programa de segurança mais eficaz para uma determinada área, é necessário analisar detalhadamente a situação existente para determinar o método que fornecerá a melhor proteção possível.

 

Voltar

Leia 7877 vezes Última modificação em terça-feira, 26 de julho de 2022 21:08

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Desastres, Referências Naturais e Tecnológicas

Associação Americana de Psiquiatria (APA). 1994. DSM-IV Manual Diagnóstico e Estatístico de Transtornos Mentais. Washington, DC: APA.

 

Andersson, N, M Kerr Muir, MK Ajwani, S Mahashabde, A Salmon e K Vaidyanathan. 1986. Olhos lacrimejantes persistentes entre os sobreviventes de Bhopal. Lancet 2:1152.

 

Baker, EL, M Zack, JW Miles, L Alderman, M Warren, RD Dobbin, S Miller e WR Teeters. 1978. Envenenamento epidêmico por malathion no Paquistão trabalhando com malária. Lancet 1:31-34.

 

Baum, A, L Cohen e M Hall. 1993. Controle e memórias intrusivas como possíveis determinantes do estresse crônico. Psychosom Med 55:274-286.

 

Bertazzi, PA. 1989. Desastres industriais e epidemiologia. Uma revisão de experiências recentes. Scand J Work Environ Health 15:85-100.

 

—. 1991. Efeitos de longo prazo de desastres químicos. Lições e resultados de Seveso. Sci Total Environ 106:5-20.

 

Bromet, EJ, DK Parkinson, HC Schulberg, LO Dunn e PC Condek. 1982. Saúde mental dos residentes próximos ao reator de Three Mile Island: Um estudo comparativo de grupos selecionados. J Prev Psychiat 1(3):225-276.

 

Bruk, GY, NG Kaduka e VI Parkhomenko. 1989. Contaminação do ar por radionuclídeos como resultado do acidente na usina de Chernobyl e sua contribuição para a irradiação interna da população (em russo). Materiais do Primeiro Congresso Radiológico All-Union, 21-27 de agosto, Moscou. Resumos (em russo). Puschkino, 1989, vol. II:414-416.

 

Bruzzi, P. 1983. Impacto na saúde da liberação acidental de TCDD em Seveso. Em Exposição Acidental a Dioxinas. Human Health Aspects, editado por F Coulston e F Pocchiari. Nova York: Academic Press.

 

Cardis, E, ES Gilbert e L Carpenter. 1995. Efeitos de baixas doses e baixas taxas de dose de radiação ionizante externa: Mortalidade por câncer entre trabalhadores da indústria nuclear em três países. Rad Res 142:117-132.

 

Centros de Controle de Doenças (CDC). 1989. As Consequências dos Desastres para a Saúde Pública. Atlanta: CDC.

 

Centro Peruano-Japonês de Investigaciones Sismicas y Mitigacióm de Desastres. Universidade Nacional de Engenharia (CISMID). 1989. Seminário Internacional De Planeamiento Diseño,

 

Reparación Y Adminstración De Hospitales En Zonas Sísmicas: Conclusão e Recomendações. Lima: CISMID/Univ Nacional de Ingeniería.

 

Chagnon, SAJR, RJ Schicht e RJ Semorin. 1983. Um Plano de Pesquisa sobre Enchentes e sua Mitigação nos Estados Unidos. Champaign, Illinois: Levantamento de água do estado de Illinois.

 

Chen, PS, ML Luo, CK Wong e CJ Chen. 1984. Bifenilos policlorados, dibenzofuranos e quaterfenilos em óleo de farelo de arroz tóxico e PCBs no sangue de pacientes com envenenamento por PCB em Taiwan. Am J Ind Med 5:133-145.

 

Coburn, A e R Spence. 1992. Proteção contra terremotos. Chichester: Wiley.

 

Conselho das Comunidades Europeias (CEC). 1982. Diretiva do Conselho de 24 de junho sobre os riscos de acidentes graves em certas atividades industriais (82/501/EEC). Off J Eur Comunidades L230:1-17.

 

—. 1987. Diretiva do Conselho de 19 de março que altera a Diretiva 82/501/EEC sobre os riscos de acidentes graves em certas atividades industriais (87/216/EEC). Off J Eur Comunidades L85:36-39.

 

Das, JJ. 1985a. Rescaldo da tragédia de Bhopal. J Indian Med Assoc 83:361-362.

 

—. 1985b. A tragédia de Bhopal. J Indian Med Assoc 83:72-75.

 

Orvalho, MA e EJ Bromet. 1993. Preditores de padrões temporais de sofrimento psiquiátrico durante dez anos após o acidente nuclear em Three Mile Island. Social Psychiatric Epidemiol 28:49-55.

 

Agência Federal de Gerenciamento de Emergências (FEMA). 1990. Considerações sísmicas: Estabelecimentos de cuidados de saúde. Série de Redução de Riscos de Terremoto, No. 35. Washington, DC: FEMA.

 

Frazier, K. 1979. A Face Violenta da Natureza: Fenômenos Severos e Desastres Naturais. Inundações. Nova York: William Morrow & Co.

 

Fundação Freidrich Naumann. 1987. Riscos Industriais no Trabalho Transnacional: Risco, Equidade e Empoderamento. Nova York: Conselho de Relações Internacionais e Públicas.

 

French, J e K Holt. 1989. Inundações: Consequências de Desastres para a Saúde Pública. Monografia dos Centros de Controle de Doenças. Atlanta: CDC.

 

French, J, R Ing, S Von Allman e R Wood. 1983. Mortality from flash floods: A review of National Weather Service reports, 1969-1981. Public Health Rep 6(novembro/dezembro):584-588.

 

Fuller, M. 1991. Incêndios Florestais. Nova York: John Wiley.

 

Gilsanz, V, J Lopez Alverez, S Serrano e J Simon. 1984. Evolução da síndrome do óleo tóxico alimentar devido à ingestão de óleo de colza desnaturado. Arch Int Med 144:254-256.

 

Glass, RI, RB Craven e DJ Bregman. 1980. Lesões do tornado Wichita Falls: Implicações para a prevenção. Science 207:734-738.

 

Grant, C.C. 1993. O incêndio do triângulo provoca indignação e reforma. NFPA J 87(3):72-82.

 

Grant, CC e TJ Klem. 1994. Incêndio em uma fábrica de brinquedos na Tailândia mata 188 trabalhadores. NFPA J 88(1):42-49.

 

Greene, WAJ. 1954. Fatores psicológicos e doença reticuloendotelial: observações preliminares sobre um grupo de homens com linfoma e leucemia. Psychosom Med:16-20.

 

Grisham, JW. 1986. Health Aspects of the Disposal of Waste Chemicals. Nova York: Pergamon Press.

 

Herbert, P e G Taylor. 1979. Tudo o que você sempre quis saber sobre furacões: Parte 1. Weatherwise (abril).

 

Alto, D, JT Blodgett, EJ Croce, EO Horne, JW McKoan e CS Whelan. 1956. Aspectos médicos do desastre do tornado Worcester. New Engl J Med 254:267-271.

 

Holden, C. 1980. Love Canal residentes sob estresse. Science 208:1242-1244.

 

Homberger, E, G Reggiani, J Sambeth e HK Wipf. 1979. O acidente de Seveso: sua natureza, extensão e consequências. Ann Occup Hyg 22:327-370.

 

Hunter, D. 1978. As Doenças das Ocupações. Londres: Hodder & Stoughton.

 

Agência Internacional de Energia Atômica (AIEA). 1988. Princípios básicos de segurança para usinas nucleares INSAG-3. Safety Series, No. 75. Viena: IAEA.

 

—. 1989a. L'accident radiologique de Goiânia. Viena: AIEA.

 

—. 1989b. Um caso de contaminação por Co-60 em grande escala: México 1984. Em Planejamento de Emergência e Preparação para Acidentes Envolvendo Materiais Radioativos Usados ​​em Medicina, Indústria, Pesquisa e Ensino. Viena: AIEA.

 

—. 1990. Recomendações para o Uso Seguro e Regulamentação de Fontes de Radiação na Indústria, Medicina, Pesquisa e Ensino. Safety Series, No. 102. Viena: IAEA.

 

—. 1991. O Projeto Internacional de Chernobyl. Relatório técnico, avaliação das consequências radiológicas e avaliação das medidas de proteção, relatório de um Comitê Consultivo Internacional. Viena: AIEA.

 

—. 1994. Critérios de Intervenção em Emergência Nuclear ou de Radiação. Safety Series, No. 109. Viena: IAEA.

 

Comissão Internacional de Proteção Radiológica (ICRP). 1991. Anais do ICRP. Publicação ICRP No. 60. Oxford: Pergamon Press.

 

Federação Internacional das Sociedades da Cruz Vermelha e do Crescente Vermelho (IFRCRCS). 1993. O Relatório Mundial de Desastres. Dordrecht: Martinus Nijhoff.

 

Organização Internacional do Trabalho (OIT). 1988. Controle de Riscos Graves. Um Manual Prático. Genebra: OIT.

 

—. 1991. Prevenção de Acidentes Industriais Graves. Genebra: OIT.

 

—. 1993. Convenção de Prevenção de Acidentes Industriais Graves, 1993 (No. 174). Genebra: OIT.

 

Janerich, DT, AD Stark, P Greenwald, WS Bryant, HI Jacobson e J McCusker. 1981. Aumento da leucemia, linfoma e aborto espontâneo no oeste de Nova York após um desastre. Publ Health Rep 96:350-356.

 

Jeyaratnam, J. 1985. 1984 e saúde ocupacional em países em desenvolvimento. Scand J Work Environ Health 11:229-234.

 

JOVEL, JR. 1991. Los efectos economics y sociales de los desastres naturais en América Latina y el Caribe. Santiago, Chile: Documento apresentado no Primeiro Programa Regional de Capacitação em Gestão de Desastres do PNUD/UNDRO em Bogotá, Colômbia.

 

Kilbourne, EM, JG Rigau-Perez, J Heath CW, MM Zack, H Falk, M Martin-Marcos e A De Carlos. 1983. Epidemiologia clínica da síndrome do óleo tóxico. New Engl J Med 83:1408-1414.

 

Clem, TJ. 1992. 25 morrem em incêndio em fábrica de alimentos. NFPA J 86(1):29-35.

 

Klem, TJ e CC Grant. 1993. Três trabalhadores morrem em incêndio em usina elétrica. NFPA J 87(2):44-47.

 

Krasnyuk, EP, VI Chernyuk e VA Stezhka. 1993. Condições de trabalho e estado de saúde de operadores de máquinas agrícolas em áreas controladas pelo acidente de Chernobyl (em russo). Em resumos Chernobyl and Human Health Conference, 20-22 de abril.

 

Krishna Murti, CR. 1987. Prevenção e controle de acidentes químicos: Problemas dos países em desenvolvimento. In Istituto Superiore Sanita', Organização Mundial da Saúde, Programa Internacional de Segurança Química. Edimburgo: CEP Consultants.

 

Lanceta. 1983. Síndrome do óleo tóxico. 1:1257-1258.

 

LECHAT, MF. 1990. A epidemiologia dos efeitos dos desastres na saúde. Epidemiologia Rev 12:192.

 

Logue, JN. 1972. Efeitos de longo prazo de um grande desastre natural: a inundação do furacão Agnes no Vale Wyoming da Pensilvânia, junho de 1972. Ph.D. Dissertação, Columbia Univ. Escola de Saúde Pública.

 

Logue, JN e HA Hansen. 1980. Um estudo de caso-controle de mulheres hipertensas em uma comunidade pós-desastre: Wyoming Valley, Pensilvânia. J Hum Stress 2:28-34.

 

Logue, JN, ME Melick e H Hansen. 1981. Questões de pesquisa e direções na epidemiologia dos efeitos dos desastres na saúde. Epidemiologia Rev 3:140.

 

Loshchilov, NA, VA Kashparov, YB Yudin, VP Proshchak e VI Yushchenko. 1993. Ingestão de radionuclídeos durante trabalhos agrícolas nas áreas contaminadas por radionuclídeos devido ao acidente de Chernobyl (em russo). Gigiena i sanitarija (Moscou) 7:115-117.

 

Mandlebaum, I, D Nahrwold e DW Boyer. 1966. Gerenciamento de vítimas de tornados. J Trauma 6:353-361.

 

Marrero, J. 1979. Perigo: inundações repentinas — a principal causa de morte nos anos 70. Meteorologia (fevereiro): 34-37.

 

Masuda, Y e H Yoshimura. 1984. Bifenilos policlorados e dibenzofuranos em pacientes com Yusho e seu significado toxicológico: Uma revisão. Am J Ind Med 5:31-44.

 

MELICK, MF. 1976. Aspectos sociais, psicológicos e médicos de doenças relacionadas ao estresse no período de recuperação de um desastre natural. Dissertação, Albany, State Univ. de Nova York.

 

Mogil, M, J Monro e H Groper. 1978. Programas de alerta de enchentes e preparação para desastres do NWS. B Am Meteorol Soc: 59-66.

 

Morrison, AS. 1985. Triagem em Doenças Crônicas. Oxford: OUP.

 

Associação Nacional de Proteção Contra Incêndios (NFPA). 1993. Código Nacional de Alarme de Incêndio. NFPA No. 72. Quincy, Mass: NFPA.

 

—. 1994. Norma para a instalação de sistemas de sprinklers. NFPA No. 13. Quincy, Mass: NFPA.

 

—. 1994. Código de Segurança da Vida. NFPA No. 101. Quincy, Mass: NFPA.

 

—. 1995. Norma para Inspeção, Teste e Manutenção de Sistemas de Proteção contra Incêndio à Base de Água. NFPA No. 25. Quincy, Mass: NFPA.

 

Nenot, JC. 1993. Les surexpositions acidentalelles. CEA, Institut de Protection et de Sûreté Nucléaire. Relatório DPHD/93-04.a, 1993, 3-11.

 

Agência de Energia Nuclear. 1987. O Impacto Radiológico do Acidente de Chernobyl nos Países da OCDE. Paris: Agência de Energia Nuclear.

 

Otake, M e WJ Schull. 1992. Tamanhos de cabeça pequenos relacionados à radiação entre sobreviventes de bombas atômicas expostos no período pré-natal. Série de relatórios técnicos, RERF 6-92.

 

Otake, M, WJ Schull e H Yoshimura. 1989. Uma Revisão dos Danos Relacionados à Radiação nos Sobreviventes da Bomba Atômica Expostos Pré-Natalmente. Série de Revisão de Comentários, RERF CR 4-89.

 

Organização Pan-Americana da Saúde (OPAS). 1989. Análise do Programa de Preparação para Emergências e Assistência em Casos de Desastres da OPAS. Documento do Comitê Executivo SPP12/7. Washington, DC: OPAS.

 

—. 1987. Crónicas de desastre: terremoto no México. Washington, DC: OPAS.

 

Parrish, RG, H Falk e JM Melius. 1987. Desastres industriais: Classificação, investigação e prevenção. Em Recent Advances in Occupational Health, editado por JM Harrington. Edimburgo: Churchill Livingstone.

 

Peisert, M comp, RE Cross e LM Riggs. 1984. O Papel do Hospital nos Sistemas de Serviços Médicos de Emergência. Chicago: American Hospital Publishing.

 

Pesatori, AC. 1995. Contaminação por dioxina em Seveso: A tragédia social e o desafio científico. Med Lavoro 86:111-124.

 

Peter, RU, O Braun-Falco e A Birioukov. 1994. Danos cutâneos crônicos após exposição acidental à radiação ionizante: a experiência de Chernobyl. J Am Acad Dermatol 30:719-723.

 

Pocchiari, F, A DiDomenico, V Silano e G Zapponi. 1983. Impacto ambiental da liberação acidental de tetraclorodibenzo-p-dioxina (TCDD) em Seveso. Em Exposição Acidental a Dioxinas: Aspectos da Saúde Humana, editado por F Coulston e F Pocchiari. Nova York: Academic Press.

 

—. 1986. O acidente de Seveso e suas consequências. In Segurando e gerenciando riscos perigosos: de Seveso a Bhopal e além, editado por PR Kleindorfer e HC Kunreuther. Berlim: Springer-Verlag.

 

Rodrigues de Oliveira, A. 1987. Un répertoire descidents radiologiques 1945-1985. Radioproteção 22(2):89-135.

 

Sainani, GS, VR Joshi, PJ Mehta e P Abraham. 1985. Tragédia de Bhopal - Um ano depois. J Assoc Phys India 33:755-756.

 

Salzmann, JJ. 1987. “Schweizerhalle” e suas consequências. Edimburgo: CEP Consultants.

 

Costa, RE. 1992. Questões e evidências epidemiológicas relacionadas ao câncer de tireoide induzido por radiação. Rad Res 131:98-111.

 

Spurzem, JR e JE Lockey. 1984. Síndrome do óleo tóxico. Arch Int Med 144:249-250.

 

Stsjazhko, VA, AF Tsyb, ND Tronko, G Souchkevitch e KF Baverstock. 1995. Câncer de tireoide infantil desde os acidentes em Chernobyl. Brit Med J 310:801.

 

Tachacra, SS. 1987. O desastre de Bhopal. Edimburgo: CEP Consultants.

 

Thierry, D, P Gourmelon, C Parmentier e JC Nenot. 1995. Fatores de crescimento hematopoiéticos no tratamento de aplasia induzida por irradiação terapêutica e acidental. Int J Rad Biol (no prelo).

 

Compreendendo Ciência e Natureza: Tempo e Clima. 1992. Alexandria, Virgínia: Time-Life.

 

Escritório do Coordenador de Alívio em Desastres das Nações Unidas (UNDRO). 1990. Terremoto no Irã. UNDRO News 4 (setembro).

 

Comitê Científico das Nações Unidas sobre os Efeitos da Radiação Atômica (UNSCEAR). 1988. Fontes, Efeitos e Riscos da Radiação Ionizante. Nova York: UNSCEAR.

 

—. 1993. Fontes e Efeitos da Radiação Ionizante. Nova York: UNSCEAR.

 

—. 1994. Fontes e Efeitos da Radiação Ionizante. Nova York: UNSCEAR.

 

Ursano, RJ, BG McCaughey e CS Fullerton. 1994. Respostas Individuais e Comunitárias a Traumas e Desastres: A Estrutura do Caos Humano. Cambridge: Universidade de Cambridge. Imprensa.

 

Agência dos Estados Unidos para o Desenvolvimento Internacional (USAID). 1989. União Soviética: Terremoto. Relatório Anual OFDA/AID, FY1989. Arlington, Virgínia: USAID.

 

Walker, P. 1995. Relatório Mundial de Desastres. Genebra: Federação Internacional das Sociedades da Cruz Vermelha e do Crescente Vermelho.

 

Wall Street J. 1993 Incêndio na Tailândia mostra que a região reduz a segurança para aumentar os lucros, 13 de maio.

 

Weiss, B e TW Clarkson. 1986. Desastre químico tóxico e a implicação de Bhopal para transferência de tecnologia. Milbank Q 64:216.

 

Whitlow, J. 1979. Desastres: A Anatomia dos Riscos Ambientais. Atenas, Geórgia: Univ. da Georgia Press.

 

Williams, D, A Pinchera, A Karaoglou e KH Chadwick. 1993. Câncer de tireóide em crianças que vivem perto de Chernobyl. Relatório do painel de especialistas sobre as consequências do acidente de Chernobyl, EUR 15248 EN. Bruxelas: Comissão das Comunidades Europeias (CEC).

 

Organização Mundial da Saúde (OMS). 1984. Síndrome do óleo tóxico. Intoxicação Alimentar em Massa na Espanha. Copenhague: Escritório Regional da OMS para a Europa.

 

Wyllie, L e M Durkin. 1986. O terremoto do Chile em 3 de março de 1985: vítimas e efeitos no sistema de saúde. Especificação do terremoto 2(2):489-495.

 

Zeballos, JL. 1993a. Los desastres quimicos, capacidade de respuesta de los paises en vias de desarrollo. Washington, DC: Organização Pan-Americana da Saúde (OPAS).

 

—. 1993b. Efeitos de desastres naturais na infraestrutura de saúde: lições de uma perspectiva médica. Bull Pan Am Health Organ 27: 389-396.

 

Zerbib, JC. 1993. Les acidentes radiológicos survenus lors d'usages industriels de sources radioactives ou de générateurs électirques de rayonnement. Em Sécurité des sources radioactives scellées et des générateurs électriques de rayonnement. Paris: Société française de radioprotection.