Quinta-feira, Março 24 2011 18: 59

Biologia da Radiação e Efeitos Biológicos

Classifique este artigo
(Voto 1)

Após sua descoberta por Roentgen em 1895, o raio X foi introduzido tão rapidamente no diagnóstico e tratamento de doenças que lesões por exposição excessiva à radiação começaram a ser encontradas quase imediatamente em trabalhadores pioneiros da radiação, que ainda não haviam se conscientizado dos perigos (Brown 1933). As primeiras dessas lesões foram predominantemente reações cutâneas nas mãos daqueles que trabalhavam com os primeiros equipamentos de radiação, mas em uma década muitos outros tipos de lesões também foram relatados, incluindo os primeiros cânceres atribuídos à radiação (Stone 1959).

Ao longo do século, desde essas primeiras descobertas, o estudo dos efeitos biológicos da radiação ionizante recebeu um impulso contínuo dos crescentes usos da radiação na medicina, ciência e indústria, bem como das aplicações pacíficas e militares da energia atômica. Como resultado, os efeitos biológicos da radiação têm sido investigados mais profundamente do que os de praticamente qualquer outro agente ambiental. A evolução do conhecimento dos efeitos da radiação tem sido influente na definição de medidas para a proteção da saúde humana contra muitos outros perigos ambientais, bem como contra a radiação.

Natureza e Mecanismos dos Efeitos Biológicos da Radiação

Deposição de energia. Em contraste com outras formas de radiação, a radiação ionizante é capaz de depositar energia localizada suficiente para desalojar elétrons dos átomos com os quais interage. Assim, como a radiação colide aleatoriamente com átomos e moléculas ao passar pelas células vivas, ela dá origem a íons e radicais livres que quebram as ligações químicas e causam outras alterações moleculares que danificam as células afetadas. A distribuição espacial dos eventos ionizantes depende do fator de ponderação da radiação, w R da radiação (ver tabela 1 e figura 1).

Tabela 1. Fatores de ponderação da radiação wR

Tipo e faixa de energia

wR 1

Fótons, todas as energias

1

Elétrons e múons, todas as energias2

1

Nêutrons, energia <10 keV

5

10 keV a 100 keV

10

>100 keV a 2 MeV

20

>2 MeV a 20 MeV

10

>20 MeV

5

Prótons, exceto prótons de recuo, energia > 2 MeV

5

Partículas alfa, fragmentos de fissão, núcleos pesados

20

1 Todos os valores referem-se à radiação incidente no corpo ou, para fontes internas, emitidas pela fonte.

2 Excluindo elétrons Auger emitidos de núcleos ligados ao DNA.

Figura 1. Diferenças entre vários tipos de radiação ionizante no poder de penetração no tecido

ION020F1

Efeitos no DNA. Qualquer molécula na célula pode ser alterada pela radiação, mas o DNA é o alvo biológico mais crítico devido à redundância limitada da informação genética que ele contém. Uma dose absorvida de radiação grande o suficiente para matar a célula em divisão média - 2 gray (Gy) - é suficiente para causar centenas de lesões em suas moléculas de DNA (Ward 1988). A maioria dessas lesões é reparável, mas aquelas produzidas por uma radiação densamente ionizante (por exemplo, um próton ou uma partícula alfa) são geralmente menos reparáveis ​​do que aquelas produzidas por uma radiação esparsamente ionizante (por exemplo, um raio X ou um raio gama) ( Goodhead 1988). As radiações densamente ionizantes (alto LET), portanto, normalmente têm uma eficácia biológica relativa (RBE) mais alta do que as radiações esparsamente ionizantes (baixo LET) para a maioria das formas de lesão (ICRP 1991).

Efeitos nos genes. Danos ao DNA que permanecem não reparados ou são reparados incorretamente podem ser expressos na forma de mutações, cuja frequência parece aumentar como uma função linear e não limiar da dose, aproximadamente 10-5 para 10-6 por locus por Gy (NAS 1990). O fato de que a taxa de mutação parece ser proporcional à dose é interpretado como significando que a travessia do DNA por uma única partícula ionizante pode, em princípio, ser suficiente para causar uma mutação (NAS 1990). Nas vítimas do acidente de Chernobyl, a relação dose-resposta para as mutações da glicoforina nas células da medula óssea assemelha-se muito à observada nos sobreviventes da bomba atômica (Jensen, Langlois e Bigbee 1995).

Efeitos nos cromossomos. Os danos causados ​​pela radiação ao aparato genético também podem causar alterações no número e na estrutura dos cromossomos, cuja frequência aumenta com a dose em trabalhadores que trabalham com radiação, sobreviventes de bombas atômicas e outros expostos à radiação ionizante. A relação dose-resposta para aberrações cromossômicas em linfócitos do sangue humano (figura 2) foi suficientemente bem caracterizada para que a frequência de aberrações nessas células possa servir como um dosímetro biológico útil (IAEA 1986).

Figura 2. Frequência de aberrações cromossômicas dicêntricas em linfócitos humanos em relação à dose, taxa de dose e qualidade da irradiação in vitro

ION020F2

 

Efeitos na sobrevivência celular. Entre as primeiras reações à irradiação está a inibição da divisão celular, que aparece imediatamente após a exposição, variando tanto em grau quanto em duração com a dose (figura 3). Embora a inibição da mitose seja caracteristicamente transitória, os danos causados ​​pela radiação aos genes e cromossomos podem ser letais para as células em divisão, que são altamente radiossensíveis como classe (ICRP 1984). Medida em termos de capacidade proliferativa, a sobrevivência das células em divisão tende a diminuir exponencialmente com o aumento da dose, 1 a 2 Gy geralmente é suficiente para reduzir a população sobrevivente em cerca de 50% (figura 4).

Figura 3. Inibição mitótica induzida por raios x em células epiteliais da córnea de rato

ION020F3

 

Figura 4. Curvas de dose-sobrevivência típicas para células de mamíferos expostas a raios x e nêutrons rápidos

 

ION020F4

Efeitos nos tecidos. Células maduras que não se dividem são relativamente radiorresistentes, mas as células em divisão em um tecido são radiossensíveis e podem ser mortas em número suficiente por irradiação intensa para fazer com que o tecido se torne atrófico (figura 5). A rapidez dessa atrofia depende da dinâmica da população celular no tecido afetado; ou seja, em órgãos caracterizados por lenta renovação celular, como fígado e endotélio vascular, o processo é tipicamente muito mais lento do que em órgãos caracterizados por rápida renovação celular, como medula óssea, epiderme e mucosa intestinal (ICRP 1984). É digno de nota, além disso, que se o volume de tecido irradiado for suficientemente pequeno, ou se a dose for acumulada gradualmente, a gravidade da lesão pode ser bastante reduzida pela proliferação compensatória das células sobreviventes.

Figura 5. Sequência característica de eventos na patogênese dos efeitos não estocásticos da radiação ionizante

 ION020F5

Manifestações clínicas de lesão

Tipos de efeitos. Os efeitos da radiação abrangem uma ampla variedade de reações, variando acentuadamente em suas relações dose-resposta, manifestações clínicas, tempo e prognóstico (Mettler e Upton 1995). Os efeitos são frequentemente subdivididos, por conveniência, em duas grandes categorias: (1) hereditário efeitos, que se expressam nos descendentes dos indivíduos expostos, e (2) somático efeitos, que se expressam nos próprios indivíduos expostos. Estes últimos incluem efeitos agudos, que ocorrem relativamente logo após a irradiação, bem como efeitos tardios (ou crônicos), como o câncer, que pode aparecer meses, anos ou décadas depois.

Efeitos agudos. Os efeitos agudos da radiação resultam predominantemente da depleção de células progenitoras nos tecidos afetados (figura 5) e podem ser provocados apenas por doses grandes o suficiente para matar muitas dessas células (por exemplo, tabela 2). Por esta razão, tais efeitos são vistos como não estocásticoou determinista, na natureza (ICRP 1984 e 1991), em contraste com os efeitos mutagênicos e carcinogênicos da radiação, que são vistos como estocástico fenômenos resultantes de alterações moleculares aleatórias em células individuais que aumentam como funções lineares sem limiar da dose (NAS 1990; ICRP 1991).

Tabela 2. Doses limite aproximadas de radiação X terapêutica convencionalmente fracionada para efeitos não estocásticos clinicamente prejudiciais em vários tecidos

Órgão

Lesão aos 5 anos

Limite
dose (Gy)*

Irradiação
campo (área)

Pele

Úlcera, fibrose grave

55

100 cm2

Mucosa oral

Úlcera, fibrose grave

60

50 cm2

Esôfago

Úlcera, estenose

60

75 cm2

Estômago

Úlcera, perfuração

45

100 cm2

Intestino delgado

Úlcera, estenose

45

100 cm2

Cólon

Úlcera, estenose

45

100 cm2

Reto

Úlcera, estenose

55

100 cm2

Glândulas salivares

Xerostomia

50

50 cm2

Fígado

Insuficiência hepática, ascite

35

inteiro

Rim

Nefrosclerose

23

inteiro

Bexiga urinária

Úlcera, contratura

60

inteiro

testes

Esterilidade permanente

5-15

inteiro

ovário

Esterilidade permanente

2-3

inteiro

Útero

Necrose, perfuração

> 100

inteiro

Vagina

úlcera, fístula

90

5 cm2

peito, criança

Hipoplasia

10

5 cm2

peito, adulto

Atrofia, necrose

> 50

inteiro

Pulmão

Pneumonite, fibrose

40

lóbulo

Capilares

Telangiectasia, fibrose

50-60

s

Coração

Pericardite, pancardite

40

inteiro

osso, criança

crescimento preso

20

10 cm2

osso, adulto

Necrose, fratura

60

10 cm2

Cartilagem, criança

crescimento preso

10

inteiro

Cartilagem, adulto

Necrose

60

inteiro

Sistema nervoso central (cérebro)

Necrose

50

inteiro

Medula espinhal

Necrose, transecção

50

5 cm2

Olho

Panoftalmite, hemorragia

55

inteiro

córnea

Ceratite

50

inteiro

Lente

Catarata

5

inteiro

Orelha (interna)

Surdez

> 60

inteiro

Tiróide

Hipotireoidismo

45

inteiro

Ad-renal

Hipoadrenalismo

> 60

inteiro

Pituitário

hipopituitarismo

45

inteiro

músculo, criança

Hipoplasia

20-30

inteiro

Músculo, adulto

Atrofia

> 100

inteiro

Medula óssea

Hipoplasia

2

inteiro

Medula óssea

Hipoplasia, fibrose

20

localizado

Gânglios linfáticos

Atrofia

33-45

s

Linfáticos

Esclerose

50

s

Feto

Morte

2

inteiro

* Dose causando efeito em 1-5 por cento das pessoas expostas.

Fonte: Rubin e Casarett 1972.

Lesões agudas dos tipos que eram predominantes em trabalhadores pioneiros de radiação e pacientes de radioterapia precoce foram amplamente eliminadas por melhorias nas precauções de segurança e métodos de tratamento. No entanto, a maioria dos pacientes tratados com radiação hoje ainda apresenta alguma lesão do tecido normal que é irradiado. Além disso, acidentes graves de radiação continuam a ocorrer. Por exemplo, cerca de 285 acidentes com reatores nucleares (excluindo o acidente de Chernobyl) foram relatados em vários países entre 1945 e 1987, irradiando mais de 1,350 pessoas, 33 delas fatalmente (Lushbaugh, Fry e Ricks 1987). O acidente de Chernobyl sozinho liberou material radioativo suficiente para exigir a evacuação de dezenas de milhares de pessoas e animais de fazenda da área circundante, e causou doença por radiação e queimaduras em mais de 200 equipes de emergência e bombeiros, ferindo 31 fatalmente (UNSCEAR 1988 ). Os efeitos de longo prazo do material radioativo liberado na saúde não podem ser previstos com certeza, mas as estimativas dos riscos resultantes de efeitos carcinogênicos, com base em modelos de incidência de dose sem limite (discutidos abaixo), indicam que até 30,000 mortes adicionais por câncer podem ocorrer em a população do hemisfério norte durante os próximos 70 anos como resultado do acidente, embora os cânceres adicionais em qualquer país provavelmente sejam muito poucos para serem detectados epidemiologicamente (USDOE 1987).

Menos catastróficos, mas muito mais numerosos do que os acidentes com reatores, foram os acidentes envolvendo fontes médicas e industriais de raios gama, que também causaram ferimentos e perda de vidas. Por exemplo, o descarte indevido de uma fonte de radioterapia de césio-137 em Goiânia, Brasil, em 1987, resultou na irradiação de dezenas de vítimas inocentes, quatro delas fatalmente (UNSCEAR 1993).

Uma discussão abrangente sobre lesões por radiação está além do escopo desta revisão, mas as reações agudas dos tecidos mais radiossensíveis são de interesse generalizado e, portanto, são descritas brevemente nas seções a seguir.

Pele. As células da camada germinativa da epiderme são altamente radiossensíveis. Como resultado, a exposição rápida da pele a uma dose de 6 Sv ou mais causa eritema (vermelhidão) na área exposta, que aparece em um dia ou mais, geralmente dura algumas horas e é seguido duas a quatro semanas depois por uma ou mais ondas de eritema mais profundo e prolongado, bem como por depilação (queda de cabelo). Se a dose exceder 10 a 20 Sv, bolhas, necrose e ulceração podem ocorrer dentro de duas a quatro semanas, seguidas por fibrose da derme subjacente e vasculatura, o que pode levar à atrofia e uma segunda onda de ulceração meses ou anos depois (ICRP 1984 ).

Medula óssea e tecido linfóide. Os linfócitos também são altamente radiossensíveis; uma dose de 2 a 3 Sv administrada rapidamente em todo o corpo pode matar um número suficiente deles para deprimir a contagem de linfócitos periféricos e prejudicar a resposta imune em horas (UNSCEAR 1988). As células hematopoiéticas na medula óssea são igualmente radiossensíveis e são suficientemente depletadas por uma dose comparável para causar granulocitopenia e trombocitopenia dentro de três a cinco semanas. Tais reduções nas contagens de granulócitos e plaquetas podem ser graves o suficiente após uma dose maior para resultar em hemorragia ou infecção fatal (tabela 3).

Tabela 3. Principais formas e características da síndrome de radiação aguda

tempo depois
irradiação

forma cerebral
(>50 Gy)

Gastro-
forma intestinal
(10-20 Gy)

Forma hemopoiética
(2-10 Gy)

Forma pulmonar
(>6 Gy para os pulmões)

Primeiro dia

náusea
vómitos
diarréia
dor de cabeça
desorientaçao
ataxia
coma
convulsões
Death

náusea
vómitos
diarréia

náusea
vómitos
diarréia

náusea
vómitos

Segunda semana

 

náusea
vómitos
diarréia
febre
eritema
prostração
Death

   

Terceiro a sexto
semanas

   

fraqueza
fadiga
anorexia
febre
hemorragia
depilação
recuperação (?)
morte (?)

 

Segundo a oitavo
mês

     

tossir
dispneia
febre
dor no peito
respiratório
falha (?)

Fonte: UNSCEAR 1988.

Intestino. As células-tronco no epitélio que reveste o intestino delgado também são extremamente radiossensíveis, exposição aguda a 10 Sv esgotando seu número o suficiente para fazer com que as vilosidades intestinais sobrejacentes se tornem desnudas em poucos dias (ICRP 1984; UNSCEAR 1988). A desnudação de uma grande área da mucosa pode resultar em uma síndrome tipo disenteria fulminante e rapidamente fatal (tabela 3).

Gônadas. Os espermatozóides maduros podem sobreviver a grandes doses (100 Sv), mas as espermatogônias são tão radiossensíveis que apenas 0.15 Sv entregues rapidamente a ambos os testículos são suficientes para causar oligospermia, e uma dose de 2 a 4 Sv pode causar esterilidade permanente. Os oócitos, da mesma forma, são radiossensíveis, uma dose de 1.5 a 2.0 Sv entregue rapidamente a ambos os ovários causando esterilidade temporária, e uma dose maior, esterilidade permanente, dependendo da idade da mulher no momento da exposição (ICRP 1984).

Trato Respiratório. O pulmão não é altamente radiossensível, mas a exposição rápida a uma dose de 6 a 10 Sv pode causar o desenvolvimento de pneumonia aguda na área exposta dentro de um a três meses. Se um grande volume de tecido pulmonar for afetado, o processo pode resultar em insuficiência respiratória em semanas ou pode levar a fibrose pulmonar e cor pulmonale meses ou anos depois (ICRP 1984; UNSCEAR 1988).

Lente do olho. As células do epitélio anterior do cristalino, que continuam a se dividir ao longo da vida, são relativamente radiossensíveis. Como resultado, a exposição rápida do cristalino a uma dose superior a 1 Sv pode levar, dentro de meses, à formação de uma opacidade polar posterior microscópica; e 2 a 3 Sv recebidos em uma única exposição breve - ou 5.5 a 14 Sv acumulados durante um período de meses - podem produzir uma catarata que prejudica a visão (ICRP 1984).

Outros tecidos. Em comparação com os tecidos mencionados acima, outros tecidos do corpo são geralmente apreciavelmente menos radiossensíveis (por exemplo, tabela 2); no entanto, o embrião constitui uma exceção notável, conforme discutido abaixo. Digno de nota também é o fato de que a radiossensibilidade de cada tecido é aumentada quando está em um estado de crescimento rápido (ICRP 1984).

Lesão por radiação de corpo inteiro. A exposição rápida de uma grande parte do corpo a uma dose superior a 1 Gy pode causar a síndrome de radiação aguda. Esta síndrome inclui: (1) um estágio prodrômico inicial, caracterizado por mal-estar, anorexia, náuseas e vômitos, (2) um período latente subsequente, (3) uma segunda (principal) fase da doença e (4) finalmente, recuperação ou morte (tabela 3). A fase principal da doença geralmente assume uma das seguintes formas, dependendo do local predominante da lesão por radiação: (1) hematológica, (2) gastrointestinal, (3) cerebral ou (4) pulmonar (tabela 3).

Lesão por radiação localizada. Ao contrário das manifestações clínicas de lesões agudas por radiação em todo o corpo, que normalmente são dramáticas e imediatas, a reação à irradiação agudamente localizada, seja de uma fonte de radiação externa ou de um radionuclídeo depositado internamente, tende a evoluir lentamente e produzir poucos sintomas ou sinais. a menos que o volume de tecido irradiado e/ou a dose sejam relativamente grandes (por exemplo, tabela 3).

Efeitos de radionuclídeos. Alguns radionuclídeos - por exemplo, trítio (3H), carbono-14 (14C) e césio-137 (137Cs) - tendem a se distribuir sistemicamente e a irradiar o corpo como um todo, enquanto outros radionuclídeos são caracteristicamente captados e concentrados em órgãos específicos, produzindo lesões correspondentemente localizadas. Rádio (Ra) e estrôncio-90
(90Sr), por exemplo, são depositados predominantemente no osso e, portanto, danificam principalmente os tecidos esqueléticos, enquanto o iodo radioativo se concentra na glândula tireóide, o local primário de qualquer lesão resultante (Stannard 1988; Mettler e Upton 1995).

Efeitos cancerígenos

Características gerais. A carcinogenicidade da radiação ionizante, manifestada pela primeira vez no início deste século pela ocorrência de cânceres de pele e leucemias em trabalhadores pioneiros da radiação (Upton 1986), foi documentada extensivamente por excessos dependentes da dose de muitos tipos de neoplasias em pintores de dial de rádio, mineiros subterrâneos de hardrock, sobreviventes de bombas atômicas, pacientes de radioterapia e animais de laboratório experimentalmente irradiados (Upton 1986; NAS 1990).

Os crescimentos benignos e malignos induzidos pela irradiação caracteristicamente levam anos ou décadas para aparecer e não exibem características conhecidas pelas quais possam ser distinguidos daqueles produzidos por outras causas. Além disso, com poucas exceções, sua indução foi detectável apenas após equivalentes de dose relativamente grandes (0.5 Sv) e variou com o tipo de neoplasia, bem como com a idade e o sexo das pessoas expostas (NAS 1990).

Mecanismos. Os mecanismos moleculares da carcinogênese da radiação ainda precisam ser elucidados em detalhes, mas em animais de laboratório e células cultivadas os efeitos carcinogênicos da radiação foram observados como iniciando efeitos, promovendo efeitos e efeitos na progressão da neoplasia, dependendo das condições experimentais em questão (NAS 1990). Os efeitos também parecem envolver a ativação de oncogenes e/ou a inativação ou perda de genes supressores de tumor em muitos casos, se não em todos. Além disso, os efeitos carcinogênicos da radiação se assemelham aos dos carcinógenos químicos, sendo modificáveis ​​por hormônios, variáveis ​​nutricionais e outros fatores modificadores (NAS 1990). Vale ressaltar, além disso, que os efeitos da radiação podem ser aditivos, sinérgicos ou mutuamente antagônicos aos dos carcinógenos químicos, dependendo dos produtos químicos específicos e das condições de exposição em questão (UNSCEAR 1982 e 1986).

Relação dose-efeito. Os dados existentes não são suficientes para descrever a relação dose-incidência de forma inequívoca para qualquer tipo de neoplasia ou para definir quanto tempo após a irradiação o risco de crescimento pode permanecer elevado em uma população exposta. Quaisquer riscos atribuíveis à irradiação de baixo nível podem, portanto, ser estimados apenas por extrapolação, com base em modelos que incorporam suposições sobre tais parâmetros (NAS 1990). Dos vários modelos dose-efeito que foram usados ​​para estimar os riscos de irradiação de baixo nível, aquele que foi julgado como o que melhor se ajusta aos dados disponíveis é o seguinte:

onde R0 denota o risco de fundo específico da idade de morte de um tipo específico de câncer, D a dose de radiação, f(D) uma função de dose que é linear-quadrática para leucemia e linear para alguns outros tipos de câncer, e g(b) é uma função de risco dependente de outros parâmetros, como sexo, idade na exposição e tempo após a exposição (NAS 1990).

Modelos sem limite desse tipo foram aplicados a dados epidemiológicos dos sobreviventes da bomba atômica japonesa e outras populações irradiadas para derivar estimativas dos riscos ao longo da vida de diferentes formas de câncer induzido por radiação (por exemplo, tabela 4). Tais estimativas devem ser interpretadas com cautela, no entanto, na tentativa de prever os riscos de câncer atribuíveis a pequenas doses ou doses que são acumuladas ao longo de semanas, meses ou anos, uma vez que experimentos com animais de laboratório mostraram a potência carcinogênica de raios x e raios gama ser reduzida em uma ordem de grandeza quando a exposição é muito prolongada. De fato, como foi enfatizado em outro lugar (NAS 1990), os dados disponíveis não excluem a possibilidade de que possa haver um limite na faixa equivalente de dose de milisievert (mSv), abaixo do qual a radiação pode não ter carcinogenicidade.

Tabela 4. Riscos estimados de câncer ao longo da vida atribuíveis à irradiação rápida de 0.1 Sv

Tipo ou localização do câncer

Excesso de mortes por câncer por 100,000

 

(Não.)

(%)*

Estômago

110

18

Pulmão

85

3

Cólon

85

5

Leucemia (excluindo LLC)

50

10

Bexiga urinária

30

5

Esôfago

30

10

Peito

20

1

Fígado

15

8

Gônadas

10

2

Tiróide

8

8

Osteossarcoma

5

5

Pele

2

2

Restante

50

1

Total

500

2

* Aumento percentual na expectativa de “background” para uma população não irradiada.

Fonte: ICRP 1991.

Vale ressaltar também que as estimativas tabuladas são baseadas em médias populacionais e não necessariamente aplicáveis ​​a um determinado indivíduo; isto é, a suscetibilidade a certos tipos de câncer (por exemplo, câncer de tireoide e mama) é substancialmente maior em crianças do que em adultos, e a suscetibilidade a certos tipos de câncer também aumenta em associação com alguns distúrbios hereditários, como retinoblastoma e nevóide síndrome do carcinoma basocelular (UNSCEAR 1988, 1994; NAS 1990). Apesar de tais diferenças na suscetibilidade, estimativas baseadas na população foram propostas para uso em casos de compensação como base para avaliar a probabilidade de que um câncer surgido em uma pessoa previamente irradiada possa ter sido causado pela exposição em questão (NIH 1985).

Avaliação de risco de baixa dose. Estudos epidemiológicos para verificar se os riscos de câncer decorrentes da exposição de baixo nível à radiação realmente variam com a dose da maneira prevista pelas estimativas acima foram inconclusivos até o momento. As populações que residem em áreas com níveis elevados de radiação natural de fundo não manifestam aumentos definitivamente atribuíveis nas taxas de câncer (NAS 1990; UNSCEAR 1994); inversamente, alguns estudos chegaram a sugerir uma relação inversa entre os níveis de radiação de fundo e as taxas de câncer, o que foi interpretado por alguns observadores como evidência da existência de efeitos benéficos (ou horméticos) da irradiação de baixo nível, de acordo com as respostas adaptativas de certos sistemas celulares (UNSCEAR 1994). A relação inversa é de significância questionável, entretanto, uma vez que não persistiu após o controle dos efeitos das variáveis ​​de confusão (NAS 1990). Da mesma forma, nos trabalhadores de radiação de hoje - exceto para certas coortes de mineradores subterrâneos (NAS 1994; Lubin, Boice e Edling 1994) - as taxas de outros cânceres além da leucemia não são mais detectavelmente aumentadas (UNSCEAR 1994), graças aos avanços na proteção contra radiação; além disso, as taxas de leucemia em tais trabalhadores são consistentes com as estimativas tabuladas acima (IARC 1994). Em resumo, portanto, os dados disponíveis no momento são consistentes com as estimativas tabuladas acima (tabela 4), que implicam que menos de 3% dos cânceres na população em geral são atribuíveis à radiação natural de fundo (NAS 1990; IARC 1994), embora até 10% dos cânceres de pulmão podem ser atribuídos ao radônio interno (NAS 1990; Lubin, Boice e Edling 1994).

Observou-se que altos níveis de precipitação radioativa de um teste de armas termonucleares em Bikini em 1954 causaram um aumento dependente da dose na frequência de câncer de tireoide em habitantes das Ilhas Marshall que receberam grandes doses na glândula tireoide na infância (Robbins e Adams 1989). Da mesma forma, foi relatado que crianças que vivem em áreas da Bielo-Rússia e da Ucrânia contaminadas por radionuclídeos liberados do acidente de Chernobyl apresentam uma incidência aumentada de câncer de tireoide (Prisyazhuik, Pjatak e Buzanov 1991; Kasakov, Demidchik e Astakhova 1992), mas os resultados são em desacordo com os do Projeto Internacional de Chernobyl, que não encontrou excesso de nódulos tireoidianos benignos ou malignos em crianças que vivem nas áreas mais fortemente contaminadas ao redor de Chernobyl (Mettler, Williamson e Royal 1992). A base para a discrepância e se os excessos relatados podem ter resultado apenas de vigilância intensificada, ainda precisam ser determinados. A este respeito, é digno de nota que as crianças do sudoeste de Utah e Nevada que foram expostas à precipitação de testes de armas nucleares em Nevada durante a década de 1950 mostraram aumento na frequência de qualquer tipo de câncer de tireóide (Kerber et al. 1993), e a prevalência de leucemia aguda parece ter sido elevada nessas crianças que morreram entre 1952 e 1957, o período de maior exposição à precipitação (Stevens et al. 1990).

Também foi sugerida a possibilidade de que o excesso de leucemia entre crianças residentes nas proximidades de usinas nucleares no Reino Unido possa ter sido causado pela radioatividade liberada pelas usinas. Estima-se, no entanto, que as liberações tenham aumentado a dose total de radiação para essas crianças em menos de 2%, do que se infere que outras explicações são mais prováveis ​​(Doll, Evans e Darby 1994). Uma etiologia ineficaz para os grupos observados de leucemia é sugerida pela existência de excessos comparáveis ​​de leucemia infantil em locais no Reino Unido que carecem de instalações nucleares, mas de outra forma se assemelham a locais nucleares por terem experimentado grandes influxos de população de forma semelhante em tempos recentes (Kinlen 1988; Doll , Evans e Darby 1994). Outra hipótese - a saber, que as leucemias em questão podem ter sido causadas por irradiação ocupacional dos pais das crianças afetadas - também foi sugerida pelos resultados de um estudo de caso-controle (Gardner et al. 1990), mas essa hipótese é geralmente descontados por razões que são discutidas na seção a seguir.

Efeitos hereditários

Os efeitos hereditários da irradiação, embora bem documentados em outros organismos, ainda não foram observados em humanos. Por exemplo, um estudo intensivo de mais de 76,000 filhos dos sobreviventes japoneses da bomba atômica, realizado ao longo de quatro décadas, não revelou quaisquer efeitos hereditários da radiação nessa população, conforme medido por resultados adversos da gravidez, mortes neonatais, doenças malignas, rearranjos cromossômicos, aneuploidia do cromossomo sexual, alterações dos fenótipos das proteínas séricas ou eritrocitárias, alterações na razão sexual ou distúrbios no crescimento e desenvolvimento (Neel, Schull e Awa 1990). Consequentemente, as estimativas dos riscos de efeitos hereditários da radiação devem depender fortemente da extrapolação de achados em camundongos de laboratório e outros animais experimentais (NAS 1990; UNSCEAR 1993).

A partir dos dados experimentais e epidemiológicos disponíveis, infere-se que a dose necessária para dobrar a taxa de mutações hereditárias em células germinativas humanas deve ser de pelo menos 1.0 Sv (NAS 1990; UNSCEAR 1993). Com base nisso, estima-se que menos de 1% de todas as doenças geneticamente determinadas na população humana podem ser atribuídas à irradiação natural de fundo (tabela 5).

Tabela 5. Frequências estimadas de distúrbios hereditários atribuíveis à irradiação ionizante de fundo natural

Tipo de transtorno

Prevalência natural
(por milhão de nascidos vivos)

Contribuição de fundo natural
radiação
1 (por milhão de nascidos vivos)2

   

Primeira geração

Equilíbrio
Gerações
3

Autossômico
dominante

180,000

20-100

300

ligado ao X

400

<1

<15

Recessiva

2,500

<1

aumento muito lento

Cromossômico

4,400

<20

aumento muito lento

Congênito
defeitos

20,000-30,000

30

30-300

Outros distúrbios de etiologia complexa:

Doença cardíaca

600,000

não estimado4

não estimado4

Câncer

300,000

não estimado4

não estimado4

Outros selecionados

300,000

não estimado4

não estimado4

1 Equivalente a » 1 mSv por ano, ou » 30 mSv por geração (30 anos).

2 Valores arredondados.

3 Depois de centenas de gerações, a adição de mutações desfavoráveis ​​induzidas por radiação eventualmente se torna equilibrada por sua perda da população, resultando em um "equilíbrio" genético.

4 Faltam estimativas quantitativas de risco devido à incerteza sobre o componente mutacional da(s) doença(s) indicada(s).

Fonte: Conselho Nacional de Pesquisa 1990.

A hipótese de que o excesso de leucemia e linfoma não-Hodgkin em jovens residentes na vila de Seascale resultou de efeitos oncogênicos hereditários causados ​​pela irradiação ocupacional dos pais das crianças na instalação nuclear de Sellafield foi sugerida pelos resultados de um estudo de caso estudo de controle (Gardner et al. 1990), conforme observado acima. Os argumentos contra esta hipótese, no entanto, são:

  1. a falta de qualquer excesso comparável em números maiores de crianças nascidas fora de Seascale de pais que receberam doses ocupacionais semelhantes, ou até maiores, na mesma usina nuclear (Wakeford et al. 1994a)
  2. a falta de excessos semelhantes em crianças francesas (Hill e LaPlanche 1990), canadenses (McLaughlin et al. 1993) ou escocesas (Kinlen, Clarke e Balkwill 1993) nascidas de pais com exposições ocupacionais comparáveis
  3. a falta de excessos nos filhos de sobreviventes da bomba atômica (Yoshimoto et al. 1990)
  4. a falta de excessos em condados dos EUA contendo usinas nucleares (Jablon, Hrubec e Boice 1991)
  5. o fato de que a frequência de mutações induzidas por radiação implícitas na interpretação é muito maior do que as taxas estabelecidas (Wakeford et al. 1994b).

 

Em suma, portanto, os dados disponíveis falham em apoiar a hipótese de irradiação gonadal paterna (Doll, Evans e Darby 1994; Little, Charles e Wakeford 1995).

Efeitos da irradiação pré-natal

A radiossensibilidade é relativamente alta durante a vida pré-natal, mas os efeitos de uma determinada dose variam acentuadamente, dependendo do estágio de desenvolvimento do embrião ou feto no momento da exposição (UNSCEAR 1986). Durante o período de pré-implantação, o embrião é mais suscetível à morte por irradiação, enquanto durante os estágios críticos da organogênese é suscetível à indução de malformações e outros distúrbios do desenvolvimento (tabela 6). Os últimos efeitos são dramaticamente exemplificados pelo aumento dependente da dose na frequência de retardo mental grave (figura 6) e pela diminuição dependente da dose nas pontuações dos testes de QI em sobreviventes da bomba atômica que foram expostos entre a oitava e a décima quinta semanas (e, em menor grau, entre a décima sexta e a vigésima quinta semanas) (UNSCEAR 1986 e 1993).

Tabela 6. Principais anormalidades do desenvolvimento produzidas pela irradiação pré-natal

Cérebro

Anencefalia

porencefalia

Microcefalia*

Encefalocele

mongolismo*

Medula reduzida

atrofia cerebral

Retardo mental*

Neuroblastoma

aqueduto estreito

Hidrocefalia*

Dilatação dos ventrículos*

Anomalias da medula espinhal*

Anomalias dos nervos cranianos

 

Olhos

Anoftalmia

Microftalmia*

Microcórnia*

Coloboma*

íris deformada

ausência de lente

Ausência de retina

Pálpebras abertas

Estrabismo*

Nistagmo*

Retinoblastoma

Hipermetropia

Glaucoma

Catarata*

Cegueira

Coriorretinite*

albinismo parcial

Anquiloblefaro

Esqueleto

Atrofia geral

Tamanho reduzido do crânio

Deformidades do crânio*

Defeitos de ossificação da cabeça*

Crânio abobadado

cabeça estreita

Bolhas cranianas

Fenda palatina*

Peito de funil

Luxação do quadril

Spina bifida

cauda deformada

pés deformados

Pé torto*

Anomalias digitais*

calcâneo valgo

Odontogênese imperfeita*

exostose tibial

Amelanogênese*

Necrose escleratomal

 

Gerais

situs inversus

Hidronefrose

hidroureter

Hidrocele

Ausência de rim

Anomalias gonadais*

doença cardíaca congénita

Deformidades faciais

Distúrbios da hipófise

Deformidades das orelhas

Distúrbios motores

Necrose dermatomal

necrose miotomal

Anormalidades na pigmentação da pele

 

* Essas anormalidades foram observadas em humanos expostos antes do nascimento a grandes doses de radiação e, portanto, foram atribuídas provisoriamente à irradiação.

Fonte: Brill e Forgotson 1964.

A suscetibilidade aos efeitos cancerígenos da radiação também parece ser relativamente alta durante o período pré-natal, a julgar pela associação entre câncer infantil (incluindo leucemia) e exposição pré-natal a raios X diagnósticos relatados em estudos de caso-controle (NAS 1990). Os resultados desses estudos indicam que a irradiação pré-natal pode causar um aumento de 4,000% por Sv no risco de leucemia e outros cânceres infantis (UNSCEAR 1986; NAS 1990), um aumento muito maior do que o atribuível à irradiação pós-natal (UNSCEAR 1988; NAS 1990). Embora, paradoxalmente, nenhum excesso de câncer infantil tenha sido registrado em sobreviventes de bomba atômica irradiados no período pré-natal (Yoshimoto et al. 1990), como observado acima, havia muito poucos desses sobreviventes para excluir um excesso da magnitude em questão.

Figura 6. A frequência de retardo mental grave em relação à dose de radiação em sobreviventes de bombas atômicas irradiadas no período pré-natal    

ION020F6

Síntese e Conclusões

Os efeitos adversos da radiação ionizante na saúde humana são amplamente diversos, variando de lesões rapidamente fatais a cânceres, defeitos congênitos e distúrbios hereditários que aparecem meses, anos ou décadas depois. A natureza, frequência e gravidade dos efeitos dependem da qualidade da radiação em questão, bem como da dose e das condições de exposição. A maioria desses efeitos requer níveis relativamente altos de exposição e, portanto, são encontrados apenas em vítimas de acidentes, pacientes de radioterapia ou outras pessoas fortemente irradiadas. Os efeitos genotóxicos e carcinogênicos da radiação ionizante, ao contrário, são presumidos para aumentar em frequência como funções lineares não limítrofes da dose; portanto, embora a existência de limites para esses efeitos não possa ser excluída, supõe-se que sua frequência aumente com qualquer nível de exposição. Para a maioria dos efeitos da radiação, a sensibilidade das células expostas varia com sua taxa de proliferação e inversamente com seu grau de diferenciação, sendo o embrião e a criança em crescimento especialmente vulneráveis ​​a lesões.

 

Voltar

Leia 7724 vezes Última modificação em quinta-feira, 13 de outubro de 2011 21:30

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Radiação: Referências Ionizantes

Instituto Nacional de Padrões Americano (ANSI). 1977. Segurança de radiação para equipamentos de análise de raios-X, difração e fluorescência. vol. 43.2. Nova York: ANSI.

Sociedade Nuclear Americana. 1961. Relatório especial sobre o acidente SL-1. Notícias Nucleares.

Bethe, HA. 1950. Revs. Mod. Física, 22, 213.

Brill, AB e EH Forgotson. 1964. Radiação e malformações congênitas. Am J Obstet Gynecol 90:1149-1168.

Brown, P. 1933. American Martyrs to Science through the Roentgen Rays. Springfield, Illinois: Charles C. Thomas.

Bryant, PM. 1969. Avaliações de dados sobre liberações controladas e acidentais de I-131 e Cs-137 para a atmosfera. Saúde Física 17(1).

Doll, R, NJ Evans e SC Darby. 1994. Exposição paterna sem culpa. Nature 367:678-680.

Friedenwald, JS e S Sigelmen. 1953. A influência da radiação ionizante na atividade mitótica no epitélio da córnea do rato. Exp Cell Res 4:1-31.

Gardner, MJ, A Hall, MP Snee, S Downes, CA Powell e JD Terell. 1990. Resultados do estudo de caso-controle de leucemia e linfoma entre jovens perto da usina nuclear de Sellafield em West Cumbria. Brit Med J 300:423-429.

Boa cabeça, DJ. 1988. Distribuição espacial e temporal de energia. Saúde Física 55:231-240.

Salão, EJ. 1994. Radiobiologia para o Radiologista. Filadélfia: JB Lippincott.

Haynie, JS e RH Olsher. 1981. Um resumo dos acidentes de exposição à máquina de raios-x no Los Alamos National Laboratory. LAUP.

Colina, C e A Laplanche. 1990. Mortalidade geral e mortalidade por câncer em torno de instalações nucleares francesas. Nature 347:755-757.

Agência Internacional de Pesquisa sobre o Câncer (IARC). 1994. Grupo de estudo da IARC sobre risco de câncer entre trabalhadores da indústria nuclear, novas estimativas de risco de câncer devido a baixas doses de radiação ionizante: um estudo internacional. Lancet 344:1039-1043.

Agência Internacional de Energia Atômica (AIEA). 1969. Simpósio sobre o Tratamento de Acidentes de Radiação. Viena: AIEA.

—. 1973. Procedimento de proteção contra radiação. Série de Segurança da Agência Internacional de Energia Atômica, No. 38. Viena: AIEA.

—. 1977. Simpósio sobre o Tratamento de Acidentes de Radiação. Viena: AIEA.

—. 1986. Dosimetria Biológica: Análise de Aberração Cromossômica para Avaliação de Dose. Relatório técnico nº 260. Viena: IAEA.

Comissão Internacional de Proteção Radiológica (ICRP). 1984. Efeitos não estocásticos da radiação ionizante. Ann ICRP 14(3):1-33.

—. 1991. Recomendações da Comissão Internacional de Proteção Radiológica. Ann ICRP 21:1-3.

Jablon, S, Z Hrubec e JDJ Boice. 1991. Câncer em populações que vivem perto de instalações nucleares. Um levantamento de mortalidade em todo o país e incidência em duas áreas. JAMA 265:1403-1408.

Jensen, RH, RG Langlois e WL Bigbee. 1995. Frequência elevada de mutações da glicoforina A em eritrócitos de vítimas do acidente de Chernobyl. Rad Res 141:129-135.

Revista de Medicina Ocupacional (JOM). 1961. Suplemento Especial. J Occup Med 3(3).

Kasakov, VS, EP Demidchik e LN Astakhova. 1992. Câncer de tireóide após Chernobyl. Natureza 359:21.

Kerber, RA, JE Till, SL Simon, JL Lyon, DC Thomas, S Preston-Martin, ML Rallison, RD Lloyd e WS Stevens. 1993. Um estudo de coorte de doenças da tireóide em relação às consequências de testes de armas nucleares. JAMA 270:2076-2082.

Kinlen, LJ. 1988. Evidência de uma causa infecciosa de leucemia infantil: comparação de uma cidade nova escocesa com locais de reprocessamento nuclear na Grã-Bretanha. Lancet II:1323-1327.

Kinlen, LJ, K Clarke e A Balkwill. 1993. Exposição paterna à radiação pré-concepcional na indústria nuclear e leucemia e linfoma não-Hodgkin em jovens na Escócia. Brit Med J 306:1153-1158.

Lindell, B. 1968. Riscos ocupacionais no trabalho analítico de raios-x. Saúde Física 15:481-486.

Little, MP, MW Charles e R Wakeford. 1995. Uma revisão dos riscos de leucemia em relação à exposição pré-concepção dos pais à radiação. Saúde Física 68:299-310.

Lloyd, DC e RJ Purrott. 1981. Análise de aberração cromossômica em dosimetria de proteção radiológica. Rad Prot Dosimetria 1:19-28.

Lubenau, JO, J Davis, D McDonald e T Gerusky. 1967. Perigos Analíticos de Raios-X: Um Problema Contínuo. Trabalho apresentado no 12º encontro anual da Health Physics Society. Washington, DC: Health Physics Society.

Lubin, JH, JDJ Boice e C Edling. 1994. Risco de Radônio e Câncer de Pulmão: Uma Análise Conjunta de 11 Estudos de Mineiros Subterrâneos. Publicação NIH No. 94-3644. Rockville, Maryland: Institutos Nacionais de Saúde (NIH).

Lushbaugh, CC, SA Fry e RC Ricks. 1987. Acidentes em reatores nucleares: Preparação e consequências. Brit J Radiol 60:1159-1183.

McLaughlin, JR, EA Clarke, D Bishri e TW Anderson. 1993. Leucemia infantil nas proximidades de instalações nucleares canadenses. Causas e Controle do Câncer 4:51-58.

Mettler, FA e AC Upton. 1995. Efeitos médicos da radiação ionizante. Nova York: Grune & Stratton.

Mettler, FA, MR Williamson e HD Royal. 1992. Nódulos de tireóide na população que vive em torno de Chernobyl. JAMA 268:616-619.

Academia Nacional de Ciências (NAS) e Conselho Nacional de Pesquisa (NRC). 1990. Efeitos na Saúde da Exposição a Baixos Níveis de Radiação Ionizante. Washington, DC: National Academy Press.

—. 1994. Efeitos na Saúde da Exposição ao Radônio. Tempo para reavaliação? Washington, DC: National Academy Press.

Conselho Nacional de Proteção e Medições de Radiação (NCRP). 1987. Exposição à radiação da população dos EUA de produtos de consumo e fontes diversas. Relatório nº 95, Bethesda, Md: NCRP.

Institutos Nacionais de Saúde (NIH). 1985. Relatório do Grupo de Trabalho Ad Hoc dos Institutos Nacionais de Saúde para Desenvolver Tabelas Radioepidemiológicas. Publicação NIH No. 85-2748. Washington, DC: US ​​Government Printing Office.

Neel, JV, W Schull e Awa. 1990. Os filhos de pais expostos a bombas atômicas: Estimativas da duplicação genética da dose de radiação para humanos. Am J Hum Genet 46:1053-1072.

Comissão Reguladora Nuclear (NUREG). 1980. Critérios para Preparação e Avaliação de Planos de Resposta a Emergências Radiológicas e Preparação em Apoio a Usinas Nucleares. Documento nº NUREG 0654/FEMA-REP-1, Rev. 1. Washington, DC: NUREG.

Otake, M, H Yoshimaru e WJ Schull. 1987. Retardo mental grave entre os sobreviventes expostos ao pré-natal do bombardeio atômico de Hiroshima e Nagasaki: uma comparação dos sistemas de dosimetria antigos e novos. No Relatório Técnico RERF. Hiroshima: Fundação de Pesquisa de Efeitos de Radiação.

Prisyazhiuk, A, OA Pjatak e VA Buzanov. 1991. Câncer na Ucrânia, pós-Chernobyl. Lancet 338:1334-1335.

Robbins, J e W Adams. 1989. Efeitos da radiação nas Ilhas Marshall. Em Radiation and the Thyroid, editado por S Nagataki. Tóquio: Excerpta Medica.

Rubin, P, e GW Casarett. 1972. Uma direção para patologia de radiação clínica: a dose de tolerância. Em Frontiers of Radiation Therapy and Oncology, editado por JM Vaeth. Basel: Karger e Baltimore: Univ. Imprensa Parque.

Schaeffer, NM. 1973. Blindagem de reator para engenheiros nucleares. Relatório nº TID-25951. Springfield, Virgínia: Serviços Nacionais de Informações Técnicas.

Shapiro, J. 1972. Proteção contra radiação: Um guia para cientistas e médicos. Cambridge, Mass: Harvard Univ. Imprensa.

Stannard, JN. 1988. Radioatividade e Saúde: Uma História. Relatório do Departamento de Energia dos EUA, DOE/RL/01830-T59. Washington, DC: National Technical Information Services, EUA. Departamento de Energia.

Stevens, W, JE Till, L Lyon et al. 1990. Leucemia em Utah e precipitação radioativa do local de teste de Nevada. JAMA. 264: 585–591.

Pedra, RS. 1959. Padrões máximos de exposição permitidos. Em Protection in Diagnostic Radiology, editado por BP Sonnenblick. New Brunswick: Rutgers Univ. Imprensa.

Comitê Científico das Nações Unidas sobre os Efeitos da Radiação Atômica (UNSCEAR). 1982. Radiação Ionizante: Fontes e Efeitos Biológicos. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1986. Efeitos Genéticos e Somáticos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1988. Fontes, Efeitos e Riscos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1993. Fontes e Efeitos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1994. Fontes e Efeitos da Radiação Ionizante. Relatório à Assembleia Geral, com anexos. Nova York: Nações Unidas.

Upton, CA. 1986. Perspectivas históricas sobre carcinogênese por radiação. Em Radiation Carcinogenesis, editado por AC Upton, RE Albert, FJ Burns e RE Shore. Nova york. Elsevier.

Upton, CA. 1996 Ciências Radiológicas. Em The Oxford Textbook of Public Health, editado por R Detels, W Holland, J McEwen e GS Omenn. Nova york. Imprensa da Universidade de Oxford.

Comissão de Energia Atômica dos Estados Unidos (AEC). 1957. O incidente do reator Windscale. No Boletim de Informações sobre Acidentes No. 73. Washington, DC: AEC.

—. 1961. Relatório do Conselho de Investigação sobre o Acidente Sl-1. Washington, DC: US ​​NRC.

Código de Regulamentos Federais dos EUA (USCFR). 1990. Licenças para Radiografia e Requisitos de Segurança de Radiação para Operações Radiográficas. Washington, DC: Governo dos Estados Unidos.

Departamento de Energia dos EUA (USDOE). 1987. Saúde e Consequências Ambientais do Acidente da Usina Nuclear de Chernobyl. DOE/ER-0332.Washington, DC: USDOE.

Comissão Reguladora Nuclear dos EUA (NRC). 1983. Instrumentação para usinas nucleares resfriadas a água leve para avaliar as condições da usina e dos arredores durante e após um acidente. No NRC Regulatory Guide 1.97. Rev. 3. Washington, DC: NRC.

Wakeford, R, EJ Tawn, DM McElvenny, LE Scott, K Binks, L Parker, H Dickinson, H e J Smith. 1994a. As estatísticas descritivas e as implicações para a saúde das doses de radiação ocupacional recebidas pelos homens na instalação nuclear de Sellafield antes da concepção de seus filhos. J. Radiol. Proteger. 14: 3–16.

Wakeford, R., EJ Tawn, DM McElvenny, K Binks, LE Scott e L Parker. 1994b. Os casos de leucemia infantil Seascale - as taxas de mutação implícitas nas doses de radiação pré-concepcionais paternas. J. Radiol. Proteger. 14: 17–24.

Ward, JF. 1988. Danos no DNA produzidos por radiação ionizante em células de mamíferos: identidades, mecanismos de formação e reparabilidade. Prog. Res. de Ácido Nucleico. Mol. Biol. 35: 96–128.

Yoshimoto, Y, JV Neel, WJ Schull, H Kato, M Soda, R Eto e K Mabuchi. 1990. Tumores malignos durante as duas primeiras décadas de vida em descendentes de sobreviventes da bomba atômica. Sou. J. Hum. Genet. 46: 1041–1052.