Quinta-feira, Março 24 2011 18: 50

Introdução

Classifique este artigo
(Voto 1)

A radiação ionizante está em toda parte. Chega do espaço exterior como raios cósmicos. Está no ar como emissões de radônio radioativo e sua progênie. Os isótopos radioativos que ocorrem naturalmente entram e permanecem em todos os seres vivos. É inevitável. De fato, todas as espécies deste planeta evoluíram na presença de radiação ionizante. Embora os humanos expostos a pequenas doses de radiação possam não mostrar imediatamente quaisquer efeitos biológicos aparentes, não há dúvida de que a radiação ionizante, quando administrada em quantidades suficientes, pode causar danos. Esses efeitos são bem conhecidos tanto em espécie quanto em grau.

Embora a radiação ionizante possa causar danos, ela também tem muitos usos benéficos. O urânio radioativo gera eletricidade em usinas nucleares em muitos países. Na medicina, os raios x produzem radiografias para diagnóstico de lesões e doenças internas. Os médicos de medicina nuclear usam material radioativo como traçadores para formar imagens detalhadas de estruturas internas e para estudar o metabolismo. Radiofármacos terapêuticos estão disponíveis para tratar distúrbios como hipertireoidismo e câncer. Os médicos de radioterapia usam raios gama, feixes de píon, feixes de elétrons, nêutrons e outros tipos de radiação para tratar o câncer. Os engenheiros usam material radioativo em operações de exploração de poços de petróleo e em medidores de densidade de umidade do solo. Os radiologistas industriais usam raios X no controle de qualidade para examinar as estruturas internas dos dispositivos fabricados. Sinais de saída em edifícios e aeronaves contêm trítio radioativo para fazê-los brilhar no escuro em caso de falha de energia. Muitos detectores de fumaça em residências e prédios comerciais contêm amerício radioativo.

Esses muitos usos de radiação ionizante e materiais radioativos melhoram a qualidade de vida e ajudam a sociedade de várias maneiras. Os benefícios de cada uso devem sempre ser comparados com os riscos. Os riscos podem ser para os trabalhadores diretamente envolvidos na aplicação da radiação ou material radioativo, para o público, para as gerações futuras e para o meio ambiente ou para qualquer combinação destes. Além das considerações políticas e econômicas, os benefícios devem sempre superar os riscos quando a radiação ionizante está envolvida.

Radiação ionizante

A radiação ionizante consiste em partículas, incluindo fótons, que causam a separação de elétrons de átomos e moléculas. No entanto, alguns tipos de radiação de energia relativamente baixa, como a luz ultravioleta, também podem causar ionização em determinadas circunstâncias. Para distinguir esses tipos de radiação da radiação que sempre causa ionização, um limite arbitrário de energia inferior para radiação ionizante geralmente é definido em torno de 10 kiloelétrons volts (keV).

A radiação diretamente ionizante consiste em partículas carregadas. Tais partículas incluem elétrons energéticos (às vezes chamados de negatrons), pósitrons, prótons, partículas alfa, mésons carregados, múons e íons pesados ​​(átomos ionizados). Esse tipo de radiação ionizante interage com a matéria principalmente por meio da força de Coulomb, repelindo ou atraindo elétrons de átomos e moléculas em virtude de suas cargas.

A radiação indiretamente ionizante consiste em partículas não carregadas. Os tipos mais comuns de radiação indiretamente ionizante são os fótons acima de 10 keV (raios x e raios gama) e todos os nêutrons.

Os fótons de raios X e raios gama interagem com a matéria e causam ionização de pelo menos três maneiras diferentes:

    1. Os fótons de baixa energia interagem principalmente por meio do efeito fotoelétrico, no qual o fóton dá toda a sua energia a um elétron, que então deixa o átomo ou a molécula. O fóton desaparece.
    2. Os fótons de energia intermediária interagem principalmente por meio do efeito Compton, no qual o fóton e um elétron colidem essencialmente como partículas. O fóton continua em uma nova direção com energia reduzida, enquanto o elétron liberado sai com o restante da energia recebida (menos a energia de ligação do elétron ao átomo ou molécula).
    3. A produção de pares só é possível para fótons com energia superior a 1.02 MeV. (No entanto, perto de 1.02 MeV, o efeito Compton ainda domina. A produção de pares domina em energias mais altas.) O fóton desaparece e um par elétron-pósitron aparece em seu lugar (isso ocorre apenas nas proximidades de um núcleo por causa da conservação do momento e considerações energéticas). A energia cinética total do par elétron-pósitron é igual à energia do fóton menos a soma das energias da massa de repouso do elétron e do pósitron (1.02 MeV). Esses elétrons e pósitrons energéticos procedem então como radiação diretamente ionizante. À medida que perde energia cinética, um pósitron acabará encontrando um elétron e as partículas se aniquilarão. Dois (geralmente) fótons de 0.511 MeV são então emitidos do local de aniquilação a 180 graus um do outro.

         

        para um determinado fóton qualquer um desses pode ocorrer, exceto que a produção de pares só é possível para fótons com energia maior que 1.022 MeV. A energia do fóton e o material com o qual ele interage determinam qual interação é mais provável de ocorrer.

        A Figura 1 mostra as regiões em que cada tipo de interação de fótons domina em função da energia do fóton e do número atômico do absorvedor.

        Figura 1. Importância relativa das três principais interações dos fótons na matéria

        ION010F1

        As interações de nêutrons mais comuns com a matéria são colisões inelásticas, captura de nêutrons (ou ativação) e fissão. Tudo isso são interações com núcleos. Um núcleo colidindo inelasticamente com um nêutron é deixado em um nível de energia mais alto. Ele pode liberar essa energia na forma de um raio gama ou emitindo uma partícula beta, ou ambos. Na captura de nêutrons, um núcleo afetado pode absorver o nêutron e ejetar energia como raios gama ou x ou partículas beta, ou ambos. As partículas secundárias então causam ionização conforme discutido acima. Na fissão, um núcleo pesado absorve o nêutron e se divide em dois núcleos mais leves, quase sempre radioativos.

        Quantidades, Unidades e Definições Relacionadas

        A Comissão Internacional de Unidades e Medidas de Radiação (ICRU) desenvolve definições formais internacionalmente aceitas de quantidades e unidades de radiação e radioatividade. A Comissão Internacional de Proteção Radiológica (ICRP) também estabelece padrões para definição e uso de várias grandezas e unidades usadas na segurança contra radiação. Segue uma descrição de algumas grandezas, unidades e definições comumente usadas em segurança contra radiação.

        Dose absorvida. Esta é a grandeza dosimétrica fundamental para a radiação ionizante. Basicamente, é a energia que a radiação ionizante transmite à matéria por unidade de massa. Formalmente,

        onde D é a dose absorvida, de é a energia média transmitida à matéria de massa dm. A dose absorvida tem unidades de joules por quilograma (J kg-1). O nome especial para a unidade de dose absorvida é gray (Gy).

        Atividade. Essa quantidade representa o número de transformações nucleares de um determinado estado de energia nuclear por unidade de tempo. Formalmente,

        onde A é a atividade, dN é o valor esperado do número de transições nucleares espontâneas do estado de energia dado no intervalo de tempo dt. Está relacionado com o número de núcleos radioativos N por:

        onde l é a constante de decaimento. A atividade tem unidades de segundos inversos (s-1). O nome especial para a unidade de atividade é o becquerel (Bq).

        Constante de decaimento (eu). Essa quantidade representa a probabilidade por unidade de tempo de ocorrer uma transformação nuclear para um determinado radionuclídeo. A constante de decaimento tem unidades de segundos inversos (s-1). Está relacionado com a meia-vida t½ de um radionuclídeo por:

        A constante de decaimento l está relacionada com o tempo de vida médio, t, de um radionuclídeo por:

        A dependência temporal da atividade A(t) e do número de núcleos radioativos N(t) pode ser expressa por  respectivamente.

        Efeito biológico determinístico. Este é um efeito biológico causado pela radiação ionizante e cuja probabilidade de ocorrência é zero em pequenas doses absorvidas, mas aumentará abruptamente até a unidade (100%) acima de algum nível de dose absorvida (o limiar). A indução de catarata é um exemplo de efeito biológico estocástico.

        Dose efetiva. A dose eficaz E é a soma das doses equivalentes ponderadas em todos os tecidos e órgãos do corpo. É uma quantidade de segurança de radiação, portanto seu uso não é apropriado para grandes doses absorvidas entregues em um período de tempo relativamente curto. É dado por:

        onde w T é o fator de ponderação do tecido e HT é a dose equivalente para o tecido T. A dose efetiva tem unidades de J kg-1. O nome especial para a unidade de dose efetiva é o sievert (Sv).

        Dose equivalente. A dose equivalente HT é a dose absorvida média sobre um tecido ou órgão (ao invés de um ponto) e ponderada para a qualidade da radiação que é de interesse. É uma quantidade de segurança de radiação, portanto seu uso não é apropriado para grandes doses absorvidas entregues em um período de tempo relativamente curto. A dose equivalente é dada por:

        onde DT, R é a dose absorvida média sobre o tecido ou órgão T devido à radiação R e w R
        é o fator de ponderação da radiação. A dose equivalente tem unidades de J kg-1. O nome especial para a unidade de dose equivalente é o sievert (Sv).

        Meia-vida. Essa quantidade é a quantidade de tempo necessária para que a atividade de uma amostra de radionuclídeo seja reduzida pela metade. Equivalentemente, é a quantidade de tempo necessária para que um determinado número de núcleos em um determinado estado radioativo reduza pela metade. Possui unidades fundamentais de segundos (s), mas também é comumente expresso em horas, dias e anos. Para um determinado radionuclídeo, a meia-vida t½ está relacionado com a constante de decaimento l por:

        Transferência linear de energia. Essa quantidade é a energia que uma partícula carregada transmite à matéria por unidade de comprimento à medida que atravessa a matéria. Formalmente,

        onde L é a transferência linear de energia (também chamada potência de parada de colisão linear) e de é a energia média perdida pela partícula ao percorrer uma distância dl. A transferência linear de energia (LET) tem unidades de J m-1.

        Tempo de vida médio. Essa quantidade é o tempo médio que um estado nuclear sobreviverá antes de sofrer uma transformação para um estado de energia mais baixo, emitindo radiação ionizante. Tem unidades fundamentais de segundos (s), mas também pode ser expresso em horas, dias ou anos. Está relacionado com a constante de decaimento por:

        onde t é o tempo de vida médio e l é a constante de decaimento para um determinado nuclídeo em um determinado estado de energia.

        Fator de ponderação de radiação. Este é um número w R que, para um determinado tipo e energia de radiação R, é representativo de valores da eficácia biológica relativa dessa radiação na indução de efeitos estocásticos em baixas doses. os valores de w R estão relacionados à transferência linear de energia (LET) e são apresentados na tabela 1. A Figura 2 (no verso) mostra a relação entre w R e LET para nêutrons.

        Tabela 1. Fatores de ponderação da radiação wR

        Tipo e faixa de energia

        wR 1

        Fótons, todas as energias

        1

        Elétrons e múons, todas as energias2

        1

        Nêutrons, energia 10 keV

        5

        10 keV a 100 keV

        10

        >100 keV a 2 MeV

        20

        >2 MeV a 20 MeV

        10

        >20 MeV

        5

        Prótons, exceto prótons de recuo, energia > 2 MeV

        5

        Partículas alfa, fragmentos de fissão, núcleos pesados

        20

        1 Todos os valores referem-se à radiação incidente no corpo ou, para fontes internas, emitidas pela fonte.

        2 Excluindo elétrons Auger emitidos de núcleos ligados ao DNA.

        Eficácia biológica relativa (RBE). O RBE de um tipo de radiação comparado com outro é a razão inversa das doses absorvidas produzindo o mesmo grau de um ponto final biológico definido.

        Figura 2. Fatores de ponderação de radiação para nêutrons (a curva suave deve ser tratada como uma aproximação)

        ION010F2

        Efeito biológico estocástico. Trata-se de um efeito biológico causado pela radiação ionizante cuja probabilidade de ocorrência aumenta com o aumento da dose absorvida, provavelmente sem limiar, mas cuja gravidade independe da dose absorvida. O câncer é um exemplo de efeito biológico estocástico.

        Fator de ponderação tecidual w T. Isso representa a contribuição do tecido ou órgão T em detrimento total devido a todos os efeitos estocásticos resultantes da irradiação uniforme de todo o corpo. É usado porque a probabilidade de efeitos estocásticos devido a uma dose equivalente depende do tecido ou órgão irradiado. Uma dose equivalente uniforme em todo o corpo deve fornecer uma dose efetiva numericamente igual à soma das doses efetivas para todos os tecidos e órgãos do corpo. Portanto, a soma de todos os fatores de peso do tecido é normalizada para a unidade. A Tabela 2 fornece valores para fatores de ponderação de tecido.

        Tabela 2. Fatores de ponderação tecidual wT

        Tecido ou órgão

        wT 1

        Gônadas

        0.20

        Medula óssea (vermelha)

        0.12

        Cólon

        0.12

        Pulmão

        0.12

        Estômago

        0.12

        Bexiga

        0.05

        Peito

        0.05

        Fígado

        0.05

        Esôfago

        0.05

        Tiróide

        0.05

        Pele

        0.01

        Superfície óssea

        0.01

        Restante

        0.052, 3

        1 Os valores foram desenvolvidos a partir de uma população de referência de números iguais de ambos os sexos e uma ampla gama de idades. Na definição de dose efetiva, eles se aplicam a trabalhadores, a toda a população e a ambos os sexos.

        2 Para fins de cálculo, o restante é composto pelos seguintes tecidos e órgãos adicionais: adrenais, cérebro, intestino grosso superior, intestino delgado, rins, músculos, pâncreas, baço, timo e útero. A lista inclui órgãos que provavelmente serão irradiados seletivamente. Alguns órgãos da lista são conhecidos por serem suscetíveis à indução de câncer.

        3 Nos casos excepcionais em que um único dos tecidos ou órgãos restantes recebe uma dose equivalente em excesso à dose mais alta em qualquer um dos doze órgãos para os quais um fator de ponderação é especificado, um fator de ponderação de 0.025 deve ser aplicado a esse tecido ou órgão e um fator de ponderação de 0.025 para a dose média no restante do restante conforme definido acima.

         

        Voltar

        Leia 3078 vezes Última modificação em sábado, 30 de julho de 2022 23:33

        " ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

        Conteúdo

        Radiação: Referências Ionizantes

        Instituto Nacional de Padrões Americano (ANSI). 1977. Segurança de radiação para equipamentos de análise de raios-X, difração e fluorescência. vol. 43.2. Nova York: ANSI.

        Sociedade Nuclear Americana. 1961. Relatório especial sobre o acidente SL-1. Notícias Nucleares.

        Bethe, HA. 1950. Revs. Mod. Física, 22, 213.

        Brill, AB e EH Forgotson. 1964. Radiação e malformações congênitas. Am J Obstet Gynecol 90:1149-1168.

        Brown, P. 1933. American Martyrs to Science through the Roentgen Rays. Springfield, Illinois: Charles C. Thomas.

        Bryant, PM. 1969. Avaliações de dados sobre liberações controladas e acidentais de I-131 e Cs-137 para a atmosfera. Saúde Física 17(1).

        Doll, R, NJ Evans e SC Darby. 1994. Exposição paterna sem culpa. Nature 367:678-680.

        Friedenwald, JS e S Sigelmen. 1953. A influência da radiação ionizante na atividade mitótica no epitélio da córnea do rato. Exp Cell Res 4:1-31.

        Gardner, MJ, A Hall, MP Snee, S Downes, CA Powell e JD Terell. 1990. Resultados do estudo de caso-controle de leucemia e linfoma entre jovens perto da usina nuclear de Sellafield em West Cumbria. Brit Med J 300:423-429.

        Boa cabeça, DJ. 1988. Distribuição espacial e temporal de energia. Saúde Física 55:231-240.

        Salão, EJ. 1994. Radiobiologia para o Radiologista. Filadélfia: JB Lippincott.

        Haynie, JS e RH Olsher. 1981. Um resumo dos acidentes de exposição à máquina de raios-x no Los Alamos National Laboratory. LAUP.

        Colina, C e A Laplanche. 1990. Mortalidade geral e mortalidade por câncer em torno de instalações nucleares francesas. Nature 347:755-757.

        Agência Internacional de Pesquisa sobre o Câncer (IARC). 1994. Grupo de estudo da IARC sobre risco de câncer entre trabalhadores da indústria nuclear, novas estimativas de risco de câncer devido a baixas doses de radiação ionizante: um estudo internacional. Lancet 344:1039-1043.

        Agência Internacional de Energia Atômica (AIEA). 1969. Simpósio sobre o Tratamento de Acidentes de Radiação. Viena: AIEA.

        —. 1973. Procedimento de proteção contra radiação. Série de Segurança da Agência Internacional de Energia Atômica, No. 38. Viena: AIEA.

        —. 1977. Simpósio sobre o Tratamento de Acidentes de Radiação. Viena: AIEA.

        —. 1986. Dosimetria Biológica: Análise de Aberração Cromossômica para Avaliação de Dose. Relatório técnico nº 260. Viena: IAEA.

        Comissão Internacional de Proteção Radiológica (ICRP). 1984. Efeitos não estocásticos da radiação ionizante. Ann ICRP 14(3):1-33.

        —. 1991. Recomendações da Comissão Internacional de Proteção Radiológica. Ann ICRP 21:1-3.

        Jablon, S, Z Hrubec e JDJ Boice. 1991. Câncer em populações que vivem perto de instalações nucleares. Um levantamento de mortalidade em todo o país e incidência em duas áreas. JAMA 265:1403-1408.

        Jensen, RH, RG Langlois e WL Bigbee. 1995. Frequência elevada de mutações da glicoforina A em eritrócitos de vítimas do acidente de Chernobyl. Rad Res 141:129-135.

        Revista de Medicina Ocupacional (JOM). 1961. Suplemento Especial. J Occup Med 3(3).

        Kasakov, VS, EP Demidchik e LN Astakhova. 1992. Câncer de tireóide após Chernobyl. Natureza 359:21.

        Kerber, RA, JE Till, SL Simon, JL Lyon, DC Thomas, S Preston-Martin, ML Rallison, RD Lloyd e WS Stevens. 1993. Um estudo de coorte de doenças da tireóide em relação às consequências de testes de armas nucleares. JAMA 270:2076-2082.

        Kinlen, LJ. 1988. Evidência de uma causa infecciosa de leucemia infantil: comparação de uma cidade nova escocesa com locais de reprocessamento nuclear na Grã-Bretanha. Lancet II:1323-1327.

        Kinlen, LJ, K Clarke e A Balkwill. 1993. Exposição paterna à radiação pré-concepcional na indústria nuclear e leucemia e linfoma não-Hodgkin em jovens na Escócia. Brit Med J 306:1153-1158.

        Lindell, B. 1968. Riscos ocupacionais no trabalho analítico de raios-x. Saúde Física 15:481-486.

        Little, MP, MW Charles e R Wakeford. 1995. Uma revisão dos riscos de leucemia em relação à exposição pré-concepção dos pais à radiação. Saúde Física 68:299-310.

        Lloyd, DC e RJ Purrott. 1981. Análise de aberração cromossômica em dosimetria de proteção radiológica. Rad Prot Dosimetria 1:19-28.

        Lubenau, JO, J Davis, D McDonald e T Gerusky. 1967. Perigos Analíticos de Raios-X: Um Problema Contínuo. Trabalho apresentado no 12º encontro anual da Health Physics Society. Washington, DC: Health Physics Society.

        Lubin, JH, JDJ Boice e C Edling. 1994. Risco de Radônio e Câncer de Pulmão: Uma Análise Conjunta de 11 Estudos de Mineiros Subterrâneos. Publicação NIH No. 94-3644. Rockville, Maryland: Institutos Nacionais de Saúde (NIH).

        Lushbaugh, CC, SA Fry e RC Ricks. 1987. Acidentes em reatores nucleares: Preparação e consequências. Brit J Radiol 60:1159-1183.

        McLaughlin, JR, EA Clarke, D Bishri e TW Anderson. 1993. Leucemia infantil nas proximidades de instalações nucleares canadenses. Causas e Controle do Câncer 4:51-58.

        Mettler, FA e AC Upton. 1995. Efeitos médicos da radiação ionizante. Nova York: Grune & Stratton.

        Mettler, FA, MR Williamson e HD Royal. 1992. Nódulos de tireóide na população que vive em torno de Chernobyl. JAMA 268:616-619.

        Academia Nacional de Ciências (NAS) e Conselho Nacional de Pesquisa (NRC). 1990. Efeitos na Saúde da Exposição a Baixos Níveis de Radiação Ionizante. Washington, DC: National Academy Press.

        —. 1994. Efeitos na Saúde da Exposição ao Radônio. Tempo para reavaliação? Washington, DC: National Academy Press.

        Conselho Nacional de Proteção e Medições de Radiação (NCRP). 1987. Exposição à radiação da população dos EUA de produtos de consumo e fontes diversas. Relatório nº 95, Bethesda, Md: NCRP.

        Institutos Nacionais de Saúde (NIH). 1985. Relatório do Grupo de Trabalho Ad Hoc dos Institutos Nacionais de Saúde para Desenvolver Tabelas Radioepidemiológicas. Publicação NIH No. 85-2748. Washington, DC: US ​​Government Printing Office.

        Neel, JV, W Schull e Awa. 1990. Os filhos de pais expostos a bombas atômicas: Estimativas da duplicação genética da dose de radiação para humanos. Am J Hum Genet 46:1053-1072.

        Comissão Reguladora Nuclear (NUREG). 1980. Critérios para Preparação e Avaliação de Planos de Resposta a Emergências Radiológicas e Preparação em Apoio a Usinas Nucleares. Documento nº NUREG 0654/FEMA-REP-1, Rev. 1. Washington, DC: NUREG.

        Otake, M, H Yoshimaru e WJ Schull. 1987. Retardo mental grave entre os sobreviventes expostos ao pré-natal do bombardeio atômico de Hiroshima e Nagasaki: uma comparação dos sistemas de dosimetria antigos e novos. No Relatório Técnico RERF. Hiroshima: Fundação de Pesquisa de Efeitos de Radiação.

        Prisyazhiuk, A, OA Pjatak e VA Buzanov. 1991. Câncer na Ucrânia, pós-Chernobyl. Lancet 338:1334-1335.

        Robbins, J e W Adams. 1989. Efeitos da radiação nas Ilhas Marshall. Em Radiation and the Thyroid, editado por S Nagataki. Tóquio: Excerpta Medica.

        Rubin, P, e GW Casarett. 1972. Uma direção para patologia de radiação clínica: a dose de tolerância. Em Frontiers of Radiation Therapy and Oncology, editado por JM Vaeth. Basel: Karger e Baltimore: Univ. Imprensa Parque.

        Schaeffer, NM. 1973. Blindagem de reator para engenheiros nucleares. Relatório nº TID-25951. Springfield, Virgínia: Serviços Nacionais de Informações Técnicas.

        Shapiro, J. 1972. Proteção contra radiação: Um guia para cientistas e médicos. Cambridge, Mass: Harvard Univ. Imprensa.

        Stannard, JN. 1988. Radioatividade e Saúde: Uma História. Relatório do Departamento de Energia dos EUA, DOE/RL/01830-T59. Washington, DC: National Technical Information Services, EUA. Departamento de Energia.

        Stevens, W, JE Till, L Lyon et al. 1990. Leucemia em Utah e precipitação radioativa do local de teste de Nevada. JAMA. 264: 585–591.

        Pedra, RS. 1959. Padrões máximos de exposição permitidos. Em Protection in Diagnostic Radiology, editado por BP Sonnenblick. New Brunswick: Rutgers Univ. Imprensa.

        Comitê Científico das Nações Unidas sobre os Efeitos da Radiação Atômica (UNSCEAR). 1982. Radiação Ionizante: Fontes e Efeitos Biológicos. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

        —. 1986. Efeitos Genéticos e Somáticos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

        —. 1988. Fontes, Efeitos e Riscos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

        —. 1993. Fontes e Efeitos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

        —. 1994. Fontes e Efeitos da Radiação Ionizante. Relatório à Assembleia Geral, com anexos. Nova York: Nações Unidas.

        Upton, CA. 1986. Perspectivas históricas sobre carcinogênese por radiação. Em Radiation Carcinogenesis, editado por AC Upton, RE Albert, FJ Burns e RE Shore. Nova york. Elsevier.

        Upton, CA. 1996 Ciências Radiológicas. Em The Oxford Textbook of Public Health, editado por R Detels, W Holland, J McEwen e GS Omenn. Nova york. Imprensa da Universidade de Oxford.

        Comissão de Energia Atômica dos Estados Unidos (AEC). 1957. O incidente do reator Windscale. No Boletim de Informações sobre Acidentes No. 73. Washington, DC: AEC.

        —. 1961. Relatório do Conselho de Investigação sobre o Acidente Sl-1. Washington, DC: US ​​NRC.

        Código de Regulamentos Federais dos EUA (USCFR). 1990. Licenças para Radiografia e Requisitos de Segurança de Radiação para Operações Radiográficas. Washington, DC: Governo dos Estados Unidos.

        Departamento de Energia dos EUA (USDOE). 1987. Saúde e Consequências Ambientais do Acidente da Usina Nuclear de Chernobyl. DOE/ER-0332.Washington, DC: USDOE.

        Comissão Reguladora Nuclear dos EUA (NRC). 1983. Instrumentação para usinas nucleares resfriadas a água leve para avaliar as condições da usina e dos arredores durante e após um acidente. No NRC Regulatory Guide 1.97. Rev. 3. Washington, DC: NRC.

        Wakeford, R, EJ Tawn, DM McElvenny, LE Scott, K Binks, L Parker, H Dickinson, H e J Smith. 1994a. As estatísticas descritivas e as implicações para a saúde das doses de radiação ocupacional recebidas pelos homens na instalação nuclear de Sellafield antes da concepção de seus filhos. J. Radiol. Proteger. 14: 3–16.

        Wakeford, R., EJ Tawn, DM McElvenny, K Binks, LE Scott e L Parker. 1994b. Os casos de leucemia infantil Seascale - as taxas de mutação implícitas nas doses de radiação pré-concepcionais paternas. J. Radiol. Proteger. 14: 17–24.

        Ward, JF. 1988. Danos no DNA produzidos por radiação ionizante em células de mamíferos: identidades, mecanismos de formação e reparabilidade. Prog. Res. de Ácido Nucleico. Mol. Biol. 35: 96–128.

        Yoshimoto, Y, JV Neel, WJ Schull, H Kato, M Soda, R Eto e K Mabuchi. 1990. Tumores malignos durante as duas primeiras décadas de vida em descendentes de sobreviventes da bomba atômica. Sou. J. Hum. Genet. 46: 1041–1052.